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Abstract—For the nuclear spin system of a solid in the presence of an inhomogeneous magnetic field, we have
found a rigorous bound for the heating rate of the system under the action of a high-frequency magnetic field,
which is applied, for example, to create effective Hamiltonians. We consider the autocorrelation function
(ACF) of a spin rotating in a local field whose f luctuations are specified by a Gaussian random process. The
correlation function of a random field is taken as the sum of a static inhomogeneous contribution and a time-
dependent contribution expressed self-consistently via the spin ACF. The ACF singularities on the imaginary
time axis whose coordinates determine the exponents of exponential asymptotics in the high-frequency
domain are investigated. The dependences of the coordinates on field inhomogeneity for various approxima-
tions have been derived. The wing of the ACF spectrum in the cumulant approximation is shown to serve as
a rigorous upper bound for the wing of the ACF spectrum and, consequently, for the heating rate of the system
when subjected to variable magnetic fields. We have established that randomly distributed inhomogeneous
magnetic fields increase the wings of the ACF spectra and, thus, speed up the system’s heating.
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1. INTRODUCTION
A promising way of studying complex quantum sys-

tems is their simulation on other quantum systems [1–
3]. The rapid development of this direction is currently
related to the development of experimental methods
for coherent control of quantum systems [2–7], such
as ions and atoms in traps, electron paramagnetic cen-
ters in solids, and superconducting systems. To obtain
an effective Hamiltonian needed for simulations,
strong periodic driving, for example, laser pulses and
radio-frequency or microwave field pulses, is applied
to a quantum system. The Floquet or Magnus theory
is used to describe the evolution of systems [8–11].
The required evolution of a system under the action of
an average Hamiltonian is accompanied by its para-
sitic heating by higher harmonics. The duration of the
simulation stage and, thus, the efficiency of the
method depend on the heating rate. Qualitative esti-
mates for the bound of the heating rate were found in
[12–17], which showed its exponential slowdown as
the oscillation frequency increased.

A practical application of the transformation of
Hamiltonians by radio-frequency field pulses was
realized back in the 1970s to obtain high-resolution
NMR spectra in solids [18, 19] and was named “spin
alchemy.” A thermodynamic theory of the formation

of a quasi-equilibrium state in a system on short time
scales and its subsequent heating was developed in [20,
21] and explained the results of experiments. The for-
mulas expressing them via the spin time correlation
functions were derived for the heating rate, although
these functions themselves were not calculated. The
advantage of nuclear spin systems as compared with
other quantum systems lies in known interactions, suf-
ficient isolation from other subsystems, and the possi-
bility of control and observation by NMR methods.
Therefore, in such systems it is possible to pass from
qualitative estimates of the bounds for the heating rate
to quantitative estimates. In this paper we will find a
rigorous estimate expressed, as is customary, via the
second moment of the NMR spectrum.

The representation of a time-fluctuating local field
on spins by a Gaussian random process well proven in
such systems is used as the basis for our work. This
approximation was suggested by Anderson [22] and
Kubo [23] and is determined by a large number of
independent contributions from the spins surrounding
each spin. This approach was effectively applied to the
solution of spin-dynamics problems, for example, in
[22–26]. In these papers the correlation function of a
Gaussian field was chosen from physical consider-
ations. Following [27, 28], we will specify this function
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642 ZOBOV, KUCHEROV
self-consistently via the spin autocorrelation functions
(ACFs) [29–31]. Previously, we applied this approach
to explaining the exponential wings of the spectra of
various correlation functions for homonuclear systems
[32–34], heteronuclear systems [35], magnetically
diluted systems [36, 37], and spin packets [38]. Using
this method, we will now find rigorous bounds for the
energy absorption rate of a high-frequency field in the
presence of an inhomogeneous magnetic field. Such a
field changes significantly the dynamics of spin sys-
tems; for example, in the opinion of many authors (for
a review, see [39]), it can cause the transition of a sys-
tem from a thermalized state to a many-body localized
state characterized by a slowdown of the energy prop-
agation inside the system. On the other hand, it fol-
lows from the qualitative estimates made in [16, 38]
that an inhomogeneous magnetic field causes the
high-frequency ACF asymptotics to grow. The prob-
lem of the influence of an inhomogeneous magnetic
field on the dynamics of spin systems needs a further
study.

This paper is structured as follows. In Section 2 we
consider the motion of the magnetic moment in a
Gaussian random field and analyze the relation
between the ACFs derived using various approxima-
tions. In Section 3 we study the influence of an inho-
mogeneous magnetic field on the ACFs. The coordi-
nates of their nearest singularities on the imaginary
time axis are calculated via the radii of convergence of
the series for the ACFs in powers of time. The depen-
dences of these coordinates on inhomogeneous
broadening are compared for the solutions of different
equations. The results obtained are discussed in Sec-
tion 4. Finally, the approximating functions for these
dependences of the coordinates calculated numeri-
cally are derived in the Appendix.

2. A GAUSSIAN RANDOM LOCAL FIELD

Consider the rotation of the magnetic moment µ(t)
in a Gaussian random magnetic field h(t). The equa-
tion of motion can be written as [30, 31]

(1)

where the matrix of the operator (t) has the same
form,

(2)

for both ordinary vectors µ and vector operators µ =
γS in the quantum-mechanical case.
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We will seek a solution of Eq. (1) in the form of a
series in the number of field operators (matrices). In
this way, for the ACF we obtain

(3)

where the brackets … denote an averaging over the
Gaussian random field realizations, while the sub-
script αα is the matrix element of the product of
matrices. For example, for the product of two matrices
we obtain

where for the correlation function of the field projec-
tion at different instants of time we introduced the
notation

(4)

The mean of the product of an odd number of Gauss-
ian variables becomes zero, while the mean of the
product of an even number of such variables is the sum
over all possible pairings of like projections. Generally,
the averaging result depends on the set of projections
and the sequence of their arrangement in the product.
This complication is related to the fact that the rota-
tions around different axes are non-permutable.

The special case of a field directed along one axis
constitutes an exception. If, for example, hz ≠ 0 and
hx = hy = 0, then the series (3) is easily summed into an
exponential function

(5)

This result is attributable to the dependence of the
term in (3) not on the mutual arrangement of different
pairs, but only on the time interval between the action
times of paired projections. In the so-called cumulant
approximation this condition is extended to a three-
component field, which leads to the result

(6)

Generally, grouping the terms of the series
obtained after the averaging in (3) over various pairing
schemes and performing a partial summation, as
described in [27, 30, 31], for the ACF we obtain the
following system of integral equations:

(7)

where the memory function is represented as a series
in the number of pairs with different pairing schemes.
The expressions for the contributions in Gα(t) contain-
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EXPONENTIAL BOUND FOR THE HEATING RATE 643
ing from 2 to 4 pairs are given in [31]. For example, in
the simplest case of one pair, we have the equation

(8)

Otherwise, the ACF (3) can be represented as a
series in powers of time:

(9)

The coefficients M2nα are the moments of the spec-
trum of ACF (3) [40]. In the case of static Gaussian
fields,

(10)

the coefficients of the series (3) and (9) coincide,
while, generally, this is not the case. Each term of the
series (3) is the product of series in powers of time of
the functions gα(t).

Let us illustrate the relation for the coefficients of
the series for (6) and (8) and the solution of Eq. (7)
using an isotropic constant Gaussian field gx(t) =
gy(t) = gz(t) = Δ2 as an example. In this case, we find

while the exact values for the series (3) in this case [23,
30, 31] are

The following relation holds (at n > 1):

(11)

which reflects the conditions for the derivation of the
corresponding expressions. In Eq. (8) we summed part
of the series (3), while in the cumulant expression (6)
we took all pairing variants, but with overestimated
coefficients.

Let us return to the time-dependent Gaussian field
and specify it in a self-consistent approximation. In
this approximation [27, 31, 32] we will express the
field correlation functions via the spin ACFs as

(12)

It is convenient to compare the time series (9) for dif-
ferent functions after passing to the imaginary time t =
iτ, when these series become series with positive terms.
To be specific, let us choose the directions of the coor-
dinate axes in such a way that the following condition
is satisfied:
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For the guaranteed derivation of an approximation
with maximum coefficients for the ACF, X(t), in the
cumulant approximation (6) we should then take the
same function X(t) for the field in a self-consistent
way, i.e., write the equation

(14)

The derived Blume–Hubbard equation [28] has the
solution

(15)

On the other hand, to obtain the function Z(t) with
guaranteed smaller coefficients, we should take the
solution of the equation

(16)

The solutions of Eqs. (14) and (16) have singulari-
ties on the imaginary time axis [29–32] in the neigh-
borhood of which the ACF is

(17)

For Eq. (14) this follows from its solution (15), while
for Eqs. (16) and (7) this can be made sure after substi-
tuting the principal part of the solutions (17) into them
(see the Appendix).

The coordinate of the singularity nearest to the
coordinate origin determines the radius of conver-
gence of the series (9). Therefore, this coordinate can
be found via the ratio of high-order moments as the
limit of the following quantity when n → ∞:
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This formula is analogous to the d’Alembert formula
for the radius of convergence of a series, where we
replaced the coefficient 2n(2n – 1) by 2n(2n + 1),
because we know the singularity index in (17) equal to
two.

The relation between the coefficients of the series
(9) for the solutions of Eqs. (7) and (14), which are
positive on the imaginary time axis, leads to a relation
between these functions themselves and, conse-
quently, between the coordinates of the nearest singu-
larities:
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3. AN INHOMOGENEOUS MAGNETIC FIELD

The self-consistent time-fluctuating field consid-
ered above is produced by the spin–spin interaction
between spins with identical Larmor frequencies. Let
us investigate the influence of a random distribution of
spin Larmor frequencies on the dynamics. Suppose
that such a variation was caused by an inhomogeneous
local magnetic field directed along the z axis and spec-
ified by a Gaussian distribution with a density

(20)

where ω0 is the mean frequency and W2 is the variance.

There can be many reasons for the difference of
resonance frequencies. In particular, this can be due to
the interaction with a system of spins of a different
kind in heteronuclear crystals. We considered this case
in [35] using a LiF crystal as an example. The general
formulas derived there allow the expressions for the
first five coefficients of the series (moments) (9) to be

derived in the axisymmetric case  =  = . Set-

ting  = W2 and  =  = 0 in the formulas1 from
[35], we find in our case

(21)
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Let us express the moments in units of the second
moment by taking, for definiteness,  = 4 , as for
dipole–dipole interactions. Let us introduce the nota-
tion:

(23)

We find

(24)

From the derived formulas (23) and (24) we calcu-
lated M8X and M10X at various values of W2 and esti-
mated the radius of convergence of the series in powers
of time from their ratio using Eq. (18). The result is
shown in Fig. 1;  increases with W2 at small W2. At
large W2 the increase ceases, because the low-order
moments in this limit are determined by the inhomo-
geneous field. For the Gaussian function M10/M8 =
9M2 and, therefore, we observe a limiting value of
110/9 = 12.22. If we increased the orders of the
moments in Eq. (18), then for the Gaussian function
the estimate of the radius of convergence would grow
proportionally to the order, while the growth would
stop when the dipole–dipole interactions are taken
into account. Thus, whereas in spin systems without
an inhomogeneous field [29–35] we managed to esti-
mate the radius of convergence from the tenth
moment with an accuracy of a few percent, higher-
order moments are needed in the case of a large inho-
mogeneous field. Unfortunately, they are not known
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Fig. 1. Coordinates of the singularities calculated from
Eq. (18) versus ratio B2/M2. The upper solid line is the
result of our calculation for Eq. (31) at n = 70. The lower
solid line is the result of our calculation for Eq. (25) at n =
70. The upper and lower dotted curves were calculated for
the same equations, but at n = 5. The dashed curve was cal-
culated from the ratio of the total moments M8X/M10X (24).
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Fig. 2. Coordinates of the singularities of the solutions of
Eq. (31) with (32), the simplified version (35), and
Eq. (25) versus B2/M2, respectively, from top to bottom.
The solid lines are the results of our calculations based on
Eq. (A.11). The dashed curves are the results from Eqs.
(34), (A.12), and (A.14), respectively. The dotted line is
drawn using Eq. (27).
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to us, because their calculation is a very complex prob-
lem that has not yet been solved. Since for the com-
plete equation (7) we cannot calculate the high-order
moments, let us turn to the approximate equations
described in the previous section.

In the cumulant approximation the rotations in dif-
ferent fields are taken into account as independent
ones. Therefore, in Eq. (14) we will simply add a new
term from the inhomogeneous magnetic field and
obtain the equation

(25)

At W2 ≠ 0 we do not know the solution of this equa-
tion. However, we can calculate the coordinate of the
singularity τc0 via the radius of convergence of the
series in powers of time:
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equation from (25):
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The results of our calculation of  from Eq. (18) are
shown in Fig. 1. This dependence is well fitted (see
Fig. 2) by the function

(27)

 gives a lower bound for :

(28)

The bound (27) is mathematically rigorous, but
fairly rough, because it disregards the rotation anisot-
ropy in systems with dipole–dipole interactions due to
the rotation around one of the axes, the z axis, being
preferential. For the secular part of the dipole–dipole
interactions in a strong magnetic field  =  and

= 4 . In this case, to increase the accuracy of the
approximation, at the first stage it was suggested to
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the dipole–dipole-interactions and from the inhomo-
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The z-field correlation function in a self-consistent
approximation is defined by the equation

(30)

via the ACF of the spin x component, for which, fol-
lowing [32], we write the equation

(31)

Equations (30) and (31) were derived in the approxi-
mation that the interactions with the x and y fields
divide the interval of evolution into segments between
which there is no correlation of the fields (pairing).
The constants in the equations are determined by the
transverse fields:

(32)

To calculate the coefficients of the time series,
from (29)–(31) we derive the following system of
recurrence equations:

(33)
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The coordinates of the singularities calculated from
these coefficients are presented in Fig. 1. The depen-
dence of  on B2/M2 is well described (see the Appen-
dix) by the function

(34)

Apart from the result obtained from the coefficients
with n = 70, for comparison, Fig. 1 presents the result
for n = 5. The result for Eq. (31) is seen to be actually
close to the result for the moments M10 of the complete
equation (7). Previously, in [38] we investigated the
simplified version of the equation derived from
Eq. (31) at

(35)

Γ = − Γ Γ −
2 2

1 1 1
0

( ) ( ) ( )
t

z x z
d t aB t t t dt
dt

Γ = − ε −

× Γ − Γ − Γ




1

0 0 1
0

1 2 1 2 2 1 2
0

( ) ( ) ( )

( ) ( ) ( ) .

t

x

t

z x x

t G t G t t

t t t t t dt dt

ε = = Δ = = Δ + Δ

Δ =

2 2
2 2 2 2

2
2

2, ,
5 5

4 .
5

y y x

z

B BaB

B

+ −
=

+ − −
= =

+ + − − −
= = =

+ = + + 
 

=

 = + ε  
 



 

  

2 2
1

0

2
1

0 0

1 1
0 0 0

2 14 (2 1) ,
25

,

2
,

2

n

n k n k n
k

n k

n n k k m m
k m

n k m

n n n k k m m p p
k m p

n
G B G Z n W G

k

Z aB Z X X

m
X G G X Z X

p

τ2
0

{ } τ = + 
 

2 2 2
0 2 2 2

10 52 ln ln 2.3.M MM
B B

ε = = = Δ2 20, 1/2, .za B
JOURNAL OF EXPERIMENTAL AN
The corresponding dependence (A.7) passes slightly
below (34) (see Fig. 2).

4. DISCUSSION
The ACF form in the neighborhood of the singu-

larities (17) closest to the coordinate origin determines
the form of the high-frequency ACF asymptotics at
τ0|ω| ≫ 1:

(36)
A relation between the winds of the spectra follows
from the relation between the coordinates of the sin-
gularities (28):

(37)

Thus, the wing of the spectrum for the function of the
cumulant approximation gcx(ω) serves as an upper
bound for the wing of the spectrum of ACF (3).

Other time correlation functions of the spin system
under consideration will have singularities at the same
points of the imaginary time axis. Therefore, the wings
of their spectra will have the same exponential cofac-
tor and will differ only by the preexponential factors.
For all these functions the wing of the function gcx(ω)
will serve as an upper bound, including that for the
NMR absorption spectrum and the heating rate of the
system by high harmonics under periodic driving. In
both cases, the energy absorption rates are expressed
via the Fourier transform of the correlation function of
the system’s total spin multiplied by the square of the
amplitude of the radio-frequency field [40] or the
square of the amplitude of the corresponding periodic
driving harmonic [16, 20, 21].

Formula (36) shows that the energy absorption on
the wing is exponentially small, i.e., it decays expo-
nentially with increasing frequency. The results
obtained in this paper allow the dependence of the
process rate on inhomogeneous broadening W to be
investigated. According to (27) and (34), the coeffi-
cient τ0 in front of the frequency in the exponent in
(36) decreases with increasing W due to an increase in

 (23). If, however, the frequency is measured in
units of , then the absorption drops, because M2

increases logarithmically, while the scale of  itself
grows proportionally to W. The reason is that high fre-
quencies on the wing of the ACF spectrum are formed
due to a modulation of the local field from the sur-
rounding spins oscillating in a transverse field (f lip–
flop rotations). The amplitude of these oscillations
drops with increasing W, but the frequency grows. The
logarithmic cofactor in τ0 reflects this decrease in
amplitude. At the same time, it expresses the obvious
property of the system that there will be no exponen-
tial wing without dipole–dipole interactions. Note in
this connection that there is no such logarithmic

ω ≈ ω −τ ω0( ) | | exp( | |).x xg A

ω ≈ ω −τ ω
< ω −τ ω ≅ ω

0
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cofactor in the estimation formula for the exponent
derived in [16]. This suggests that although the esti-
mate of the bound suggested in [16] is correct, it is
rough and was obtained with a large margin.

The approximation of a Gaussian random field
applied above disregards the correlation between the
contributions in the field from various surrounding
spins, which gives rise to loops of couplings on the lat-
tice and multiple couplings. In the case of a nearest-
neighbor interaction, the correlation contribution was
shown to be small for lattices of a high space dimen-
sion [33]. Estimates show them to be also small in
three-dimensional lattices with dipole–dipole inter-
actions [16, 34]. In both cases, the correlation effects
weaken the field action and lead to an increase in τ0.
Consequently, the function of the cumulant approxi-
mation gcx(ω) (37) will remain a rigorous bound for the
heating rate in real spin systems.

APPENDIX

Let us investigate the ACF behavior in the neigh-
borhood of the nearest singularities on the imaginary
time axis. The form (17) for the ACF in the neighbor-
hood of a singularity follows from the form of the non-
linear equations for them. This can be made sure by a
method similar to the Painlev’e method for analyzing
the movable singularities of nonlinear ordinary differ-
ential equations [41]. Let us take an ACF near a singu-
larity in the form

(A.1)

and substitute it into Eq. (8) under the condition (12).
Calculating the most divergent part of the integral on
the right-hand side of Eq. (8) and performing differ-
entiation on its left-hand side, we find

(A.2)

For the equality in (A.2) to hold, the exponents and
coefficients must coincide:

(A.3)

It follows from the first equation in (A.3) that p = 2.
The nonlinear equations of the same approximation as
(8) for the ACF of two other spin components give two
more equalities:

(A.4)

where M2x = (  + ), M2y = (  + ), and M2z =

(  + ). From the system of three equations for the
amplitudes (A.3) and (A.4) we find

(A.5)
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Let us turn to the general nonlinear equation for
the ACF (7). The cofactor gβ(tk – tq) = Γβ(tk – tq)
and simultaneously the integration over the time vari-
ables tk and tq are added in the series for the memory
function Gα(t) when passing from the term with m
pairs to the term with m + 1 pairs. Consequently, the
form (17) of the singularity (A.1) with p = 2 will also be
retained when the remaining terms of the series for the
memory function are included, although the values of
Aα and τ0 themselves will change in this case.

Let us now investigate the ACF behavior in the
neighborhood of the nearest singularities on the imag-
inary time axis in the presence of an inhomogeneous
magnetic field using the solution of the nonlinear
equations (29)–(31) as an example. Let us substitute
the singular parts in the form (17) of the corresponding
functions into Eqs. (29)–(31). Solving the equations
for the coefficients of the singular parts, we find

(A.6)

Let us find an estimate for  at W2/B2 ≫ 1. Consider
a linearized version of the system of equations (29)–(31)
on the axis of imaginary time t = iτ:

(A.7)

(A.8)

where M2 = B2 + W2, and the asymptotic value is taken
for the integral of the error function of an imaginary
argument. The functions (A.7) and (A.8) have no sin-
gularities at a finite distance from the coordinate ori-
gin. The nonlinearity of Eqs. (29)–(31) is responsible
for the appearance of such singularities. The nonlin-
earity will manifest itself at those values of the imagi-
nary time at which the nonlinear contribution from
Γz(t) in the exponent for G0(iτ) (29) exceeds the linear
one (A.8). Hence we obtain the condition
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which leads to the following equation for estimating τ0
after the substitution of parameters (32):

(A.9)

From (A.9) we find the sought-for estimate

(A.10)

The corresponding dependence at c1 = 2.3 (34) is pre-
sented in Fig. 2 and describes well the results of our
numerical calculation of τ0 based on the formula

(A.11)

at n = 85. This formula allowed the τ0n oscillations at
B2/M2 < 0.01 attributable to the anisotropy of dipole–
dipole interactions to be smoothed.

For the simplified version of Eq. (31) with param-
eters (35) in [38]2 we found the dependence of the
coordinate of a singularity

(A.12)

which, as can be seen from Fig. 2, passes slightly below
(A.10).

In a similar way, for Eq. (25) we find

(A.13)

while for  at W2/B2 ≫ 1 we obtain an estimate

(A.14)

which is presented in Fig. 2 and agrees well with the
results of our numerical calculation at c2 = 1.62 in the
interval B2/W2 < 0.1. The approximating function (27)
that conveys better the behavior of τc0 for weak inho-
mogeneous fields is also shown there.
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