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Abstract—Based on the spin Hamiltonian and taking into account the cubic invariant of the crystal field and
the Dzyaloshinskii–Moriya interaction, the weak ferromagnetic moment along the triad axis and the basal
anisotropy of FeBO3 crystals are calculated in the approximation of second-order perturbation theory.
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1. INTRODUCTION
Although iron borate crystals have been synthe-

sized and investigated quite thoroughly for a long time,
they continue to attract the interest of researchers,
since they are convenient objects for constructing var-
ious models related to magnetism [1]. These crystals
are characterized by a relatively simple lattice, a high
Néel temperature, narrow lines of antiferromagnetic
resonance [2], and a number of isostructural diamag-
netic analogs. Thus, Dmitrienko et al. [1] were the
first to determine in 2014 the magnitude and sign of
vector components in the Dzyaloshinskii–Moriya
interaction (for iron borate crystals) [1]. Note that we
confirm and use the work by Dmitrienko et al. [1] in
our study, which follows from the calculated data and
experiment on hexagonal anisotropy (see Section 4).
In this work, we take into account the sign of the basal
hexagonal anisotropy of FeBO3 and calculate the weak
ferromagnetic moment along the triad axis of FeBO3
crystals due to the influence of the cubic electric field
and the Dzyaloshinskii–Moriya interaction. The cal-
culations were performed in the approximation of sec-
ond-order perturbation theory. The calculated matrix
elements used in Section 3, are presented in the
Appendix. Note that the free energy was considered
earlier in [3], but in a less correct form, although it
gave the same result. For the exchange interaction
term, the molecular field approximation was used.
The quantitative evaluation of the obtained expres-
sions for the basal hexagonal anisotropy and the weak
ferromagnetic moment along the triad axis was made
using electron paramagnetic resonance (EPR) data on
MBO3 + Fe3+ crystals isostructural to iron borate

(M = Ga, In, Sc, Lu) (see Section 4). The main results
of this work are presented in the Section 5.

2. PHENOMENOLOGICAL DESCRIPTION
OF ENERGY OF HEXAGONAL ANISOTROPY 

AND WEAK FERROMAGNETIC MOMENT 
ALONG TRIAD AXIS OF FeBO3 CRYSTALS
Magnetic properties of iron borate crystals are

described by the free energy [4]

(1)

M1 and M2 are the sublattice magnetizations, N is the
Avogadro number, g is the spectroscopic splitting fac-
tor, β is the Bohr magneton, S is the spin of the iron
ion equal to 5/2, and B5/2(x) is the Brillouin function.
All constants in expression (1) have a dimension of
magnetic field. Despite the relatively simple crystal
structure of FeBO3 (calcite), the behavior of the mag-
netic system during the rotation of the antiferromag-
netism vector L in the (111) plane relative to the last
two terms in (1) is rather complex [3, 4]. Such a com-
plex behavior (which can be seen in Fig. 1, which
shows the distribution of cubic crystal axes), obtained
from EPR spectra in ScBO3 + Fe3+ [5] and CaCO3 +
Mn2+ [6] crystals isostructured to iron borates is char-
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Fig. 1. Effective positions of  ions and cubic electric
field axes for two inequivalent positions of the ion M in the
MBO3 lattice (M = Fe, Ga, In, Lu, Sc) [5].
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acteristic of the effective basal anisotropy and vector of
ferromagnetism M along the triad axis of the FeBO3
crystal. The first term in Eq. (1) characterizes the iso-
tropic exchange energy in the crystal; the second term
describes the uniaxial anisotropy; the third term is for
the Dzyaloshinskii interaction, which leads to the
appearance of weak ferromagnetism in the basal plane
(111); the last two terms are the anisotropy energy in
the (111) plane; θ and ϕ are the polar and azimuthal
angles of vector L, measured from the triad axis (z) and
from the crystal symmetry plane (x axis), respectively
(see Fig. 1). Phenomenological expressions for the
effective basal anisotropy and the weak ferromagnetic
moment along the triad axis are obtained by minimiz-
ing the free energy (1) along θ and Mz and have the
form [3, 7]

(2)

3. CALCULATION OF HEXAGONAL 
ANISOTROPY AND WEAK FERROMAGNETIC 
MOMENT ALONG THE TRIAD AXIS OF FeBO3 

CRYSTAL BASED ON SPIN HAMILTONIAN 
TAKING INTO ACCOUNT THE INFLUENCE 

OF CUBIC ELECTRIC FIELD
AND DZYALOSHINSKII–MORIYA 

INTERACTION

The spin Hamiltonian taking into account two
nonequivalent positions of Fe3+ ions and
Dzyaloshinskii–Moriya interaction ions takes the
form [3, 8]
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Here, the first term (exchange interaction energy) in
Eq. (3) is written in the molecular field approxima-
tion, s is the ion spin operator,  are the equivalent
spin operators that are given together with their matrix
elements, for example, in [9, 10], and αcfj is the angle
between the projections of the axis of the cubic crystal
field on the (111) plane and the plane of symmetry of
the crystal at position j (Fig. 1; for a more detailed
description, see [7, 8]). The second, third, and fourth
terms (for the Hamiltonian constant acf) describe the
interactions of axial and cubic symmetry. The last
term describes the Dzyaloshinskii–Moriya interac-
tion.

The exchange term in (3) can be written in the
zeroth approximation in perturbation theory assuming
that the quantization axis is determined by angles θj
and ϕj measured from the triad axis and from the sym-
metry plane, respectively. The Hamiltonian in the
rotating coordinate system can be written as in [10]
with the expressions responsible for the
Dzyaloshinskii–Moriya interaction [11]:

(4)

Here, the signs of the rotating coordinate system are
omitted for simplicity, and ϕ2 – ϕ1 ≈ 180° is the differ-
ence between the orientations of the sublattices j = 1
and j = 2. We can take into account the weak ferro-
magnetic moment along the triad axis and the basal
anisotropy in the second approximation of perturba-
tion theory using expressions for , where

plus the last term in (4):

in formulas (1)–(4), dDM value for FeBO3 is negative [1].
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The expression for the energy in the approximation
of second-order perturbation theory was given, for
example, in [12]:

where  is the perturbation operator, |m1, m2 and | ,
 are the wavefunctions of ions 1 and 2, respectively,

in the ground and excited states; m1, m2 and , 
have the meaning of the corresponding magnetic
quantum numbers; and the denominator is the differ-
ence between the energy of the ground and excited
states in the zero approximation. The calculated
matrix elements, in which the constants  and the
trigonometric functions in the last term of Eq. (4) were
omitted for simplicity, are presented in the Appendix.
The energy levels in the zero and second approxima-
tions of the perturbation theory in relation to the above
expressions are

(5)

Here, without loss of generality with the final result (in
the approximation of a strong exchange field), we
assumed sinθ1 = sinθ2 = sinθj (see the last term in (4)).
In expression (5) |dDM| = gβ|HDM/m|, where |dDM| and
|m| are the absolute values of the Dzyaloshinskii–
Moriya field and the magnetic quantum number,
respectively. The final expressions for the energy levels
take the form
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At arbitrary temperatures, the contribution to the
weak ferromagnetic moment along the triad axis and
the basal anisotropy constant will be determined from
the free energy of the crystal

is the sum of the states of the jth ion.
Let us expand the exponential function in the

expression for the free energy of a crystal in a series in
(c(mj)aj(θj, ϕj, αj))/kT. Restricting consideration to the
linear expansion term, we get

(7)

cj(mj) have values derived from Eqs. (6) and (7). Using

the notation Yj = exp(–gβ /kT) and summing over
mj, we rewrite the expression for F as follows

where
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(8)
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netism similarly to [13] and summing over j, we arrive
at the expression

(9)

In (9), by definition, cosθ1 – cosθ2 = 2cosθ,
cosθ1 + cosθ2 = 2mz. Let us write the expression for the
constants of hexagonal anisotropy, which follows from
Eqs. (1) and (9) in accordance with the single-ion
contribution [4]:

(10)

This function was introduced by Wolf when calcu-
lating the single-ion magnetic anisotropy of cubic
crystals [14]. In Eq. (10), acf is expressed in the energy
units.

The effective field of the measured hexagonal
anisotropy, which follows from (2), (9), and (10), has
the form

(11)

Note that, in Eq. (11), the ratio between the effec-
tive fields HDM/Heff multiplied by M = NgβB5/2(x) is
equal to the weak ferromagnetic moment [4]. Equat-
ing the energy mz in (1) to (9), we obtain

and then define according to (2)

Based on this expression, we find the measured
magnetic moment along the triad axis per a mole of
the crystalline substance FeBO3:

(12)

Here acf is expressed in units of field (oersteds).

4. QUANTITATIVE ESTIMATION
OF THE BASAL ANISOTROPY

AND WEAK FERROMAGNETIC MOMENT 
ALONG THE TRIAD AXIS OF FeBO3 CRYSTALS 

RESULTING FROM A CUBIC ELECTRIC 
FIELD AND DZYALOSHINSKII–MORIYA 

INTERACTION
Theoretical estimates of the values of anisotropic

interactions in FeBO3 (based on the single-ion model)
were made using experimentally determined (EPR)
spin Hamiltonian constants for MBO3 + Fe3+ crystals
isostructural to iron borate (M = Ga, In, Sc, Lu).

Estimation using Eq. (12) (taking into account the
cubic crystal field and Dzyaloshinskii–Moriya inter-
action in the second approximation of perturbation
theory) gives σz ~ 1 × 10–4 G cm3/g (at T = 0 K), which
is an order of magnitude smaller than the single-ion
contribution [13] obtained in the first approximation
of the perturbation theory (2.4 × 10–3 G cm3/g). The
experimental value at T = 77 K (based on magnetiza-
tion measurements) is 1.3 × 10–3 G cm3/g [15]. To
illustrate the levels of “strong” and finer interactions,
we also give the value of the weak ferromagnetic
Dzyaloshinskii–Moriya moment in the basal plane at
T = 77 K (σxy = 3 G cm3/g) [16].

A quantitative estimate of the hexagonal anisotropy
caused by Fe3+ ions in FeBO3 with respect to two
mechanisms (11) gives HqcfDM(0) = –1.0 × 10–2 Oe
(according to EPR) and the experimental value
Hq(0) = –1.1 × 10–2 Oe (according to antiferromag-
netic resonance) [8, 17]. In Eq. (11), HD, acf, and αcf
are 100 kOe [2], 130 Oe [5], and 24° [5], respectively,
which corresponds to a FeBO3 crystal with the lattice
parameters from [7]; HE(0) = 2Heff(0) = 6020 kOe [2,
18]; B5/2(x) is the Brillouin function for spin S = 5/2.

5. CONCLUSIONS

The influence of the cubic crystal field and the
Dzyaloshinskii–Moriya interaction on the magnitude
of the basal hexagonal anisotropy and weak ferromag-
netic moment along the triad axis are considered. The
calculated value of HqcfDM appears only in the second
order of the perturbation theory and is consistent with
EPR data. In future, to determine the presence of
other contributions (in particular, “single-ion
exchange”) [7] and comparison with experiment, it is
desirable to carry out measurements using a highly
sensitive magnetometer.
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The correct estimation of the basal anisotropy (tak-
ing into account the sign of the Dzyaloshinskii–
Moriya vector and the single-ion contribution) did not
significantly change the final result. The calculated
contribution to the weakly ferromagnetic moment
along the triad axis taking into account the influence
of the cubic electric field and the Dzyaloshinskii–
Moriya interaction is an order of magnitude smaller
than the experimental value for a single ion; therefore,
the main contribution to the weakly ferromagnetic
moment along the triad axis comes from the single-ion
mechanism [13]. For a better agreement between the
calculations and the experiment, it will be necessary to
consider additional mechanisms of anisotropic inter-
actions. In conclusion, we note that Section 4 presents
comprehensive experimental data on the studied
problem.

APPENDIX

Calculation of matrix elements:
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