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Abstract—The effect of the fractal dimension of exchange-coupled clusters of magnetic nanoparticles on their
magnetization curves is predicted by scaling estimates. These predictions form the basis for the experimental tech-
nique used for determining the fractal dimension of nanoparticle clusters from the magnetization curves. We esti-
mate the reliability of determining the dimension by such methods with the help of micromagnetic simulation. It
is shown that the effective dimension of magnetic correlation volumes, which is determined from analysis of the
magnetization approaching saturation, is in conformity with the dimension of fractal clusters determined from
analysis of their morphology. The dimension estimated from analysis of the coercive field on the particle size in a
physically natural situation of the dipole–dipole interaction between nanoparticles provides estimates of the clus-
ter dimension, which strongly differs from estimates obtained from analysis of their morphology.
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1. INTRODUCTION

The properties of a system substantially depend on
its dimensionality. The dimensionality can be topo-
logical, metric, or fractal. These dimensions are used
in physical theories in different manners and are mea-
sured in different ways. Here, we consider the mani-
festation of the fractal dimension in magnetic proper-
ties of nanomaterials and the possibility of its reliable
measurement using these properties.

A fractal is usually interpreted as a structure con-
sisting of self-similar substructures repeated on
decreasingly small scales [1, 2]. Deterministic fractals
(e.g., Sierpinski’s carpet) are well known. Such fractal
structures have been recently considered for applica-
tions in micro- and nanoelectronics [3, 4]. Stochastic
fractal structures are observed most often in nature
where scaling should be considered statistically [1, 2,
5, 6]. In the physics of condensed media, there are
numerous examples of fractal structures (polymers,
colloidal aggregates, porous media, rough surfaces,
spin configurations in dilute magnets, etc.) [7–10].
Fractal dimension can be measured experimentally by
direct methods based on microscopic processing of
images as well as in small-angle scattering experiments
with neutrons, X-rays, or scattered light [2, 5, 6, 11,
12]. In recent decades, the effect of fractal dimension
in magnetic correlation volumes on the magnetization
curves and ferromagnetic resonance in amorphous
and nanostructured materials has been considered

[13–18]. This effect was predicted using scaling con-
siderations in the random magnetic anisotropy model
[15, 19, 20]. In integer-dimensional nanostructured
materials, the reliability of such predictions has been
confirmed in experiments [14, 21–25]. On the other
hand, quantitative relations between the dimension
and the magnetization curve have been used for exper-
imental determination of fractal dimension from mag-
netization curves in various nanostructured magnetic
materials [26–28]. The noninteger dimension was
estimated using the law of approach to magnetic satu-
ration (LAMS) in granular magnetic films in the
vicinity of the percolation threshold, as well as
nanoporous magnetic media [26, 27]. The rigorous
micromagnetic theory of magnetization curves in
nanomagnets with arbitrary dimension d of magnetic
correlation volumes or with dimension of magnetic
anisotropy nonuniformities exists only for systems
with integer dimension d = 1, 2, 3 [29–33]; therefore,
the possibility of reliable measurement of fractal
dimension from the magnetization curves requires
separate investigation. In this paper, the possibility of
such measurements is demonstrated using micromag-
netic calculations.

2. THEORETICAL BACKGROUND
The magnetic microstructure of a material consist-

ing of exchange-coupled nanoparticles with randomly
oriented axes is an aggregate of stochastic magnetic
754
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domains or magnetic correlation volumes containing a
large number of nanoparticles [34]. The anisotropy
constant of a magnetic correlation volume is K =
K/ , where N is the number of nanoparticles in the
volume and K is the magnetic anisotropy constant of
an individual nanoparticle. The number N can be esti-
mated as N = (lm/lg)d, where lm is the magnetic correla-
tion length, lg is the grain (nanoparticle, crystallite)
size, and d is the fractal dimension of the magnetic
correlation volume. Using these estimates and the
results obtained for dependence lm = f(lg, H) [15, 35],
we can obtain dependence K = f(lg, H) of average
anisotropy of the magnetic correlation volume on the
grain size and on the external magnetic field. Such a
description explains the dependence of coercive field
Hc ∝  observed in bulk nanocrystalline alloys [21].
Stochastic magnetic domains or magnetic correlation
volumes are observed in nanocrystalline alloys [36–
39]. In moderate and high fields, the magnetic micro-
structure is transformed into a magnetization ripple
that assumes the form of slight periodic variations of
the magnetization direction due to f luctuating local
easy magnetization axis [40–42]. Quantities lm and K
for a weak applied field are given in terms of the ran-
dom anisotropy model for lg < δ:

(1)

(2)

where δ = . Here, A is the exchange constant.
The exponents in Eqs. (1) and (2) depend on the

fractal dimension of the magnetic structure. Accord-
ing to formula (2), the coercive field depends on the
grain size as

In the experiment, the fractal dimension can be esti-
mated from the exponent in power law Hc(lg). This
possibility has already been used for interpreting some
experiments [24, 30, 43, 44].

In an amorphous or nanocrystalline ferromagnet,
the LAMS is determined by normalized dispersion
(νm) of the magnetization unit vector component
mtr(x) = Mtr(x)/Ms transverse to the field (here, Ms is
the saturation magnetization):

(3)
The theory for the LAMS including d was proposed in
[29]. In the approach used in [29], dimension d is
equal to the multiplicity of the integral used for calcu-
lating νm(H). Therefore, the noninteger dimension
was excluded in that case. It was shown later that the
fractal dimension in the LAMS can be attributed to
the dimension of the nonuniformity of the local easy
magnetization axis as well as to the fractal dimension
of the magnetic correlation volume [14, 15, 22].
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The scaling approach to magnetic correlation vol-
umes (see Eq. (1)) naturally presumes the possibility
of a noninteger (fractal) dimension. The magnetiza-
tion in an ensemble of magnetic correlation volumes
can be assumed to be statistically independent [15]. In
this case, the magnetization dispersion in expression
(3) can be estimated as

where a =  for the uniaxial symmetry and a =
 for the cubic symmetry of the local magnetic

anisotropy. As a result, the following expression was
proposed for normalized dispersion [45]:

(4)

Here, Ha = 2K/Ms is the local magnetic anisotropy

field, Hex = 2A/(Ms ) is the exchange field, and lH =
 is the magnetic correlation length in

fields H ≪ Hex. It should be noted that lH in this limit
acquires physical meaning (lH ≫ lg). There exists a
transition between two power-law regimes located
above and below Hex:

(5)

In logarithmic axes, these regimes correspond to
two linear segments with different slopes of the νm(H)
curve [15, 46]. The measurement of the exponent
appearing in relation (5) for H ≪ Hex can also be used
for estimating d. Since there is no rigorous micromag-
netic theory for noninteger fractal dimension, the
validity of scaling estimated (2) and (5) will be verified
with the help of micromagnetic simulation. The rigor-
ous micromagnetic theory of magnetization curves for
structures with integer dimension of magnetic anisot-
ropy nonuniformities, which was mentioned in Intro-
duction, was developed for a continuous medium dis-
regarding the dipole–dipole interaction. In measuring
practice, this disregard can be justified with an appro-
priate choice of the sample shape and the magnetic
field orientation. In materials consisting of clusters
with complex morphology, the dipole–dipole interac-
tion can substantially affect their properties; for this
reason, the present work is also aimed at the verifica-
tion of the effect of the dipole–dipole interaction on
the results of determination of fractal dimension using
expressions (2) and (5).

3. NUMERICAL EXPERIMENT
Two-dimensional fractal clusters for micromag-

netic calculations were obtained using the diffusion-
limited aggregation (DLA) model in the Visions of
Chaos v.59.3 package [47]. The DLA clusters contain-
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Fig. 1. Clusters used for micromagnetic calculations: (a–d) DLA clusters; (a) DLA cluster grown with particle adhesion proba-
bility p = 1; (b) p = 0.1; (c) p = 0.01; and (d) p = 0.001; (e) cluster with the Sierpinski carpet structure; (f) solid-state film element.

(a)

(b)

(c)

(d)

(e)

(f)
ing from 2 × 104 to 7 × 104 particles differing in their
adhesion probability have different dimensionalities,
which were determined by the box counting (BC)
method [1, 2, 6] (Fig. 1). In addition, we have studied
the fractal cluster in the form of the Sierpinski carpet,
dimension d = ln 8/ln 3 ≈ 1.89 of which is well known.
Micromagnetic simulation of a fractal cluster was per-
formed using the OOMMF package [48]. Cluster
images were used as a mask for the micromagnetic
problem in which pixels filled with black color corre-
sponded to a magnetization of 8.6 × 105 A/m; the
remaining pixels corresponded to zero magnetization.

Cell size lg was chosen equal to a layer thickness of
5 nm. Since we are interested in the magnetic proper-
ties of an ensemble of one-domain nanoparticles, the
cell size corresponds to one pixel of the mask. There-
fore, the magnetization of a particle in the cluster is
uniform. The local uniaxial magnetic anisotropy con-
stant of each cell was K = 105 J/m3. The easy magneti-
zation axes of particles were oriented at random. Pos-
itive exchange constant A was chosen in the range from
0.25 × 0–11 J/m to 2 × 10–11 J/m to ensure various
ratios of competing exchange energy to anisotropy
energy. It should be noted that the dimensionless ratio
JOURNAL OF EXPERIMENTAL AN
of these energies can be expressed in terms of ratio lg/δ
of the characteristic scales as K /A = (lg/δ)2 [49, 50];
for this reason, further results will be given as functions
of lg/δ.

4. RESULTS AND DISCUSSION

To verify the applicability of Eqs. (2) and (5) for
measuring the fractal dimension of clusters, we have
calculated the maximal hysteresis loop accentuating
its reversible segment corresponding to the approach
to the saturation magnetization in the range of fields
much stronger than the coercive field (Fig. 2). In the
range of fields comparable with the coercive field,
magnetization correlations spread over scales much
larger than the particle size (Fig. 3). Therefore, the
mean magnetic anisotropy energy of the magnetic
correlation volume must contain information about
the structure of exchange-coupled cluster within the
given scale.

The change of asymptotic dependence from Ms –
M(H) ∝ H–α to Ms – M(H) ∝ H–2 in LAMS, which is
predicted by expression (5), can be treated as a change
of exponent α(H) in empirical expression

2
gl

−α− ∝( ) ,sM M H H
D THEORETICAL PHYSICS  Vol. 128  No. 5  2019



FRACTAL DIMENSION EFFECT ON THE MAGNETIZATION CURVES 757

Fig. 2. (Color online) Hysteresis loop for a fractal cluster
(DLA cluster a). The inset shows the region of approach to
saturation magnetization.
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Fig. 3. (Color online) Micromagnetic structure in one of
the branches for DLA cluster a (see inset) in the state with
M/Ms = 0 and H = Hc.

Fig. 4. (Color online) Fractal dimension obtained for the
approach to the saturation magnetization for a continuous
magnetic film and the Sierpinski carpet cluster.
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describing a small segment of the M(H) curve in the

vicinity of a certain field H. Such an approach was

used earlier in the analysis of a theoretical expression

for the LAMS in thin magnetic films [51] and in the

experimental data processing [45, 52, 53]. The value of

d for various fields (corresponding to the center of the

segment from H – ΔH/2 to H + ΔH/2) was calculated

in accordance with expression (4) from the model

LAMS curves as

The fractal dimension in Figs. 4 and 5 is shown as a

function of lH/lg and l/lg, respectively (l is the size of

the region over which the fractal dimension is calcu-

lated in the BC method), which makes it possible to

consider its physical meaning and to compare it with

the results of determining the cluster dimension using

the direct BC method (Fig. 5). First, Fig. 4 shows that

in the range of scales for lH exceeding particle size lg,

the fractal dimension passes to the regime in which it

is almost independent of this scale. This indicates the

statistical scale invariance of the studied magnetic

structure for the given range of sizes and, hence,

proves its fractal nature. The value of d corresponding

to the plateau in Figs. 4 and 5 should be treated as an

estimate of the dimension of the magnetic correlation

volume (magnetic nonuniformity). Second, it can be

seen that in the range of scales 1 < lH/lg < 2.5, the frac-

tal dimensions determined from the LAMS curves are

in good agreement with the results obtained by the BC

method (see Fig. 5). The fractal dimension of the film

was found to be 2 (see Fig. 4), while for the Sierpinski

carpet, it was d = 1.81 ± 0.02, which is slightly lower

than theoretical value d = ln 8/ln 3 ≈ 1.89.

= − Δ − Δ4 2 ln(1 / )/ ln( ).sd M M H
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The fractal dimension of a cluster can be deter-

mined from the dependence of the coercive field on

reduced particle size lg/δ using Eq. (2), which means

that Hc ∝ . The value of Hc determined from

the theoretical hysteresis loops for various ratios lg/δ
smaller than unity indeed demonstrates a power-law

correlation of these parameters, Hc ∝ (lg/δ)β, in the

case of fractal clusters with different dimensions

(Fig. 6).

The fractal dimension calculated in this way is in

good agreement with the dimension calculated using

the BC method in the case when the dipole–dipole

interaction is disregarded (Fig. 7). Fractal dimension

dmag estimated using Fig. 6b representing the results of

−2 /(4 )d d
gl
YSICS  Vol. 128  No. 5  2019
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Fig. 5. (Color online) Fractal dimension d of 2D magnetic
DLA clusters: (large symbols) data obtained by the BC
method; (small symbols) LAMS data; (cluster a) blue
stars; (cluster b) green diamonds; (cluster c) orange
squares; (cluster d) red triangles.
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Fig. 6. (Color online) Dependence of the coercive field on
the grain size (correlation radius of the easy magnetization
axis) (a) disregarding and (b) taking into consideration of
the dipole–dipole interaction: (solid squares) continuous
magnetic film; (empty symbols) results for 2D magnetic
DLA clusters; (circles) luster grown for particle adhesion
probability p = 1; (squares) p = 0.1; (triangles) p = 0.01;
and (stars) p = 0.001.
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calculation of the dimensional dependences of the
coercive field with allowance of the dipole–dipole
interaction does not agree with the value of dbc calcu-

lated using the BC method. The results obtained for
different clusters are as follows: dmag/dbc = (0.90 ±

0.03)/(1.54 ± 0.02) for cluster a; (0.92 ± 0.03)/(1.63 ±

0.02) for cluster b; (1.23 ± 0.03)/(1.77 ± 0.03) for clus-
ter c, and (2.01 ± 0.03)/(1.91 ± 0.02) for cluster d (see

Fig. 1). Fractal dimension dmag for clusters a and b is

lower than physically substantiated limitation d = 1.
Certain agreement for the d-type cluster with the high-

est density can be due to the fact that its structure is a
continuous film with an insignificant concentration of

pores. This situation was considered in detail in [54],
which shows that the perturbation introduced into the

magnetic microstructure by demagnetizing fields of a
pore practically vanishes for pores with a small diame-

ter (lg/δ < 1). Such a porous medium must behave (as

regard its magnetic properties) as a defect-free and
continuous medium. In our case, this must lead to

observation with dmag = 2, which is in full agreement

with measured value dmag = (2.01 ± 0.03). The final

result (Fig. 7) shows that the fractal dimension of a

cluster, which is obtained by the method of approach
to saturation magnetization is in satisfactory agree-

ment with the fractal dimension of this cluster deter-
mined by the BC method. It is important that the
agreement is observed not only when the dipole–

dipole interaction is disregarded, but also in the case
when this interaction is accounted. Therefore, the

method of fractal dimension measurement using the
LAMS theory disregarding the dipole–dipole interac-

tion gives reasonable estimates of d even for such com-
plex objects as fractal magnetic clusters. The experi-

mental values of noninteger fractal dimensions for
JOURNAL OF EXPERIMENTAL AN
nanogranular films and nanoporous media, which
have been estimated earlier using this method [29, 30],
are now additionally confirmed by numerical experi-
ment.

It should be noted that reliable experimental esti-
mates of the fractal dimension obtained using the
LAMS method require the magnetization measure-
ments in strong fields (from 0.1 to 10 T) with a high
degree of accuracy (relative error is not smaller than

10–3) [15, 45]. Modern vibration and SQUID magne-
tometers meet such requirements as a rule. Examples
of successful practical application of this method can
be found in [15, 26, 27].
D THEORETICAL PHYSICS  Vol. 128  No. 5  2019
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Fig. 7. (Color online) Correlation between the fractal
dimension dbc in a magnetic cluster, calculated using the
BC method and fractal dimension dmag calculated from
magnetic properties; (filled symbols) data from analysis of
the LAMS curve; (empty symbols) data from the dimen-
sional dependence of the coercive field; (triangles) without
the dipole–dipole interaction; (circles) with the dipole–
dipole interaction correspond to DLA clusters; (stars)
Sierpinski carpet; (squares) continuous film.
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1 2

dbc

dmag
5. CONCLUSIONS

Numerical estimation of the reliability of experi-
mental approaches to determining the magnetic
microstructure dimension from magnetic properties
for 2D fractal clusters of monodomain particles in the
ground state has shown that the method for determin-
ing dimension from the LAMS curves, which was pro-
posed earlier for such systems, can be considered as
reliable. It turned out that the method of dimensional
dependence of the coercive field in physically natural
situations taking the dipole–dipole interaction
between nanoparticles into consideration gives esti-
mates of cluster dimension strongly differing from the
estimates obtained using the BC method. This is due
to considerable influence of the dipole–dipole inter-
action between nanoparticles in a fractal cluster in
weak fields.
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