УДК 541.49:548.73

СТРУКТУРА ГЕПТАГИДРАТА БАРБИТУРАТО-*бис*-(2,2'-ДИПИРИДИЛ)-МЕДИ(II)

© 2019 г. Н. Н. Головнев^{1, *}, М. С. Молокеев^{1, 2, 3}, И. В. Стерхова⁴, М. К. Лесников¹

¹Сибирский федеральный университет, Красноярск, Россия ²Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ³Дальневосточный государственный университет путей сообщения, Хабаровск, Россия ⁴Институт химии им. А.Е. Фаворского СО РАН, Иркутск, Россия *e-mail: ngolovnev@sfu-kras.ru Поступила в редакцию 28.12.2018 г. После доработки 11.03.2019 г. Принята к публикации 28.03.2019 г.

Определена структура (CIF file CCDC № 1887338), изучены термическое разложение и ИК-спектр комплекса [Cu(Bipy)₂(BA)] · 7H₂O (I), где Bipy – 2,2'-дипиридил, BA²⁻ – анион барбитуровой кислоты (H₂BA). Кристаллы ромбические: a = 26.118(3), b = 27.685(3), c = 15.683(2) Å, V = 11370(2) Å³, пр. гр. *Fdd*2, Z = 16. Островная структура полярного кристалла состоит из нейтральных частиц [Cu(Bipy)₂(BA)] и молекул кристаллизационной воды. Ион Cu²⁺ связан с атомами N двух бидентатных молекул Bipy и атомом N иона BA²⁻ по вершинам тригональной бипирамиды CuN₅. Соединение I – первый пример комплекса металла только с N-координированными анионами барбитуровой кислоты (BA²⁻, HBA⁻). Структура стабилизирована водородными связями O–H…O и N–H…O с образованием трехмерной сетки и π – π -взаимодействием между молекулами Bipy. Соединение начинает терять воду при ~50°С и полностью дегидратируется выше 200°С.

Ключевые слова: медь(II), барбитуровая кислота, 2,2'-дипиридил, комплекс, структура, свойства **DOI:** 10.1134/S0132344X19080036

Барбитуровая кислота (С₄H₄N₂O₃, H₂BA) – ключевое соединение важного класса успокоительных и гипнотических лекарств, именуемого "барбитуратами". Важное значение в химии барбитуратов имеет комплексообразование и нековалентные взаимодействия, такие как водородные связи (ВС) и π - π -взаимодействие [1]. Во всех структурно охарактеризованных комплексах анион НВА- координирован к ионам металлов через атомы О [2-13]. В соединении [Pd(En-N,N')(µ₂- $BA-C,N)_{2} \cdot 4H_{2}O$ (En = этилендиамин) [14] ион BA^{2-} выступает как мостиковый лиганд μ_2 -C,N. Другие комплексы металлов с ионами BA²⁻ неизвестны, хотя они могут иметь необычное строение и обладать потенциально полезными свойствами. Мы синтезировали гептагидрат барбитуратоfuc(2,2'-дипиридил)меди(II), [Cu(Bipy)₂(BA)] \cdot 7H₂O (I), где Віру — 2,2'-дипиридил, изучили его структуру, ИК-спектр и термическое разложение. Характеристика соединения І может представлять практический интерес, так как ионы Cu²⁺ могут влиять на лекарственную активность барбитуратов [2, 15], а дипиридильные комплексы Cu(II) каталитически активны [16].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез I. К 0.10 г (0.78 ммоль) H_2BA ("х. ч.") добавляли 5 мл воды, 0.038 г (0.39 ммоль) свежеприготовленного $Cu(OH)_2$ и 0.122 г (0.78 ммоль) Віру (Aldrich, 98%). Смесь нагревали при постоянном перемешивании и выдерживали при 80°С до полного растворения реагентов. Полученный темнозеленый раствор охлаждали до комнатной температуры, доводили 0.1 М NaOH до pH 10–11 и оставляли на воздухе в течение 5 сут. Полученный темно-зеленый кристаллический осадок отфильтровывали и сушили на воздухе. Выход I 0.082 г. (33% по меди). Монокристалл, пригодный для PCA, выбирали непосредственно из общей массы осадка. Соединение устойчиво на воздухе не менее 2 мес.

Найдено, %:	C 45.4;	Н 5.23;	N 13.1.
Для C ₂₄ H ₃₂ N ₆ O ₁₀ Cu			
вычислено, %:	C 45.9;	H 5.14;	N 13.4.

ИК-спектр I (v, см⁻¹): 1680, 1579 v(СО) ВА²⁻, 1597 v(СС)/v(СN) Віру, 3026, 3054, 3094, 2923

Рис. 1. Независимая часть ячейки І. Віру (А) и Віру (В) обозначены две независимые молекулы 2,2'-дипиридила.

v(NH) и v(CH), 3373 v(OH). Полосы отнесены согласно [17, 18].

РСА. Интенсивности рентгеновских отражений от темно-зеленого кристалла размером 0.40 × $\times 0.35 \times 0.25$ мм измерены при 100 К на монокристальном дифрактометре D8 Venture с CCD детектором (Bruker AXS, Мо K_{α} -излучение). Поправки на поглощение введены по программе SADABS. Структура решена прямыми методами (SHELXS) [19] и уточнена по программе SHELXL с учетом анизотропии тепловых параметров всех неводородных атомов. Все атомы водорода локализованы на разностной карте электронной плотности. В дальнейшем атомы Н, связанные с атомами C, N в ионах BA²⁻ и молекулах Bipy, размещались геометрически в модели "наездника" с ограничениями на длины связей С-Н 0.93-0.98, N-H 0.86-0.89 Å в зависимости от геометрии и с тепловыми параметрами $U_{\mu_{30}}(H) = 1.2U_{_{3KB}}(C,N).$ Все координаты атомов водорода в молекулах H₂O и ионах OH⁻ уточнены с мягким ограничением на длины связей О-Н 0.9 Å и с тепловыми параметрами $U_{\mu_{30}}(H) = 1.2 U_{3KB}(O)$. Проверка структуры на пропущенные элементы симметрии и возможные пустоты проведена по программе PLATON [20]. Основные кристаллографические характеристики и параметры эксперимента: М =

= 628.09, *a* = 26.118(3), *b* = 27.685(3), *c* = 15.683(2) Å, *V* = 11370(2) Å³, пр. гр. *Fdd2*, *Z* = 16, ρ (выч.) = = 1.468 г/см³, μ = 0.833 мм⁻¹, 2 θ _{max} = 60.15°, число измеренных рефлексов 36971, число независимых рефлексов 8323, *R*_{int} = 0.0587, параметр Флэка 0.04(1), *R*₁ = 4.08%, *wR*(*F*²) = 8.58%, $\Delta \rho_{max}/\Delta \rho_{min} = = 0.304/-0.391 e/Å³.$

Порошковая рентгенограмма поликристаллического образца I при комнатной температуре (дифрактометр D8 ADVANCE фирмы Bruker (ЦКП ИФ СО РАН), линейный детектор VANTEC, Си K_{α} -излучение) совпала с вычисленной из монокристальных данных, что подтвердило идентичность поликристаллов и исследованного монокристалла I.

Графическое представление кристаллической структуры и молекул построено по программе DIAMOND [21].

Структура депонирована в Кембриджском банке структурных данных (№ 1887338; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В комплексе I двухзарядный анион BA^{2-} координирован к меди(II) через депротонированный атом N. При ионизации H_2BA по первой ступени (р $K_{a1} = 3.89$) отрывается протон от группы $-C_5H_2$, а ионизация по второй ступени иминной группы иона HBA^{-} происходит только в сильнощелочных средах (р $K_{a2} = 11.9$) [15]. Это объясняет кристаллизацию соединения I из водного раствора при рH 10–11.

Независимая часть ячейки соединения I содержит ион Cu^{2+} , ион BA^{2-} , две молекулы Віру и семь молекул H_2O (рис. 1). Катион Cu^{2+} связан с двумя N,N'-бидентатными молекулами Віру (Cu-N 1.997(3)–2.199(3) Å) и одним ионом BA^{2-} через атом N(1) (Cu-N 1.990(3) Å) с образованием тригональной бипирамиды CuN₅. Бипирамиды связаны между собой только BC (рис. 2). Ионы BA^{2-} и молекулы Віру практически плоские.

Ранее координация HBA⁻, BA²⁻ и тиобарбитурат-ионов (HTBA⁻, TBA²⁻) только через атом азота не была установлена ни в одном соединении [22]. В димерном комплексе [Pd(En-N,N')(μ_2 -BA-C,N)]₂ · 4H₂O (II) [14] μ_2 -мостиковый ион BA²⁻ координирован к одному Pd(II) через атом азота, а к другому через атом углерода (C(5)). Расстояния C–O в I (1.252(4)–1.263 (5) Å) на ~0.02 Å больше, чем в II, на 0.04 Å длиннее, чем в кетоизомере H₂BA [23]. Это можно отнести к большей делокализации электронной плотности в циклической структуре лиганда BA²⁻ для I. В атомной группе O(2)C=C(4)C-C(5)C(H)–C(6)C=O(3)C (рис. 1) иона BA²⁻ в I, а также лигандов HBA⁻ [2–13] и

Рис. 2. Слой, образованный водородными связями в І.

НТВА- [24] имеет место выравнивание электронной плотности, проявляющееся в увеличении длин связей С-О и уменьшении С(4)-С(5) и C(5)-C(6). Координация $BA^{2-} \kappa Pd(II)$ через атом углерода С(5) приводит к другому распределению электронной плотности в циклическом лиганде. Например, длины связей C(4)C-C(5)C (1.45 Å) и C(5)C-C(6)C (1.47 Å) в комплексе Pd(II) значительно превышают соответствующие значения в I, равные соответственно 1.38 и 1.39 Å, и в комплексах с лигандами HBA⁻ [2-13] и HTBA⁻ [24]. Угол C(4)C(5)C)6 в I (121.7(4)°) заметно больше, чем в комплексе палладия (116.7(2)°) и кетонной форме H₂BA [23]. Его значение ближе к полученному для координированного иона HBA⁻ [2–13]. Таким образом, дополнительная к атому N координация BA²⁻ через атом C(5) изменяет геометрические параметры в атомной группе О(2)=С(4)-C(5)H-C(6)=O(3), но угол C(2)C-N(1)C-C(6)C (121.2(3)°) в I совпадает с аналогичным углом в $[Pd(En-N,N')(\mu_2-HBA-C,N)]_2 \cdot 4H_2O (121.6(2)^\circ).$ Другие примеры координации анионов барбитуровой кислоты к ионам металлов через атом азота неизвестны [22].

Тринадцать межмолекулярных водородных связей О–Н…О, N–Н…О в структуре I (табл. 1) образуют трехмерную сеть, в которой можно выделить слой 2D и супрамолекулярные мотивы [25]: $R_2^2(7)$, $R_3^2(8)$, $R_5^5(10)$, $R_6^4(12)$, $R_5^4(14)$ и $R_8^7(18)$ (рис. 2). К особенности поведения координированного иона BA^{2–} по сравнению с HBA[–] и HTBA[–] можно отнести отсутствие его самоассоциации с помощью BC N–H…O. В π – π -взаимодействии с расстояниями между центрами колец 3.47–3.68 Å участвуют только молекулы Bipy. Кривые ТГ и ДСК для I показаны на рис. 3. По данным ИК-спектроскопического анализа отходящих газов ниже 200°С удаляется только вода. При 200°С потеря массы веществом ($\Delta m_{_{ЭКСП}} = 20.3\%$) удовлетворительно совпадает с теоретически вычисленной в предположении полной дегидратации соединения ($-7H_2O$, $\Delta m_{_{ВЫЧ}} = 20.1\%$). Дегидратация сопровождается эндоэффектом при 107°С. В диапазоне 200–450°С можно выделить три стадии окислительного разложения координированных молекул Віру и иона HBA⁻. Последней стадии соответствует сильный экзо-эффект при 422°С. Конечным продуктом термолиза выше 470°С является СиО ($\Delta m_{_{ЭКСП}} = 12.4\%$, $\Delta m_{_{ВЫЧ}} = 12.7\%$).

БЛАГОДАРНОСТИ

Рентгенографические данные получены с использованием оборудования Байкальского и

Рис. 3. Кривые ТГ (1) и ДСК (2) при разложении I.

D–H…A	Расстояние, Å		Угол	Преобразования	
	D–H	Н…А	D…A	D–н…А, град	для атома А
$O(1w)-H(1wA)\cdots O(1C)$	0.89(3)	1.90(3)	2.750(4)	159(4)	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w)-H(1wB)\cdots O(6w)$	0.89(3)	1.95(3)	2.815(5)	164(4)	1 - x, 3/2 - y, z - 1/2
$O(2w)-H(2wA)\cdots O(5w)$	0.93(4)	2.02(5)	2.795(7)	140(3)	x - 1/4, y - 5/4, z - 1/4
$N(3C)-H(3C)\cdots O(5w)$	0.88	1.98	2.857(6)	177	x - 1/4, y - 5/4, z - 1/4
$O(2w)-H(2wB)\cdots O(2C)$	0.91(5)	1.73(5)	2.638(5)	172(5)	<i>x, y, z</i>
$O(3w)-H(3wB)\cdots O(4w)$	0.88(3)	1.94(3)	2.806(5)	168(6)	<i>x, y, z</i>
$O(4w)-H(4wA)\cdots O(2C)$	0.90(3)	1.80(4)	2.672(5)	163(5)	<i>x, y, z</i>
$O(4w)-H(4wB)\cdots O(1w)$	0.91(4)	1.91(4)	2.798(5)	165(5)	1 - x, 3/2 - y, 1/2 + z
$O(5w)-H(5wA)\cdots O(4w)$	0.92(5)	1.98(5)	2.801(6)	148(5)	<i>x, y, z</i>
$O(6w) - H(6wA) \cdots O(7w)$	0.89(3)	2.06(4)	2.757(5)	135(4)	<i>x, y, z</i>
$O(6w)-H(6wB)\cdots O(2w)$	0.89(3)	1.94(4)	2.814(5)	167(4)	1/4 + x, $5/4 - y$, $1/4 + z$
$O(7w)-H(7wA)\cdots O(2w)$	0.90(4)	1.99(5)	2.697(6)	134(4)	5/4 - x, $1/4 + y$, $1/4 + z$
$O(7w)-H(7wB)\cdots O(3C)$	0.90(4)	1.71(4)	2.606(4)	171(4)	<i>x</i> , <i>y</i> , <i>z</i>

Таблица 1. Геометрические параметры водородных связей в структуре І

Красноярского центров коллективного пользования СО РАН.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания Минобрнауки РФ Сибирскому федеральному университету в 2017–2019 гг. (4.7666.2017/БЧ).

СПИСОК ЛИТЕРАТУРЫ

- Mahmudov K.T., Kopylovich M.N., Maharramov A.M. et al. // Coord. Chem. Rev. 2014. V. 265. P. 1.
- Xiong Y., He C., An N.-C. et al. // Transition Met. Chem. 2003. V. 28. № 1. P. 69.
- 3. *Gryl M.* // Acta Crystallogr. B. 2015. V. 71. № 4. C. 392.
- Chu J., Liu Z.Y., Zhao X.J., Yang E.C. // Russ. J. Coord. Chem. 2010. V. 36. № 12. P. 901. doi 10.1134/S1070328410120067
- Golovnev N.N., Solovyov L.A., Lesnikov M.K. et al. // Inorg. Chim. Acta. 2017. V. 467. P. 39.
- 6. *Braga D., Grepioni F., Lampronti G.I. et al.* // Cryst. Growth Des. 2011. V. 11. № 12. P. 5621.
- Braga D., Grepioni F., Maini L. et al. // CrystEng-Comm. 2012. V. 14. P. 3521.
- Solovyov L.A., Golovnev N.N., Molokeev M.S., Lesnikov M.K. // J. Coord. Chem. 2017. V. 70. P. 1884.
- Головнев Н.Н., Молокеев М.К., Лесников М.К. и др. // Журн. неорган. химии. 2017. Т. 62. № 6. С. 761 (Golovnev N.N., Molokeev M.S., Lesnikov M.K. et al. // Russ. J. Inorg. Chem. 2017. V. 62. Р. 746. doi 10.1134/S0036023617060092).

- Chierotti M.R., Gaglioti K., Gobetto R. et al. // Cryst-EngComm. 2013. V. 15. P. 7598.
- Gryl M., Stadnicka K. // Acta Crystallogr. E. 2011. V. 67. P. m571.
- 12. Braga D., Grepioni F., Maini L., Prosperi S. et al. // Chem. Commun. 2010. V. 46. P. 7715.
- Golovnev N.N., Molokeev M.S., Sterkhova I.V., Lesnikov M.K. // Inorg. Chem. Commun. 2018. V. 97. P. 88.
- 14. *Sinn E., Flynn C.M., Jr., Martin R.B.* // J. Am. Chem. Soc. 1978. V. 100. № 2. P. 489.
- 15. *Türkel N., Aksoy M. S. //* ISRN Anal. Chem. 2014. V. 2014. P. 1.
- Korpi H., Sippola V., Filpponen I. et al. // Appl. Catal. A. 2006. V. 302. № 2. P. 250.
- 17. Garcia H.C. // J. Coord. Chem. 2011. V. 64. P. 1125.
- Gerasimova T.P., Katsyuba S.A. // Dalton Trans. 2013. V. 42. P. 1787.
- Sheldrick G.M. // Acta. Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 20. PLATON. A Multipurpose Crystallographic Tool. Utrecht (Netherlands): Univ. of Utrecht, 2008.
- Brandenburg K., Berndt M. DIAMOND Visual Crystal Structure Information System CRYSTAL IMPACT. Postfach, 2005. P. 1251.
- 22. Cambridge Structural Database. Version 5.36. Cambridge (UK): Univ. of Cambridge, 2018.
- 23. Lewis T.C., Tocher D.A., Price S.L. // Cryst. Growth Des. 2004. V. 4. № 5. P. 979.
- 24. Головнев Н.Н., Молокеев М.С. 2-Тиобарбитуровая кислота и ее комплексы с металлами: синтез, структура и свойства. Красноярск: Сиб. федер. ун-т, 2014. 252 с.
- Стид Дж. В., Этвуд Дж. Л. Супрамолекулярная химия. Ч. 1–2. М.: Академкнига, 2007. 895 с.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 8 2019