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Abstract—A criterion for revealing edge states in the case when the size of a system is comparable with the
localization length of these states has been proposed. The application of the algorithm for determining edge
states in short systems has been demonstrated on examples of the Bernevig–Hughes–Zhang (BHZ) model
in the cylindrical geometry, the Kitaev model, and a chain with the spin–orbit interaction and induced super-
conductivity. It has been shown that for finite-length 1D systems, there exist ranges of parameters in which
the edge states are not formed, although the topological index is nontrivial; conversely, the emergence of the
Majorana modes in regions with a trivial topological index has been demonstrated.
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1. INTRODUCTION

The properties of topologically nontrivial systems
have attracted attention of researchers in recent
decades [1–7]. Such systems are distinguished by the
existence of topologically protected states in the
dielectric gap, which ensure, among other things, the
motion of a fermion without scattering by nonmag-
netic impurities. The properties of such edge states are
studied commonly using semi-infinite models with a
single boundary, and the introduction of limited sys-
tems involves computation difficulties in most cases.
The results obtained for semi-infinite systems are
extended in this case to finite-size systems, and vice
versa.

Additional interest in systems in which edge states
are realized was induced by Kitaev’s prediction of the
existence of zero-energy edge (Majorana) modes in
1D systems with superconducting pairing [8]. The
ranges of parameters ensuring the emergence of the
Majorana modes in open systems are detected in most
cases via the search of topologically nontrivial phases
taking into account the periodic boundary conditions.
The classification of such phases for noninteracting
electrons was performed in [9, 10]. The systems were
considered to be large enough for the size effects of the
system to be disregarded. The limits of this approach
were extended in [11, 12], where the emergence of
lines of parameters corresponding to the formation of
the Majorana modes separating the ground-state
regions with different parities was demonstrated for
1D finite-size models.

Despite the huge number of features devoted to
analysis of the properties of edge states in systems with
a single boundary, the peculiarities in the realization
of edge states in short chains have not been studied
comprehensively [13–17]. All these publications were
aimed at revealing the peculiar properties of edge
states, which are associated with the finite size of such
systems, while the size effects on the conditions for the
emergence of edge states was not considered. This
problem is exactly the subject of this study.

2. PROBLEM OF THE STATE TYPE 
INTERPRETATION IN FINITE-SIZE SYSTEMS

It is generally accepted that edge states are the
states for which the wavefunction is mainly concen-
trated in the first atomic layers [18]. However, the
decrease rate of the wavefunction amplitude can be
indefinitely low, and the characteristic localization
length can amount to hundreds of atomic layers. The
energy of such one-electron state lies in the gap of the
bulk spectrum, and its properties depend on the
boundary conditions. Tamm [19, 20] and Shockley
[21] emphasized in their publications that the location
of the edge state energy in “forbidden” bands is an
important characteristic of an edge state.

The problems associated with the above-men-
tioned identification from the localization length can
be demonstrated on the following two examples. The
first example is the state with zero excitation energy at
special lines [11] of parameters in Kitaev’s finite-
length model (Fig. 1). In the case of a continuous vari-
ation of parameters along the special lines in the para-
125
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Fig. 1. (Color online) (a, b, c) Dependence of expansion coefficients (1) on the node number (d) for special lines of parameters
in the Kitaev model for a finite-length chain. In spite of the fact that the expansion coefficient in (c) has a peak almost at the
middle of the chain, this case corresponds to the edge mode.
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metric space, the maximum of the expansion coeffi-
cient amplitude continuously shifts from the chain
edge (Fig. 1a) to the center (Fig. 1c). Although
(according to the amplitude graph in Fig. 1c) such an
excitation is not of the edge type as regards the local-
ization in the first atomic layers, it still exhibits the
properties of an edge excitation. First, this excitation
has energy E = 0, which is obviously in the gap of the
bulk excitation spectrum. Second, this excitation
appears only in the presence of open boundaries in the
chain. Third, we must consider the analytic expression
for the expansion coefficients of the annihilation
operator for such an excitation in single-site operators.
The expression for the Fermi operator corresponding
to excitation energy E = 0 has the form
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where cj are the Majorana operators. It can be seen
that the expansion coefficients have a tendency toward
an exponential decrease from the edges for any value
of parameters as long as these parameters lie on a spe-
cial line; however, in the case depicted in Fig. 1c, the
chain length does not allow us to observe this decrease
in view of its extremely small length of the chain.

Another example illustrating the problem emerging
in finite-size systems is the Bernevig–Hughes–Zhang
(BHZ) model with periodic boundary conditions
along one direction and open boundary conditions
along the other direction. Since it is possible in such
geometry to introduce a classification of excitations
according to the magnitude of the quasi-momentum
in the direction along which the periodic boundary
conditions are realized, the problem can be reduced to
a 1D problem with parameters that are functions of
this quasi-momentum k. Figure 2 shows the charac-
teristic shape of the wavefunction amplitude at nodes
along the direction in which the boundary conditions
are open for the one-electron state that experiences a
transition from the edge to a nonedge form upon a
change in quasi-momentum k. We can see a continu-
D THEORETICAL PHYSICS  Vol. 128  No. 1  2019
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Fig. 2. Dependence of the probability amplitude on the node number for a state with spin projection σ = ↑ upon a transition from
the edge to nonedge state in the BHZ model with a cylindrical geometry; t = 0, Δt = 1, α = 0.5, Δε = 0.5, and N = 100 for different
values of quasi-momentum k. The state with k = 1.767π (top right graph) is of the edge type, while the state with k = 1.768π (bot-
tom left graph) is of the nonedge type.
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ous transition from the explicitly edge state to the
nonedge state, which occurs most rapidly in the vicin-
ity of k = 1.76π, but it is impossible to determine the
value of the quasi-momentum at which the state stops
being of the edge type from the degree of wavefunction
localization.

3. GENERALIZATION OF THE CONCEPT
OF EDGE STATES TO THE CASE

OF 1D FINITE-SIZE SYSTEMS

The problem of determining the edge states for 1D
finite-size systems was considered in [22], where an
extended version of interpreting edge states was pro-
posed and their properties were analyzed. It was pro-
posed that the edge state in a finite-size 1D system be
treated as a state existing only in the presence of a
boundary, and the properties of this state are deter-
mined by the position of this boundary. It was demon-
strated for a 1D system with a continuous periodic
potential that the energies of the edge states lie in the gap
of the bulk spectrum, and the wavefunction decrease
rate for the edge state depends on the position of the
edge state energy in the bulk spectrum gap: the energy at
the middle of the gap corresponds to a rapid decrease,
while the energy close to the bulk zone leads to a sub-
stantial expansion in the edge state localization region.

The criteria for the edge state were also considered
in [23], where the BHZ model with periodic boundary
conditions along one direction and with an open
boundary along the other direction was analyzed. It
was noted that the local density of state with the energy
value in the gap of the bulk spectrum experiences
space oscillations, as a result of which the peak in the
local density of states shifts from the first atomic layer
at the boundary to the bulk of the system. It was pro-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
posed that the range of parameters for which the edge

state exists be determined from analysis of the indices

of exponents appearing in the one-electron state

wavefunction.

In this study, we confine our analysis to the con-

cept of edge states in the tight binding approximation.

The edge state can be rigorously determined only for a

semi-infinite system with a single boundary;1 an edge

state is the state the local probability density of which

tends to zero in a semi-infinite lattice:

(2)

The coefficients of wavefunction expansion for the

one-electron state in single-site states can be repre-

sented as the sum of solutions to the equations for the

coefficients disregarding boundaries (general equa-

tion). Such solutions to the general equation are also

exponentials; if the Hamiltonian of an unbounded

system exhibits inversion symmetry, these solutions

appear in the expansion in pairs (as  and as ),

the number of such pairs being equal to the number of

equations at the system boundary:

(3)

where the sum over j implies the summation over the

above-mentioned pairs of solutions, and un and  can

be the a row vector and a column vector with allowance

for the spin and multiband structure of the system.

1 The author is grateful to the reviewer who pointed out this fact.
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Let us suppose that all solutions λj have a nonzero

real part Reλj > 0. Then the requirements of bounded-

ness for a semi-infinite system wavefunction implies
that all coefficients Bj = 0, and wavefunction (3) satis-

fies the definition of boundary state (2).

Let us now consider the case when the exponent
index of one of general solutions λj is imaginary. Since

the number of pairs of general solutions is equal to the
number of equations at the boundary, it is impossible
to simultaneously equate to zero the coefficients Aj
and Bj corresponding to this pair of solutions. In such

a case, the wavefunction has an undamped compo-
nent, and such a state is not of the edge type. Obvi-
ously, in the case of a large number of purely imagi-
nary exponential indices, the state will be penetrating
by nature. Therefore, we can formulate an analytic cri-
terion for the edge state in a 1D system.

Criterion

If all real parts of the indices of exponential func-
tions that are the solution to the general equation for
the coefficients of the wavefunction expansion in the
nodes of the system for a preset state energy differ from
zero, we have an edge state; otherwise, the state is a
nonedge (penetrating) state:

(4)

This analytic criterion is in one-to-one correspon-
dence with rigorous definition (2) of the edge state in
a semi-infinite system. In contrast to the latter state,
however, it does not require the unboundedness of the
system and can be applied to finite-size 1D systems.
Irrespective of the system size, the proposed criterion
divides all states into two classes:

1. One-electron states with wavefunctions expo-
nentially decreasing from the system edges. In a semi-
infinite system, these are edge states in the rigorous
sense of this word. The same class of solutions for a
finite-size system exhibits the main properties of edge
states (localization at the boundary and energy values
lying in the bulk spectrum gap). In addition, these
states appear only in the presence of boundaries and
disappear when periodic boundary conditions are
imposed. Therefore, such states in finite-size 1D sys-
tems should be referred to as edge states.

2. One-electron states with an undamped compo-
nent in expansion (3), which should be referred to as
nonedge or penetrating states.

Apart from the proposed criterion (4), an edge state
in a 1D system can be determined from the energy of
this state. If, for example, the energy value of a state
lies in the bulk spectrum, at least one index of expo-
nent λj for such a state must be purely imaginary,

because the energies of bulk states are the solution to
the eigenvalue problem of the same general equation,
and such a state is penetrating. If an energy value falls

∀λ λ ≠:Re 0.j j
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into the bulk spectrum gap, none of the exponent
indices can be imaginary, and we have an edge state.

4. EDGE STATES IN THE BHZ MODEL
IN THE NARROW STRIPE GEOMETRY

Let us illustrate in detail the application of the pro-
posed criterion of edge states for the BHZ model [2]
with periodic boundary conditions along the x axis
and open boundary conditions along the y direction.
Following [24], we can write the BHZ model Hamil-
tonian in the tight binding approximation in the form

(5)

Indices n and m here correspond to the node number-
ing along the x and y axes, respectively, and notation
NN implies summation over the nearest neighbors.

The existence of periodic boundary condition
makes it possible to pass to the effectively 1D case; in
this case, the set of energy parameters is supplemented
with quasi-momentum k along the x axis, which also
affects the realization of the edge state. The wavefunc-
tion for the one-electron state with spin projection σ
and quasi-momentum k has the form

(6)

where the expansion coefficients are the solutions to
the general equation:

(7)

The general solution for the expansion coefficients can
be written in the form
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Fig. 3. Real (top) a = Reλ and imaginary (bottom) b = Imλ parts of the exponents for the solution changing from the edge to the
nonedge type upon a change in quasi-momentum k (left) and being of the nonedge type in the entire range of k values (right) in
the BHZ model with the cylindrical geometry; t = 0, Δt = 1, α = 0.5, Δε = 0.5, and N = 100. Roman numerals indicate the type
of general solutions.
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Here, if λ is a solution, –λ and λ* are also solutions. In
this case, there exist four sets for λ = a + ib:

I. λ = ±ib1, ±ib2;

II. λ = ±a1 + iπl, ±ib1;

III. λ = ±a1 ± ib1;

IV. λ = ±a1 + iπl1, ±a2 + iπl2.

Here, a and b are real-valued nonzero quantities,
and the correction +iπl, where l is an integer, has been
introduced to take into account the solutions with
sign-alternating real-valued solutions. Solutions of
type I and II have a nondecreasing component, and
their energies lie in the region of band solutions and,
hence, cannot be of the edge type. Solutions of
types III and IV are edge solutions, since all their
components decrease either from the right or from the
left edge, and their energies fall into the bulk spectrum
gap. Numerical calculations show that bulk solutions
of type II, which have an additional decreasing com-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
ponent, as well as edge solutions III inducing spatial
oscillation of the probability density, are encountered
quite often, which makes it difficult to distinguish
between bulk and edge states from the degree of their
localization at the boundary (Fig. 2).

Figure 3 shows a typical form of the dependence of
λ on k for the state that changes its type from the edge
to nonedge depending on k, as well as the state that is
of the nonedge type for any value of k. It can be seen
that there exists a clearly manifested point kcr at which

the state is no longer of the edge type and becomes a
bulk state. In the case represented in Fig. 2, the quasi-
momentum for which the edge state disappears is kcr =

1.7675π. The same point corresponds to the splitting
of the state energy from the band of bulk states. The
behavior of the imaginary part of exponent b = Imλ is
inessential.

An important result is the fact that the value of quasi-
momentum kcr at which edge states appear depends on
YSICS  Vol. 128  No. 1  2019
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Fig. 4. Dependence of the value of kcr corresponding to the
point of transition from the edge to the nonedge state in
the BHZ model in the cylindrical geometry on the cylinder
length N; t = 0, Δt = 1, α = 0.5, and Δε = 0.5. Dashed line
corresponds to the value of kcr for N → ∞.
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Fig. 5. (top) Domain of existence of edge states in the
Kitaev model for chain length N = 20 (dark); white curves
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chain length N. Such a dependence shown in Fig. 4
clearly demonstrates that the size of a 1D systems affects
the conditions for the emergence of edge states.

5. EDGE STATES IN THE KITAEV
FINITE-LENGTH MODEL

Let us illustrate the size effects on the conditions
for the emergence of edge excitations using the Kitaev
model as an example [8]. We can write the Hamilto-
nian in the form

(9)

The ranges of parameters for which edge states
appear in such a model are shown in Fig. 5. Apart from
the above-mentioned realization of the zero-energy
mode only on special lines [11], the finite size of the
system leads to the following two effects. First, the
lines bounding the region of realization of edge states
and defined as |μ| = ±2|t| in an infinitely long chain
become functions of superconducting pairing param-
eter |Δ|, and the region is the smaller, the shorter the
chain. Second, for small values of |Δ|, pockets appear
in the regions between the zero excitation energy lines,
in which an edge state does not appear. This is due to
the fact that strong overlapping of edge excitations
striving to be localized at the opposite ends of the
chain leads to the excitation energy falling into the
bulk region and to a change of the excitation to the
nonedge form. Figure 5 also clearly shows the relation
between quantity a = Reλ and the depth of the posi-
tion of the edge excitation in the gap; the maximum is
attained in this case at the zero mode lines.
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6. EDGE STATES IN A LIMITTED CHAIN 
WITH THE SPIN–ORBIT INTERACTION
AND INDUCED SUPERCONDUCTIVITY

As another example, we consider a 1D chain with
the spin–orbit interaction and induced superconduc-
tivity, which is placed into a magnetic field [25, 26]:

(10)

Figure 6 shows the regions on the diagram of
chemical potential μ and magnetic field h, for which
edge excitations appear. Like in the case with the
Kitaev model, pockets without edge states in case of
the finite chain length appear in the region of realiza-
tion of edge states, which is obtained from analysis of
the topological invariant for periodic boundary condi-
tions. Conversely, in the case of a short chain in the
range of parameters corresponding to the trivial Majo-
rana number, there exist lines of parameters for which
the Majorana modes appear.
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Fig. 6. Domain of realization of edge states in a chain with
the spin–orbit interaction and induced superconductivity
for (a) N = 20 and (b) N = 6. Dark regions correspond to
parameters for which the edge state exists. White curves in
the bottom figure mark the lines of parameters for which
the Majorana modes are realized in the chain. The dashed
line indicates the parameters for which the bulk gap is
closed and the topological invariant changes; α = 0.5t,
Δ = 0.1t.

N = 20

N = 6

0 0.5 1.0 1.5 2.0 2.5 3.0

μ/t

0 0.5 1.0 1.5 2.0 2.5 3.0

μ/t

2.0

2.0

1.8

1.8

1.6

1.6

1.4

1.4

1.2

1.2

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

h/t

h/t

(a)

(b)

Fig. 7. Dependence of the first 10 energies of intrinsic exci-
tations in a chain with the spin–orbit interaction and
superconducting pairing on chemical potential μ. The
lower excitation energy is shown by the bold solid curve;
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is shown by bold dashed curve; α = 0.5t, Δ = 0.1t, h = 0.6t,
and N = 100.
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In addition, in the range of parameters for μ < t,
there exists a region of localization of edge states,

which cannot be determined from the topological

invariant, because these states possess energy that is

not exponentially low, although it is split from the bulk

zone (Fig. 7). This region is larger and the excitation

energy is split from the bulk zone more clearly, the

longer the chain. It should be noted that the exis-

tence of a topological transition that is not associated

with the Majorana modes in this range of energy

parameters has been recently established in [27] from

analysis of the spin and charge characteristics of a

long chain. The possibility of penetration of edge

states in the topologically trivial region has also been

demonstrated earlier for a triangular lattice with a

noncollinear magnetic order and chiral supercon-

ductivity of the d-wave type [28] in the cylindrical

geometry. These results show that the method of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
topological invariant analysis is inapplicable for the

search for the edge solutions in short systems with

energy that is not exponentially low and with Majo-

rana modes; other methods (in particular, the one

proposed in this study) should be used.

7. CONCLUSIONS

In this study, an approach is proposed for deter-

mining the edge states in finite-size 1D systems. As the

main criterion, the absence of the general solution

with purely imaginary exponent is chosen for the pre-

set energy of state, which is unambiguously related to

the determination of energy of such a state beyond the

range of allowed energies of bulk states. The effect of

the finite chain length on the conditions for the emer-

gence of edge solutions in 1D systems (and those that

can be reduced to such systems) is demonstrated for

the BHZ model, the Kitaev model, and a chain with

the spin–orbit interaction and induced superconduc-

tivity. It is shown, in particular, that pockets without

edge states appear in the range of parameters with a

nontrivial topological index; the size and number of

such pockets is determined by the chain length. The

emergence of such pockets can also be expected in

other effectively one-dimensional finite-size systems

in which the lines of parameters corresponding to the

realization of the Majorana modes appear. In the case

of a chain with the spin–orbit interaction and super-

conducting pairing, the proposed algorithm for deter-

mining edge states has revealed a range of parameters

corresponding to the emergence of edge excitations

with finite energy in the chain; this range of parame-

ters cannot be determined from analysis of the topo-

logical invariant.
YSICS  Vol. 128  No. 1  2019



132 FEDOSEEV
ACKNOWLEDGMENTS

The author is grateful to the researchers from the
Theoretical Physics Laboratory of the Institute of
Physics, Siberian Branch, Russian Academy of Sci-
ences for numerous discussions and their interest in
this work.

The reported study was funded by Russian Foun-
dation for Basic Research, Government of Kras-
noyarsk Territory, Krasnoyarsk Region Science and
Technology Support Fund according to the research
project 17-42-240441 “Majorana bound fermions in
the nanomaterials with strong electron correlations
and quantum electron transport in the devices con-
taining these materials,” project no. 18-32-00443
“Finite-size effects and the role of electron correla-
tions in the formation of the Majorana modes in low-
dimensional systems with the spin–orbit interaction,”
project no. 18-42-243017 “Manifestation of Coulomb
interactions and limited geometry effects in the prop-
erties of topological edge states of nanostructures with
the spin–orbit interaction,” project no. 18-42-243018
“Contact phenomena and magnetic disorder in the
problem of formation and detection of topologically
protected edge states in semiconducting nanostruc-
tures,” as well as grant of the President of the Russian
Federation no. MK 3722.2018.2.

REFERENCES

1. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178
(1985).

2. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Sci-
ence (Washington, DC, U. S.) 314, 1757 (2006).

3. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007).

4. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

5. D. V. Khomitsky and A. A. Chubanov, J. Exp. Theor.
Phys. 118, 457 (2014).

6. V. A. Volkov and V. V. Enaldiev, J. Exp. Theor. Phys.
122, 608 (2016).

7. V. D. Kurilovich, P. D. Kurilovich, and I. S. Burmis-
trov, Phys. Rev. B 95, 115430 (2017).

8. A. Yu. Kitaev, Phys. Usp. 44, S131 (2001).

9. A. P. Schnyder, S. Ryu, A. Furusaki, et al., Phys. Rev.
B 78, 195125 (2008).

10. A. Yu. Kitaev, AIP Conf. Proc. 1134, 22 (2009).

11. S. Hegde, V. Shivamoggi, S. Vishveshwara, et al., New
J. Phys. 17, 053036 (2015).

12. V. V. Val’kov, V. A. Mitskan, and M. S. Shustin, JETP
Lett. 106, 798 (2017).

13. R. Chen and B. Zhou, Chin. Phys. B 25, 067204
(2016).

14. M.-C. Hsu, Y.-C. Lin, and C.-R. Chang, J. Appl. Phys.
118, 043909 (2015).

15. K. Hattori, J. Phys. Soc. Jpn. 84, 044701 (2015).

16. L. Ortiz, R. A. Molina, G. Platero, et al., Phys. Rev. B
93, 205431 (2016).

17. V. V. Valkov, A. O. Zlotnikov, A. D. Fedoseev, et al.,
J. Magn. Magn. Mater. 440, 37 (2017).

18. A. Ya. Belen’kii, Sov. Phys. Usp. 24, 412 (1981).

19. I. Tamm, Phys. Zeits. Sowjetunion 1, 733 (1932).

20. I. E. Tamm, Collection of Scientific Works (Nauka,
Moscow, 1975) [in Russian].

21. W. Shockley, Phys. Rev. 56, 317 (1939).

22. S. Y. Ren, Springer Tracts Mod. Phys. 212, 1 (2005).

23. X. Dang, J. D. Burton, A. Kalitsov, et al., Phys. Rev. B
90, 155307 (2014).

24. F. Begue, P. Pujol, and R. Ramazashvili, J. Exp. Theor.
Phys. 126, 90 (2018).

25. D. Sticklet, C. Bena, and P. Simon, Phys. Rev. Lett.
108, 096802 (2012).

26. V. V. Val’kov and S. V. Aksenov, J. Magn. Magn. Mater.
440, 112 (2017).

27. M. Serina, D. Loss, and J. Klinovaja,
arXiv:1803.00544v (2018).

28. V. V. Val’kov, A. O. Zlotnikov, and M. S. Shustin,
J. Magn. Magn. Mater. (2018, in press).

Translated by N. Wadhwa
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 128  No. 1  2019


	1. INTRODUCTION
	2. PROBLEM OF THE STATE TYPE INTERPRETATION IN FINITE-SIZE SYSTEMS
	3. GENERALIZATION OF THE CONCEPT OF EDGE STATES TO THE CASE OF 1D FINITE-SIZE SYSTEMS
	Criterion

	4. EDGE STATES IN THE BHZ MODEL IN THE NARROW STRIPE GEOMETRY
	5. EDGE STATES IN THE KITAEV FINITE-LENGTH MODEL
	6. EDGE STATES IN A LIMITTED CHAIN WITH THE SPIN–ORBIT INTERACTION AND INDUCED SUPERCONDUCTIVITY
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

		2019-04-04T11:35:07+0300
	Preflight Ticket Signature




