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Abstract—The Fermi excitation spectrum, the problem of Cooper instability, and the Londons magnetic field
penetration depth in cuprate superconductors are considered using the unified conception based on account-
ing for the strong coupling between the spin of copper ions and holes at oxygen ions. This coupling leads to
strong renormalization of the primary spectrum of oxygen holes with the formation of spin-polaron quasi-
particles. Analysis of Cooper instability performed using the spin-polaron concept for different channels has
shown that only the superconducting d-wave pairing occurs in the ensemble of spin-polaron quasiparticles,
and there are no solutions corresponding to the s-wave pairing. It has been demonstrated that the supercon-
ducting d-wave pairing is not suppressed by the Coulomb repulsion of holes located at neighboring oxygen
ions. This effect is due to peculiarities in the crystallographic structure of the CuO2 plane and the aforemen-
tioned strong spin–fermion coupling. As a result, such interaction of holes is omitted in the kernel of the inte-
gral equation for the superconducting order parameter with the d-wave symmetry. It has been shown the
Hubbard repulsion of holes and their interaction for the second coordination sphere of the oxygen sublattice
for actual intensities of the interaction do not suppress the d-wave type of superconductivity. For the spin-
polaron ensemble, we have analyzed the dependence of the Londons magnetic field penetration depth on the
temperature and hole concentration. It has been established that the peculiarities of this dependence are
closely related to specific features of the spin-polaron spectrum.
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1. INTRODUCTION
It is well known that the central problem in the the-

ory of high-temperature superconductivity is the
necessity of correct accounting for strong electron
correlations that not only change qualitatively the
ground state of these materials in the normal phase,
but also lead to a new scenario of Cooper instability.

The electronic structure of cuprates is correctly
described by the Emery model [1, 2] or by its more
general variant [3] in which peculiarities of the crystal-
lographic structure of the CuO2 plane are considered
as well as the hole states in closed shells of copper and
oxygen ions. The energy parameters of the Emery
model correspond to the regime of strong electron
correlations and make it possible to integrate the con-
tributions from covalent mixing between the d- and
p-states of copper and oxygen ions by passing to the
effective Hamiltonian. Such a procedure can be per-
formed most easily on the basis of the operator form of

perturbation theory in the atomic representation using
the Hubbard operators [4]. As a result, the spin–fer-
mion model (SFM) is constructed [5–10] with Ham-
iltonian Hsp–f, in which the space of states of copper
ions is limited to the class of homeopolar states. For
the undoped regime, the SFM degenerates into the
Heisenberg model with antiferromagnetic (AFM)
type of the exchange interaction between the nearest
spins of copper ions.

It is known that in the theory of cuprate supercon-
ductors, the strong coupling between the spin and
charge degrees of freedom plays an important role
[11–14]. Spin–charge f luctuations considerably affect
the thermodynamic and transport properties of
cuprate superconductors [15]. The SFM contains
terms reflecting spin–charge f luctuations between
localized spins of copper ions and oxygen holes. In
particular, such terms correspond to spin-correlated
jumps [16–18] as a result of which charge transfer with
885
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simultaneous change of the spin projection at an oxy-
gen hole occurs. In accordance with the law of conser-
vation of the total spin projection of the entire system,
the spin projection at a copper ion changes. Signifi-
cantly, the spin–fermion coupling parameters are
large and cannot be considered in conventional per-
turbation theory. This considerably complicates the
problem of inclusion of the strong spin–charge cou-
pling in cuprate superconductors.

It should be emphasized that in contrast to simpli-
fied models of the electronic structure of cuprates
(such as the Hubbard model or the t–J model), the
SFM contains the description of the actual structure
of the CuO2 plane, in which the unit cell includes two
oxygen ions and one copper ion. In addition, the spa-
tial separation of the spin and charge subsystems is
also considered in the SFM.

In the SFM, the spin-polaron conception has been
developed [16, 17, 19–21], which has made it possible
to correctly describe peculiarities in the spectral prop-
erties of Fermi quasiparticles of cuprate semiconduc-
tors in the normal phase. The original idea of this con-
ception is that an elementary excitation in a doped 2D
antiferromagnet can be represented as a “bare” parti-
cle (electron or hole) surrounded by a cloud of spin
fluctuations [21]. This composite quasiparticle, which
has a renormalized mass and moves against the back-
ground of AFM ordering, is treated as a spin polaron.
The simplest example of such a quasiparticle is a local
spin polaron [22, 23], the characteristics of which are
determined from the solution of the cluster problem.
Having chosen the lowermost energy states of a small
cluster, it is possible to describe the motion of a local
spin polaron against the background of AFM order-
ing.

Using the concept of the spin polaron in the SFM,
the splitting of the lower band of a local polaron was
investigated [24], which made it possible, for example,
to describe the sharp decrease in the ARPES peak
intensities upon a change in the quasi-momentum
from (π/2, π/2) to (π, π) or (0, 0) as well as the possi-
bility of existence of a “shadow zone” [25].

It was shown in [16, 26] that, in contrast to the tight
binding models with a large number of fitting param-
eters (see, for example, [27]), the modification of the
energy spectrum and the Fermi surface in the SFM
with the spin-polaron conception is associated not
with the relation between hopping integrals, but with a
strong correlation between the subsystem of localized
spins of copper ions in the state of the quantum spin
liquid and the subsystem of oxygen holes, as well as
with a change in the correlation characteristics of this
quantum spin liquid upon doping. In [26], only one
fitting parameter (hole hopping integral t) was used,
which was selected from comparison with experimen-
tal data [27] for La2 – xSrxCuO4. It should be noted that
the authors of [27] had to select a set of four parame-
ters (three hopping integrals t1, t2, t3, and energy shift
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ε0) for attaining a satisfactory agreement between the
Fermi surface calculated in the mean field approxima-
tion and the Fermi surface reconstructed from experi-
mental data for each hole concentration level.

The successful description of the properties of
cuprates in the normal state using the spin polaron
concept suggested the possibility of describing the
superconducting phase in the conditions when the
Cooper instability evolves not for seeding fermions,
but in the subsystem of spin polarons [28]. It was
shown in [29] that an ensemble of spin-polaron quasi-
particles appearing in the simplest model of cuprate
superconductors (2D Kondo lattice) in the regime of
strong electron correlations exhibits Cooper instability
with -wave type of the order parameter symme-
try. As the Cooper pairing constant, the integral of
exchange interaction between localized spins was
used. It was shown that in contrast to the t–J* model
[30], three-centered interactions in the spin-polaron
ensemble in the spin-liquid phase of the localized spin
subsystem facilitate Cooper pairing and ensure the
realization of the superconducting phase with high
superconducting transition temperatures.

Later, the theory of superconductivity of a spin
polaron ensemble was developed in the SFM in [31]. It
was shown that the strong spin–fermion coupling
emerging as a result of hybridization mixing of the
states of copper and oxygen ions in the original Emery
model not only affects the formation of spin-polaron
quasiparticles [20], but also ensures effective attrac-
tion between them. This induces Cooper instability
with the d-wave pairing in the spin polaron system.
This approach was used for constructing the T–x
phase diagram [31] which correlated well with experi-
mental data on cuprate superconductors.

An important result obtained for further develop-
ment of the spin-polaron conception [31] was the
solution of the problem that appeared soon after the
first theoretical publications on superconductivity in
HTSCs. This problem was associated with the fact that
intersite Coulomb interaction V1 between holes at the
nearest oxygen ions, which was considered using
effective low-energy models on a square lattice, led to
suppression of superconducting pairing with the d-
wave type of the order parameter symmetry. It was
shown in [32] that neutralization of the negative effect
of intersite Coulomb interaction of holes on Cooper
instability in the d-wave channel occurs due to the
operation of the following two factors. The first factor
is associated with analysis of the actual crystallo-
graphic structure of the CuO2 plane, for which the
Fourier transform of the inter-site interaction has the
form

The second factor is due to the strong coupling
between localized spins of copper ions and holes at
oxygen ions. As shown in [31], this leads to the evolu-

−2 2x yd

= 14 cos( /2)cos( /2).q x yV V q q
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STRONG SPIN–CHARGE COUPLING AND ITS MANIFESTATION 887
tion of Cooper instability in an ensemble of spin-
polaron quasiparticles. In this case, the Coulomb
repulsion between bare holes with Fourier transform
Vq is renormalized into the interaction between spin-
polaron quasiparticles so that the momentum depen-
dence of this effective interaction corresponds to the
relevant structure of the copper ion sublattice. As a
result, the situation appears, in which the effective
repulsion between spin polarons is omitted from the
kernel of the integral equation for the superconducting
order parameter with the -wave symmetry type.

The effect of Coulomb repulsion V2 of holes
located at the second-neighbor oxygen ions was con-
sidered later in [33, 34], and the effect of Hubbard
repulsion Up of holes on the concentration depen-
dences of the superconducting transition temperature
was analyzed in [35]. It was shown that the inclusion
of the above interactions gives lower values of the
superconducting transition temperature; however, this
temperature remains within the range of experimen-
tally observed values.

The possibility of emergence of superconducting
s-wave pairing of spin-polaron quasiparticles was ana-
lyzed in [35] using the SFM. The calculated depen-
dence of the superconducting transition temperature
on the doping level revealed that the solutions of self-
consistent equations in the entire range of doping lev-
els correspond to only the -wave phase, while the
solutions for the s-wave phase are absent. This result is
in complete agreement with experimental data on
cuprate superconductors.

Due to the aforementioned successful application
of the spin polaron conception for describing the elec-
tronic structure and superconducting properties of
cuprate superconductors, the complex of problems
associated with the study of kinetic and galvanomag-
netic properties of these materials has become topical.
In particular, the calculation of the Londons magnetic
field penetration depth in a cuprate superconductor in
which charge carriers are not seed fermions [36–40],
but spin-polaron quasiparticles formed due to strong
coupling between the spin and charge degrees of free-
dom is of considerable interest. In this study, we report
on the most important results on the theory of cuprate
superconductors, which were obtained using the spin-
polaron concept in the SFM.

The article is organized as follows. In Section 2, we
describe the SFM following from the three-band p–d
model in the regime of strong electron correlations.
Section 3 is devoted to derivation of equations for the
normal and anomalous Green functions. The system
of integral equations for the superconducting order
parameter component is also considered. In Section 4,
we analyze the energy structure of spin-polaron quasi-
particles. The superconducting phase of spin polarons
is considered in Section 5. In particular, we consider
the effect of the intersite Coulomb interaction on the

−2 2x yd

−2 2x yd
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evolution of Cooper instability of an ensemble of spin
polarons and demonstrate the stability of the super-
conducting d-wave pairing to the inclusion of the
Coulomb repulsion of holes located at neighboring
oxygen ions. On the basis of calculated concentration
dependences of the superconducting transition tem-
perature, we analyze the effect of the Hubbard interac-
tion and Coulomb repulsion of holes located at the
next-to-neighboring oxygen ions. In Section 6, the
Londons magnetic field penetration depth in a cuprate
superconductor, in which spin-polaron quasiparticles
play the role of charge carriers, is calculated. The
results are discussed in concluding Section 7. For con-
venience of presentation, cumbersome analytic
expressions are given in Appendix.

2. SPIN–FERMION MODEL

According to experimental data, in the undoped
case with a single hole per unit cell on the CuO2 plane,
the system is in the state of the Mott–Hubbard insula-
tor [41]. In the three-band p–d (Emery) model [1, 2],
this case corresponds to the regime of strong electron
correlations,

(1)

On the one hand, these inequalities require correct
accounting for Coulomb correlations at a copper ion,
while on the other hand, these inequalities make it
possible to perform reduction of the Hamiltonian in
the Emery model and obtain the SFM [5–10] with
Hamiltonian

(2)
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Fig. 1. (Color online) Structure of the CuO2 plane. V1
denotes the Coulomb interaction of holes locates at the

nearest oxygen ions, V2 and  are the Coulomb repulsions
of holes located at the next-to-nearest oxygen ions.
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Here, we have introduced the following notation:

(8)

Operator  (3) described the subsystem of holes
at oxygen ions in the quasi-momentum representa-
tion. Here, (akα) are the creation (annihilation)
operators for holes in the oxygen subsystem with px
orbitals (Fig. 1) and α = ±1/2 is the spin projection.
Analogously, operators (bkα) describe the subsys-
tem of oxygen ions with the py orbitals. The one-site
hole energy is denoted by εp, μ is the chemical poten-
tial of the system, and t is the hopping integral.

Operator  (4) describes the Hubbard repulsion
of holes at oxygen ions. The intersite Coulomb inter-
actions of holes located at second-neighbor oxygen
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ions (see Fig. 1) are described by operator  (5).
Operator  (6) corresponds to the exchange interac-
tion between the oxygen hole subsystem and the sub-
system of spins localized at copper ions, which are
described by operators Sf. Here, σ = (σx, σy, σz) is the
vector composed of Pauli matrices. Operators  (7)
describes the superexchange interaction between the
nearest-neighbor spins of copper, which appears in the
fourth order of perturbation theory.

In the expression for SFM Hamiltonian, the signs of
the hopping integrals depending on the direction of
jump and the phase of wavefunctions are considered.
For compactness, the quasi-momenta over which sum-
mation is performed are denoted by numbers 1, …, 4.
Dirac delta function δ1 + 2 – 3 – 4 takes into account the
momentum conservation law.

In the further calculation of the energy structure
and in analysis of the conditions for evolution of Coo-
per instability in the SFM, we will use the generally
accepted notation for the parameters in the Emery
model [42, 43]: tpd = 1.3, Δpd = 3.6, and Vpd = 1.2 (in
electronvolts). For the hopping integral of holes
between oxygen ions, notation t = 0.12 eV is used [26],
and the constant of exchange interaction between
spins at copper ions is chosen as I = 0.136 eV, which
agrees with the available experimental data on cuprate
superconductors. The parameters of Coulomb repul-
sion of holes at the nearest and next-to-nearest oxygen
ions are chosen to be V1 = 1–2 eV [44] and V2 =  =
0.5–1.0 eV, respectively.

3. SYSTEM OF EQUATIONS
FOR GREEN’S FUNCTIONS

Since the intensity of the exchange interaction
between localized spins of copper and spins of holes at
oxygen ions is found to be high (J = 3.38 eV ≫ τ ≈
0.10 eV), this coupling should be accounted for rigor-
ously in calculation of the energy structure of spin-
polaron excitations and in analysis of conditions for the
emergence of superconducting pairing. For this pur-
pose, it is convenient to use the Zwanzig–Mori projec-
tion method [45–47]; the application of this method
with the SFM is described in detail in [20, 26, 31].

To take into account the aforementioned spin–
charge coupling correctly, it is fundamentally import-
ant to introduce into the basis set (apart from opera-
tors akα and bkα) the operator

(9)

For analyzing the conditions for the emergence of
Cooper instability, the above set of three operators
should be supplemented with three more operators
[31, 32] (  = –α)

p̂pV
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(10)

which make it possible to introduce anomalous ther-
modynamic means.

The complete system of equations for normal Gij
and anomalous Fij Green’s function (j = 1, 2, 3), which
was obtained using the projection method, has the
form

(11)

Here, we have introduced the following notation for
normal Green’s functions

Functions Gi2 and Gi3 (i = 1, 2, 3) are defined analo-

gously, the only difference being that operators  and

 appear, respectively, instead of . The anoma-
lous Green functions are defined as

For functions Fi2 and Fi3 (i = 1, 2, 3), we are using the
same notation for the second subscript as for the nor-
mal functions.

In writing system of equations (11), we have used
functions
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Fig. 2. (Color online) Energy structure and density of
states (DOS) in the spin–fermion model in the normal
phase, calculated for the following set of parameters (in
electronvolts): tpd = 1.3, Δpd = 3.6, Ud = 10.5, Vpd = 1.2,
Up = V1 = V2 = 0, and t = 0.12. The lower branch  cor-
responds to spin-polaron excitations. Red line indicates
the position of chemical potential μ.
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In deriving system of equations (11), we considered
that the subsystem of localized spins at copper ions is in
the quantum liquid state. In this case, spin correlation
functions Cj = S0  appearing in expressions (12) and
(13) satisfy relations

(15)

where rj is the coordinate of the copper ion in the jth

coordination sphere. In this case,   =   =   =
0. The dependence of correlators Cj on the doping
level was determined simultaneously using the spheri-
cally symmetric self-consistent approach for a frus-
trated antiferromagnet [48]. Since we are interested in
the low doping regime, the contributions in expres-
sions (12) and (13), which appear as a result of uncou-
pling of means and are proportional to correlators of
the density–density type, are not considered here.

4. NORMAL PHASE OF SPIN POLARONS

Analysis of system of equations (11) for the normal
phase shows that the Fermi excitation spectrum in the
SFM is determined by the solutions to dispersion
equation

ψ = sin sin
2 2

yx
k

kk

↑ − ↓ ↑ − ↓ ↑ − ↓

↑ − ↓ ↑ − ↓

  = −   −  

− ψ   +  

2 2
, ,

( ).
q x q yq q q q q q

q q q q q

u u s a a s b b
a b b a

jrS

=   =   =  0 0 03 3 3 ,
j j j

x x y y z z
j r r rC S S S S S S

x
fS y

fS z
fS
JOURNAL OF EXPERIMENTAL AN
(16)

and consists of three branches, , , and  (Fig. 2)
[31]. It can be seen from Fig. 2 that lower branch  is
characterized by a minimum near point (π/2, π/2) of
the Brillouin zone and is considerably spaced from
two upper bands  and . The lower branch appears
due to the strong spin–charge coupling that induces
the exchange interaction between holes at spins local-
ized at the nearest copper ions, as well as spin-cor-
related jumps. For low doping levels x, the dynamics of
holes at oxygen ions is determined exclusively by the
lower band with dispersion .

Analysis of the modification of density of Fermi
states [49], which is induced by the change in the value
of hopping integral for holes at oxygen ions, has shown
that a decrease in t leads to a shift of the Van Hove sin-
gularity of the spin-polaron band shown in Fig. 2 and,
as a consequence, to a displacement of the peak on the
concentration dependence of the superconducting
transition temperature towards lower hole number
densities (see Section 5).

Figure 3 shows the modification of the Fermi sur-
face under doping in the case when chemical potential
μ lies in lower band . It can be seen that in the range
of small values of x corresponding to incompletely
doped cuprates, the Fermi surface is strongly anisotro-
pic. Estimation of the effective mass of spin-polaron
quasiparticles in the nodal (Γ – M) direction gives
value of mΓ – M = 1.25me, where me is the free electron
mass. In the antinodal (X – X) direction, the effective
mass is mX – X = 9.4me [50]. At doping level x ≈ 0.16, the
Fermi surface topology changes from the electron to
hole type.

5. STABILITY OF d-WAVE PAIRING OF SPIN 
POLARONS TO COULOMB INTERACTIONS

For analyzing the condition for the emergence of
Cooper instability in the linear approximation, the
required anomalous Green functions are expressed in
terms of parameters  (l = 1, …, 5). Then expressions
for anomalous means are derived using the spectral
theorem [51], and a closed system of homogeneous
integral equations is obtained for the superconducting
order parameter components:
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Fig. 3. Fermi surfaces in the first quadrant of the Brillouin
zone for five values of the doping level. Doping level x is
indicated on the relevant Fermi contour.
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and corresponding functions (k, ω) are given in
Appendix. The system of equations (17) is used for
determining the superconducting transition tempera-
ture with preset types of the order parameter symmetry.

It can be seen from Eqs. (17) that the kernels of the
integral equations are split; therefore, we can seek the
solution to the system in the form

(18)

where seventeen amplitudes B determine the contri-
bution of the corresponding basis functions to the
expansion of order parameter components. Substitut-
ing these expressions into Eqs. (17) and equating the
coefficients of the corresponding trigonometric func-
tions, we obtain a system of seventeen algebraic equa-
tions for amplitudes B. The solution of this system
together with the equation for chemical potential μ,

(19)

make it possible to find the dependence of supercon-
ducting transition temperature Tc on doping level x for
various types of the order parameter symmetry. In
Eq. (19), f(E) = (eE/T + 1)–1 denotes the Fermi–Dirac
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Fig. 4. Dependences of the superconducting transition
temperature for the -wave type of pairing on the
doping level, obtained for the following model parameters
(in electronvolts): J = 3.38, τ = 0.10, t = 0.12, and I = 0.136
for Up = V2 = 0 (curve 1), Up = 0, V2 = 0.2 (curve 2), Up =
3, V2 = 0 (curve 3), Up = 3. V2 = 0.2 (curve 4), Up = 0, V2 =
0.8 (curve 5), and Up = 3, V2 = 0.5 (curve 6).

0 0.1 0.2 0.3 0.4
x

50

100

150

2

1

4

3

56

Tc, K

−2 2x yd
distribution function; functions Q3x(k, ω) and
Q3y(k, ω) are given in Appendix.

The results of numerical self-consistent solution
are shown in Fig. 4. Curve 1 shows the dependence of
the superconducting transition temperature of super-
conducting -wave pairing on the doping level for
Up = V1 = V2 = 0. This curve was obtained earlier in
[31] and is in good agreement with experimental data
as regards the absolute value of Tc as well as the doping
interval in which Cooper instability evolves.

An important aspect of the approach developed
here is that the inclusion of Coulomb interaction V1 of
fermions located at the nearest oxygen ions does not
affect the Tc(x) dependence for the superconducting

-wave pairing: curve 1 in Fig. 4 remains
unchanged [32]. The reason for such a behavior can be
established after analysis of the solution to system of
integral equations (17). In the doping region in which
the above type of pairing is realized at T ≲ Tc, the solu-
tions to the algebraic system for amplitudes B show
that only four of these amplitudes (B52, B53, B22, and
B32) differ from zero and B52 = –B53, B22 = –B32, and
|B52|/|B22| ~ 103. This means that the quasi-momentum
dependence of the superconducting gap width is
mainly determined by fifth order parameter compo-
nent Δ5k that has form

(20)

−2 2x yd

−2 2x yd

Δ = −( )
5 52(cos cos ).d
k x yB k k
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For the superconducting -wave pairing for Up =
V2 = 0, amplitudes B52 and B53 in the equation for Δ5k
are determined exclusively by exchange constant I and
not by parameter V1 and, hence, the intersite Coulomb
repulsion for holes at neighboring oxygen ions does
not suppress the Cooper instability in the d-wave
channel [32].

In this case, instead of the system of 17 equations,
we can obtain and solve a simpler equation for Tc [31,
49, 52], which follows from the fifth equation of sys-
tem (17) and has form

(21)

In particular, this equation implies that the mecha-
nism responsible for the emergence of superconduct-
ing pairing is the exchange interaction of spin
moments of copper ions, which is transformed into
effective attraction due to the strong spin–charge cou-
pling. The results of solution of Eq. (21) and the sys-
tem of seventeen equations for amplitudes B for
d-wave pairing obviously coincide for Up = V2 = 0 and
correspond to curve 1 in Fig. 4.

In contrast to the intersite interaction of holes at
two nearest oxygen ions, the inclusion of Coulomb
interaction Up for two holes at the same oxygen ion
leads to suppression of the d-wave superconducting
phase. However, comparison of curve 3 (Up = 3 eV and
V2 = 0) and curve 1 (Up = V2 = 0) in Fig. 4 shows that
this suppression is insignificant for realization of
HTSC because the superconducting transition tem-
perature in the region of optimal doping level x ≃ 0.6
remains high.

Let us consider the effect of Coulomb repulsions V2
of holes located at the next-to-nearest oxygen ions in
the CuO2 plane on superconducting pairing. Curve 2
in Fig. 4 corresponds to the Tc(x) dependence
obtained for Up = 0, V2 = 0.2 eV, while curve 5 corre-
sponds to Tc(x) for Up = 0 and V2 = 0.8 eV. It can be
seen that the inclusion of V2, in contract to the inclu-
sion of V1, leads to suppression of the superconducting

-wave pairing. This suppression becomes stron-
ger if Up ≠ 0 (curves 3, 4, and 6). However, even when
the aforementioned Coulomb interactions are taken
into account simultaneously, the -wave pairing is
preserved and can be suppressed only for unrealisti-
cally high values of V2 > 0.5 eV [33, 34].

Figure 5 shows a modification of the gap in the ele-
mentary excitation spectrum for spin-polaron quasi-
particles on the Fermi contour in the superconducting
phase upon a change in Coulomb interactions Up and
V2, which was calculated in [53]. It can be seen from
the figure that the quasi-momentum dependence of
the gap width in the first Brillouin zone is character-
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Fig. 5. (Color online) Quasi-momentum dependences of
the superconducting gap width on the Fermi contour for
x = 0.125, I = 0.136 eV, T = 0, and different values of the
Coulomb interactions.
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Fermi contour
ized by the -wave type of order parameter sym-
metry. Since Coulomb interaction V1 of holes at
neighboring oxygen ions does not affect the supercon-
ducting d-wave pairing, the behavior of the supercon-
ducting gap is determined only by three order param-
eter components Δ1k, Δ4k, and Δ5k from system (13).
The self-consistent solution of the system of three
equations for these components together with the
equation for chemical potential (now without using
the approximation linear in Δjk in determining the
required anomalous Green’s functions) leads to the
Δ(k) dependences shown in Fig. 5.

An important aspect concerning the realization of
the s-wave pairing in an ensemble of spin polarons was
considered for simplicity disregarding the long-range
Coulomb interaction (V2 = 0). In this case, system of
integral equations (17) implies that the solution corre-
sponding to the superconducting s-wave phase must
have form

(22)

Calculations show that for all realistic model parame-
ters, the system has no nontrivial solution correspond-
ing to the s-wave pairing [35]. Consequently, in the
spin–fermion model that correctly takes into consid-
eration the strong coupling between holes at oxygen
ions with the spin moments of copper ions, the super-
conducting phase with the s-wave order parameter
symmetry is not realized.

6. LONDONS PENETRATION DEPTH
The spin-polaron approach that proved to be suc-

cessful in the description of equilibrium properties of
the hole-doped cuprates in the normal as well as in the
superconducting phase can also be used for analyzing
the response of the system to electromagnetic pertur-
bation. This is confirmed by the result obtained in
[54], where the temperature dependence of the mag-
netic field penetration depth in a superconductor in
which spin-polaron quasiparticles play the role of
charge carriers was investigated at different doping
levels.

In the local approximation, the relation between
superconducting current density j and vector potential
A of the magnetic field is described by the Londons
equation

(23)

where λ is the magnetic field penetration depth in the
superconductor and c is the velocity of light. For cal-
culating superconducting current density j, we supple-
ment SFM Hamiltonian (2) written in the Wannier
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representation with the magnetic field written in the
Peierls approximation. This substitution leads to
renormalization of all hopping integrals by the phase
factor

(24)

where Rmm = Rm – Rn is the difference between the
radius vectors for sites with subscripts m and n, e is the
electron charge, and  is the Fourier component of
the vector potential, which is considered in the long-
wave approximation (see, for example, [40]). For sim-
plicity, we choose vector potential A in the direction of
the x axis.

The standard procedure for calculating the para-
magnetic and diamagnetic parts of the current
involves the separation in the Hamiltonian of linear
and quadratic corrections from the value of vector
potential  and subsequent variation of these correc-

tions in  [40, 55–57]. Departing from the given pro-
cedure, we reject the expansion of phase factors (24)
into a power series in  and leave these factors in
their initial form. In this case, after passing to the
quasi-momentum representation, the only change due
to inclusion of magnetic field in formulas (3) and (6)
for operators  and  is the formation of additional
phase αx in the argument of trigonometric function
sk, x [54]:
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Fig. 6. (Color online) Temperature dependences of the
reciprocal square of the Londons penetration depth, which
were calculated for different doping levels x for the follow-
ing set of model parameters (in electronvolts): τ = 0.225,
J = 2.86, I = 0.118, t = 0.12, and Up = V2 =  = 0.
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and gx is the lattice constant along the x axis. Function

sk, y remains unchanged because  = 0 in the given
case.

The variations of expressions for operators  and
 in the vector potential lead to the following expres-

sion for the superconducting current density:

(27)

The dependence of jx on the vector potential in the

range of small  must be linear, and the factor
determining this linear dependence can be directly
expressed in terms of λ–2 in accordance with the Lon-
dons equation. This factor was calculated numerically
[54], and the results of calculation of the temperature
dependence of the magnetic penetration depth in a
spin-polaron ensemble are shown in Fig. 6 for differ-
ent doping levels.

In spite of the fact that model parameters were not
determined from fitting, but were chosen to be equal
to those used in previous publications (see Section 2),
the curves shown in Fig. 6 demonstrate satisfactory
agreement with experimental data [58–66]. At a low
temperature, all curves exhibit the linear behavior
down to the lowest of considered temperature T = 2 K.
Such a behavior indicates, according to the results
obtained in [59], the d-wave symmetry type of the
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Ĵ

α α
α

α α α α

 = − α τ   
 

+ τ −   +  


�

†
,

† †
,

cos [2
2

(2 4 ) ].

x x
x x k x k k

k

k y k k k k

eg kj s a a

t s a b J a L

=0
x
qA
JOURNAL OF EXPERIMENTAL AN
superconducting order parameter. For values of x cor-
responding to overdoped samples of cuprate super-
conductors (x ≳ 0.16), the λ–2(T) curves are convex,
which agrees with the most of experimental data [60,
61, 65].

Apart from dependences λ–2(T), an important
result obtained in [54] was the derivation of the ana-
lytic expression for spin-polaron spectrum Ek in the
superconducting phase with account for the vector
potential. Considering that the charge carrier concen-
tration is low and the energy gap between the lower
spin-polaron band and the energy level of holes on
p-orbitals of oxygen is large (on the order of J) (see
Fig. 2), the expression for Ek could be written in “clas-
sical” form

(28)

where δ  is the correction to the polaron spectrum
 which is linear in αx, and gap function  was

expressed only in terms of order parameter compo-
nent Δ5k,

because the contributions from Coulomb interactions
 and  were disregarded in [54].
Since the inclusion of this interactions leads to the

emergence of additional order parameter components
in system of equations (11), it is necessary to generalize
the expressions for . Calculations show that when
the Coulomb interaction is taken into account, each
order parameter component Δjk (j = 1, …, 5) makes its
additive contribution to the gap function:

(29)

Concluding this section, we note that in spite of the
three-band energy structure of the system, Fermi exci-
tation spectrum Ek for spin polarons in the supercon-
ducting phase can be expressed only in terms of spec-
trum  of the lower band in the normal phase. For
small values of αx, the Bogoliubov quasiparticle spec-
trum is renormalized in the same additive way as in the
conventional theory of the Londons penetration depth
[55, 57]. At the same time, the special quasi-momen-
tum dependence of spectrum  of the normal phase
(and, hence, its field-induced corrections δ ) sub-
stantially differs from the simplest case of quadratic
dispersion and is determined by the structure of the
CuO2 plane and the strong spin–fermion interaction.

7. CONCLUSIONS
It has been shown that low-temperature properties

of cuprate superconductors described using the SFM
model are determined by spin-polaron quasiparticles.
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Upon cooling, an ensemble of these quasiparticles
demonstrates Cooper instability with the -wave
type of the order parameter symmetry. The role of the
superconducting pairing mechanism is played by the
exchange interaction between spins localized at copper
ions, which is transformed into effective attraction
between spin polarons as a result of the strong spin–
charge coupling.

It has been demonstrated that neutralization of the
negative effect of intersite Coulomb interaction of
holes on the superconducting -wave type of pair-
ing occurs because of two factors. One factor is associ-
ated with analysis of the actual crystallographic struc-
ture of the copper–oxygen plane, in accordance with
which the Coulomb repulsion of fermions in the oxy-
gen sublattice is determined by the Fourier transform
of the intersite Coulomb interaction,

The other factor is associated with electron correla-
tions leading to the emerging of a strong spin–charge
coupling. In this case, the Coulomb repulsion between
bare holes with Fourier transform Vq is renormalized
into the interaction between spin polarons so that the
quasi-momentum dependence of this effective inter-
action corresponds to the structure of the copper ion
sublattice. Therefore, the situation arises in which the
effective repulsion between spin-polaron quasiparti-
cles is omitted from the equation for the supercon-
ducting order parameter with the -wave symme-
try type.

It is appropriate to note in this connection that an
analogous problem of neutralization of the effect of
Coulomb repulsion of fermions on the evolution of
Cooper instability also existed in the theory of classical
superconductors. This problem could be solved after it
had been proven [67, 68] that the electron–phonon
interaction in a certain region of the momentum space
initiates effective attraction between fermions, which
can compensate for the initial repulsion.

It should also be noted that different contributions
of the Coulomb interaction to the realization of super-
conducting phases with different types of the order
parameter symmetry are also manifested in the
Kohn–Luttinger theory of superconductivity [69]. It
was established in [70, 71] that intersite Coulomb
interactions in lattice models usually contribute to
only certain pairing channels and do not affect other
channels. At the same time, polarization contributions
have components in all channels, and more than one
component facilitates attraction as a rule. It turns out
that intersite interactions in such a situation either do
not affect the main components of the effective inter-
action leading to pairing, or suppress the main compo-
nent without influencing on secondary ones [70, 71].
In our case, the peculiarities of the crystallographic
structure of the CuO2 plane play a decisive role when

−2 2x yd

−2 2x yd
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both types of oxygen orbitals spatially separated from
the spins of copper ions as well as the existence of
strong spin–charge coupling are taken into account.

In this study, it is shown that Hubbard repulsion Up
as well as Coulomb interactions V2 of holes at the next-
to-nearest oxygen ions affect the formation of the
superconducting phase with the d-wave type of the
order parameter symmetry and lead to a decrease in
the superconducting transition temperature; however,
this temperature remains in the range of experimen-
tally observed values. The formation of the supercon-
ducting gap occurs in this case under the influence of
three order parameter components.

The solution of the system of self-consistent inte-
gral equations for the superconducting state shows that
only the phase with the -wave type of the order
parameter symmetry is realized in the spin-fermion
model, while the solutions for the superconducting
s-wave pairing are absent for all admissible doping levels.

The calculation of the temperature and concentra-
tion dependences of the Londons penetration depth in
the semiconductor has been used as an example for
demonstrating the possibility of application of the
spin–polaron approach to analysis of the system
response to an external electromagnetic perturbation.
The obtained dependences are in good agreement with
experimental data on cuprate superconductors.

Concluding the section, let us brief ly outline
important trends in further application of the spin-
polaron conception. One of such trends is the con-
struction of the effective single-orbital model [72]
operating in the truncated Hilbert space and including
correctly both the peculiarities in the crystallographic
structure of the CuO2 plane and the strong spin–fer-
mion coupling that ensures the formation of spin-
polaron quasiparticles. The construction of such a
model is important, because analysis of low-tempera-
ture properties of cuprate superconductors in the
framework of the SFM and even using its simplified
version known as the ϕ–d model [49, 52] is still cum-
bersome. In particular, a transition to such an effective
model will make it possible to reduce the rank of the
system of self-consistent integral equations for the
superconducting phase.

Another trend in further application of the spin-
polaron conception is analysis of the conditions for the
emergence of spectral intensity modulation on the
Fermi contour and of the manifestations of the
pseudogap state in an ensemble of spin-polaron quasi-
particles [73].

Finally, analysis of kinetic, thermodynamic, and
galvanomagnetic characteristics of cuprate supercon-
ductors in which spin-polaron quasiparticles play the
role of charge carriers [74–77] considering the actual
crystallographic peculiarities of the CuO2 plane
appears as quite topical.
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APPENDIX

Functions (k, ω) appearing in the expressions
for anomalous Green functions Fij(k, ω) have the form

(30)

These expression include functions
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