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Abstract—The ground-state structure and fermion parity have been determined for a semiconductor nano-
wire with a strong Rashba spin–orbit interaction and proximity-induced superconductivity placed in an
external magnetic field under periodic boundary conditions. Allowance for the open boundaries is shown to
cause the topologically nontrivial parameter region to be partitioned into a set of subregions with a different
ground-state fermionic parity. This peculiarity is related to the emergence of edge modes with nonmonotoni-
cally changing excitation energies in the system as its parameters change. At the quantum transition point, at
which the ground-state fermionic parity changes, the edge-mode energy is zero. The magneto- and electro-
caloric effects are shown to be effective characteristics that allow the series of quantum transitions in an open
nanowire to be identified experimentally. These effects at low temperatures exhibit an anomalous behavior in
the parameter region for which topologically stable Majorana modes are realized in long nanowires.
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1. INTRODUCTION
In recent years, Majorana modes (MMs) have

attracted considerable interest of the world scientific
community owing to the prediction of the possibility
of their detection in condensed matter [1–4]. In solid-
state physics MMs are excitations whose characteris-
tics in real space are distinctly nonlocal. Systems
containing Majorana modes have a degenerate
ground state. A consequence of this is, first, the pos-
sibility of the realization of a nontrivial topological
ground-state structure [5–7]. Second, if the degen-
erate ground state is separated from the first excited
one by a significant energy gap, then MMs are stable
with respect to minor local perturbations. The afore-
said determines the interest in MMs as promising
objects for the creation of a quantum computer pro-
tected from decoherence. Fundamentally, the inter-
est in the Majorana problematics stems for the neces-
sity of understanding and detecting the properties of
condensed matter attributable to their nontrivial
topological characteristics.

At present, it has been established that the topolog-
ical phases of systems of noninteracting fermions can
be classified from symmetry considerations [8–10].
Time-reversal, electron–hole, chiral, and mirror
symmetries are examples of nonlocal symmetries
characterizing the topological phases. For a given set
of nonlocal symmetries and a certain spatial dimen-
sion the states of a fermion system (assuming the pres-

ence of a gap in the energy spectrum) break up into a
set of topologically nonequivalent classes distin-
guished by the topological indices. Topologically pro-
tected gapless excitations, in particular, MMs, are
realized at the interface between semi-infinite media
with different values of these indices.

The classification of topological phases is compli-
cated significantly when the interaction between fer-
mions is taken into account. The latter can lead both
to the induction of new topological phases and to a
reduction in the number of nonequivalent topological
states of the system. For example, using a model one-
dimensional system of symmetry class BDI as an
example, it was shown in [11] that the topological clas-
sification could be reduced using the  invariant to a
classification based on the  topological index. Sub-
sequently, this result was obtained by other methods
using the formalism of Green’s functions [12, 13], the
scattering matrix [14], and a nonlinear sigma model
[15, 16]. At the same time, the ways of classifying the
topological phases of quasi-one-dimensional systems
with an interaction were proposed [16–22]. The result
obtained in [16] is important for this study. It demon-
strates that the  topological classification of systems
of noninteracting fermions is stable with respect to the
inclusion of four-fermion interactions in the system.

The solid-state systems in which MMs can be real-
ized are quite varied. In the pioneering papers [23, 24]
the existence of such quasi-particle excitations was
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predicted in the vortex cores of two-dimensional chi-
ral superconductors [23] and at the ends of quantum
wires with proximity-induced superconductivity [24].
In both models the superconducting pairings had a p-
wave symmetry. Later on, it was pointed out in [25]
that p-wave superconductivity could be achieved in
real systems through the joint realization of induced
s-wave superconductivity, a strong spin-orbit interac-
tion, and external fields. Following this idea, various
hybrid structures containing an s-wave superconduc-
tor, 2D topological insulators [26], and semiconduc-
tor nanowires with a strong Rashba spin–orbit inter-
action [27, 28] being studied in this paper were consid-
ered. Note that systems in which the realization of
Majorana modes is possible through internal interac-
tions are also considered [29–32].

Among the presented systems, semiconductor
nanowires with induced s-wave superconductivity and
an external magnetic field (hereafter superconducting
nanowires) are currently being studied most actively.
The popularity of these systems is related, first, to the
ease of their fabrication: epitaxially grown InAs or
InSb semiconductors with a strong Rashba spin–orbit
interaction and large g-factors (gInAs ~ 10–25 [33] and
gInSb ~ 20–70 [34]) as well as standard Al-type BCS
superconductors, whose thin layers (5–10 nm) are
epitaxially deposited on the nanowire surface (see,
e.g., [35]), are usually investigated. The second fact
responsible for the popularity of superconducting
nanowires is that the conditions and algorithms of
quantum computations with MMs have been consid-
ered in detail for them [1, 36–39]. Note that the pos-
sibility of MM realization was also predicted for chains
of magnetic atoms [40, 41] and nanowires without an
external magnetic field [42, 43]. However, such sys-
tems are currently either speculative or poorly studied
experimentally.

Most experimental studies of the manifestations of
topologically nontrivial phases and MMs in supercon-
ducting nanowires are based on an analysis of their
transport characteristics. For example, the emergence
of MMs in such systems was confirmed experimen-
tally by measuring the peak in the differential conduc-
tance at zero voltage [44, 45]. However, the question
of whether the interpretation of the available experi-
mental data concerning the detection of Majorana
states in superconducting wires is unambiguous
remains incompletely resolved [46–48]. It emerged in
the course of theoretical studies that a consistent
description of the existing experiments requires taking
into account a number of nanowire properties, such as
the tunneling between the wire and the superconduct-
ing substrate [49], the anisotropy of the wire g-factor
[50], the electron–electron interactions [51, 52], the
presence of disorder [53, 54], the multiband effects
[55, 56], and the system’s finite sizes [57–62].
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
The following conclusions are an overall picture of
the investigation of electron–electron interaction
effects in a nanowire [51, 52]: electron–electron inter-
actions, on the one hand, reduce the gap in the sys-
tem’s bulk spectrum, thereby reducing its topological
protectability, but, on the other hand, increase the
range of parameters at which a topological phase can
be realized. A similar conclusion holds for a system
with disorder [53, 54]: relatively weak disorder does
not destroy the topological phase in the system and the
Majorana modes are not localized. In this case, allow-
ance for the strong electron–electron interaction or
strong disorder can lead to either the induction or the
disappearance of topological states, depending on the
system’s parameters. The topological phase diagram is
also significantly enriched by a joint examination of
the electron–electron interaction, disorder, and mul-
tiband effects [55, 56, 63]. Note that, at present, the
possibility of an effective representation of the ground
state for nanowires with electron–electron interac-
tions as matrix product states [20–22], which is con-
venient for a symmetry analysis of topological phases,
is deemed universally recognized. In this case, an
explicit form of the ground-state wave function for a
superconducting nanowire (to be more precise, for its
effective version—the Kitaev chain model [24]) was
obtained only for an isolated, very narrow set of
parameters [64, 65].

Among the studies of the finite-size effects of
quantum wires in which MMs can be realized we can
distinguish [57–62]. In particular, the oscillatory
behavior of the splitting energy between the ground
and first excited states as a function of the chain length
and parameters, which is important for this study, was
discussed in [60, 61]. Later on, it was shown for the
model of a finite Kitaev chain in [62] that the mini-
mum excitation energy oscillations correspond to a
series of quantum transitions accompanied by a
change in the ground-state fermion parity.

If we sum up the aforesaid, then we can see that
searching for effects related to the existence of MMs in
superconducting nanowires is still topical at present.
Such effects must be stable to the introduction of dis-
order into the system, allowance for the electron–
electron interactions, and a change in the system’s
spatial sizes. In this paper we show that if the parame-
ters of a fairly short nanowire correspond to the condi-
tions of MM realization in an infinite chain, then a
change in the external magnetic field or electrostatic
potential can be accompanied by a series of magneto-
and electrocaloric anomalies. In the absence of disor-
der, the magnetocaloric effect is briefly considered in
[66], where the caloric anomalies are demonstrated to
be stable with respect to joint allowance for the weak
single-site and intersite Coulomb correlations and
diagonal disorder. The structure of the many-body
ground state of a nanowire in a closed geometry is also
YSICS  Vol. 129  No. 3  2019
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considered in [66]. The connection between the con-
ditions for the realization of a topologically nontrivial
phase and negative ground-state fermion parity is
demonstrated explicitly.

The presentation of our results is organized as fol-
lows. The model of a semiconductor nanowire with
proximity-induced superconductivity and electron–
electron interactions is described in Section 2. The
structure of the ground state of a closed nanowire is
determined in Section 3. The latter is achieved by
using the relationship between the  topological
invariant and ground-state fermionic parity. Section 4
is devoted to analyzing the ground-state fermionic
parity for an open nanowire, while the magneto- and
electrocaloric effects are discussed in Section 5. Spe-
cial attention is given to an analysis of these proper-
ties at parameters corresponding to a nontrivial value
of the system’s  invariant. Next we discuss the sta-
bility of the previously considered characteristics
with respect to the presence of relatively weak elec-
tron correlations and disorder in the system and to a
change in the system’s sizes (Section 6).

2. THE MODEL OF A SUPERCONDUCTING 
NANOWIRE WITH ELECTRON-ELECTRON 

INTERACTIONS
We will consider a semiconductor InSb nanowire

with a thin aluminum layer (3–5 nm) epitaxially
deposited on its surface, which is responsible for the
induction of superconductivity in the system. We will
take into account the presence of a strong Rashba
spin–orbit interaction and repulsive electron–elec-
tron interactions with intensities U and V in the
nanowire. The Hamiltonian of such a system in the
tight-binding approximation is [51]

(1)

where the terms in the first sum describe a one-
dimensional system of fermions with the hopping
integral t/2 and a spin-projection-dependent fermion
energy at one site (measured from the chemical poten-
tial μ),

g is the Lande factor, μB is the Bohr magnetron, H is

the external magnetic field, alσ( ) is the annihilation
(creation) operator of a fermion at site l and with spin
projection σ = ↑, ↓, η↑ = 1, η↓ = –1. The terms related
to the presence (due to the proximity effect) of a
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superconducting pairing potential with amplitude Δ
and the terms attributable to the Rashba spin–orbit
interaction with parameter α are presented in the sec-
ond sum of the Hamiltonian. The last terms of the
Hamiltonian correspond to allowance for the single-
site (U) and intersite (V) Coulomb interactions
between fermions. The electron number operator at a
site is  =  + ,  = alσ. In all sections, except
for Section 6, we will set U = V = 0. Note that the
anomalously high g-factor in the system (g ≃ 50) is
important from the standpoint of the possibility of
MM realization, because the application of magnetic
fields ~1 tesla will allow the realization of a topologi-
cally nontrivial phase to be achieved in the system.
Since the caloric characteristics of the system were not
considered in most papers, we will restrict ourselves to
a semi-quantitative analysis at a chosen ratio of
parameters, α/|t| ≃ 0.2 and Δ/|t| ≃ 0.3.

3. STRUCTURE OF THE GROUND STATE 
OF A CLOSED NANOWIRE 

IN TOPOLOGICALLY TRIVIAL 
AND NONTRIVIAL PHASES

The Hamiltonian of a superconducting nanowire (1)
has an electron–hole symmetry, is characterized by
broken time-reversal symmetry, and refers to the sym-
metry class D. Its topological properties are classified
by means of the  invariant [9]. A form of this invari-
ant (Majorana number ) expressed via the ground-
state fermionic parity P( (N)) of a closed nanowire
was proposed in [24]:

(2)
It follows from the presented definition that for a chain
with an even number of sites the topological index 
coincides with the fermionic parity of such a closed
nanowire. The wave function that describes a superpo-
sition of states with an even (odd) number of fermions
corresponds to  = 1 (  = –1).

The formation of negative fermionic parity is
related to the structure of the Hamiltonian at singular
points of the Brillouin zone. In the case under consid-
eration, this follows from the fact that in the quasi-
momentum representation the Hamiltonian (1) breaks
up into a direct sum of quadratic forms:

(3)

each of which acts in its invariant subspace. In Eq. (3)
the form (k) = (k) + (–k) is represented by a com-
bination of the form (k) even in quasi-momentum:
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The extraction of the forms

(5)

from the general summation in the Hamiltonian (3) is
related to three factors. The first factor follows from
the fact that the points k = 0 and k = π are symmetric
in the sense that k = –k + G, where G is the reciprocal
lattice vector. The second factor is determined by the
fact that the spin–orbit interaction becomes zero at
these points. The third and most important factor
stems from the fact that the change in the ground-state
fermion parity of a quantum wire as the system’s
parameters (for example, the magnetic field) change is
determined only by the change in the structure of the
ground state of the forms (0) and (π).

Obviously, among the four eigenvectors of the form
(0) (and similarly the form (π)), two vectors corre-

spond to a state with one fermion:

(6)

The other two eigenvectors are a linear combination of
the vectors corresponding to states with an even num-
ber of fermions:

(7)

In these expressions the vacuum state of the entire sys-
tem of fermions is denoted by |0.

The relation between the energy  = ξQ↓ of the

single-fermion state |FQ↓ and the energy  = ξQ –

 of the state |ΦQ, – is important for the sub-
sequent analysis. From the requirement that the
energy of the state |F0↓ be less than the energy of the
state |Φ0, – we obtain a condition for the realization of
a single-fermion state at k = 0:

(8)

Examining an analogous condition for k = π leads to
the inequality
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It follows from the quadratic form (k) that its
eigenvector corresponding to zero total quasi-momen-
tum and the lowest energy can be represented as

(10)
where the operator generating a superposition of states
with an even number of fermions is defined by the
expression

(11)

The coefficients Ak, Bk, …, Gk appearing here and six
energy levels are determined from the solution of the
eigenvalue problem  = Ek , where

Our analysis of the eigenvectors of the quadratic
forms of the Hamiltonian shows that the ground-state
wave function of a closed superconducting nanowire
with an even number of sites can be represented in one
of four qualitatively different forms. Each form of the
ground-state wave function is realized in its own
parameter region. These regions are shown in Fig. 1 at
Δ = 0.35|t|. The structure of the ground-state wave
function in these regions is specified by the expres-
sions

(12)
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Fig. 1. Topological phase diagram for a closed nanowire in
chemical potential–external magnetic field variables.
Regions II, III and I, IV correspond to nontrivial (  =
‒1) and trivial topological phases, respectively. The super-
conducting pairing parameters Δ = 0.35|t| (in a closed
geometry the phase diagram does not depend on α).
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number of fermions enter into the superposition.
Therefore, at the system’s parameters falling into
regions II and III the ground state of the quantum wire
under consideration has a negative fermionic parity
and a topologically nontrivial phase with the Majo-
rana number  = ‒1 is realized in the nanowire. Note
that the Majorana number was calculated previously
via the Pfaffian of the Bogoliubov–de Gennes matrix
in the representation of Majorana operators [24]. Both
approaches yield the same result, but the structure of
the ground-state wave function manifests itself clearly
in the representation (12).

4. SERIES OF QUANTUM TRANSITIONS
IN AN OPEN NANOWIRE

The reasoning given in the previous section
referred to a chain in a closed geometry. In this case,
the Majorana number  is directly related to the
Zak–Berry phase [7, 67]. This allows  to be consid-
ered as the  invariant that classifies different topo-
logical phases: at  = 1 (  = –1) a closed chain is in
a trivial (nontrivial) topological phase. When an open
nanowire is considered, the connection of the ground-
state fermion parity with topological characteristics is
lost.

Let us assume below that the parameter region for
which a closed nanowire is in a topologically nontriv-
ial phase is the topologically nontrivial parameter
region (TNPR). In the case of fairly long open chains,
topologically protected Majorana modes are realized
in the entire TNPR. The Majorana polarization  was
introduced [57, 58] for an efficient search for the con-
ditions of MM realization when considering a chain in
an open geometry. For the purposes of our subsequent
analysis, it is convenient to represent this quantity as
follows:

(13)

Here, the summation is over the sites l belonging only
to the left (or only to the right) half of the chain, while
wlσ, 0 and zlσ, 0 are the coefficients of the expansion of

the self-adjoint operators b' = (α0 + )/2 and b'' =
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Here, θ is the phase of the superconducting order
parameter Δ = |Δ|eiθ. The real-valued functions wlσ, 0
and zlσ, 0 can be expressed via the coefficients of the
Bogoliubov transformation for a quasi-particle α0 cor-
responding to the mode with minimum energy ε0:

(15)

The coefficients ulσ, 0 and  form the eigenvectors of
the Bogoliubov– de Gennes matrix:

(16)

with the eigenvalue ε0. The following components of
the Hermitian (Aσσ') and antisymmetric (Bσσ') matri-
ces are nonzero here:

(17)
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Fig. 2. (Color online) Dependence of the Majorana polar-
ization  on magnetic field h and chemical potential μ for
an open chain of 30 sites with an induced superconducting
pairing potential (Δ = 0.35|t|) and a Rashba spin–orbit
interaction (α = 0.22|t|). The black lines mark the zero
modes.
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Fig. 3. (Color online) Distributions Wl = | |2 and
Zl = | |2 at h = 0.8|t| and μ = 0.5|t| (corresponds to
the TNPR,  = 0.91). The behavior of Zl is similar to the
behavior of Wl under the substitution l → N – l + 1.
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Fig. 4. Phase diagram for an open nanowire (N = 30) at
Δ = 0.35|t| and α = 0.22|t|. The hatched regions correspond
to the parameters for which the ground state contains par-
tial contributions with an odd number of fermions. The
lines for the points of which a quantum phase transition is
realized are the boundaries of these regions. The dashed
lines indicate the boundaries at which a topologically non-
trivial phase is realized for a closed nanowire (see Fig. 1).
The change in parameters along the blue dashed lines with
arrows corresponds to the field dependences in Fig. 5 (the
vertical and horizontal dashes correspond to Figs. 5a and
5b, respectively).
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chains outside the TNPR and  = 1 inside this region.
The equality  = 1 implies the absence of an overlap
between the wlσ, 0 and zlσ, 0 distributions and corre-
sponds to the localization of these functions near dif-
ferent edges of the chain. It is easy to show that this
condition also corresponds to the electrical and spin
neutrality of a Majorana excitation. For example, the
variation of the electron and spin density distributions,

(18)

and

(19)

as the superconducting nanowire passes from the
ground state |0 to the state with a filled Majorana
mode |1 = |0 is zero in the described case. Thus,
the observation of Majorana modes in long nanowires
by measuring the spin and electron densities is impos-
sible.

As the chain length decreases, the wlσ, 0 and zlσ, 0
distributions inside the TNPR begin to overlap. The
degree of such overlapping can be depicted by con-
structing a map of the Majorana polarization  (see
Fig. 2). Edge modes (in the sense given in [68]) with
overlapping wlσ, 0 and zlσ, 0 distributions are realized in
the parametric regions in which 0 <  < 1 (Fig. 3). In
general, the energy of such modes is nonzero, but gap-
less excitations can emerge in the system at certain
model parameters. These excitations are realized not
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in a wide parametric region, but on the special para-
metric lines displayed in Figs. 2 and 4. It is worth not-
ing that, for the latter reason, such gapless excitations
are of no interest from the viewpoint of quantum com-
putations. However, below we will present an
approach that allows the topologically nontrivial
parameter region to be efficiently determined when
investigating a short open chain.
YSICS  Vol. 129  No. 3  2019
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From the standpoint of the eigenstates of the Ham-
iltonian (1), the emergence of a zero mode on the spe-
cial parametric lines implies ground-state degeneracy.
Significantly, when passing such parametric points,
two states with different fermion parities alternate as
the ground state and quantum transitions are realized
in the system. Thus, the lines of zero modes in this sys-
tem are the parametric lines of quantum critical
points. For an open nanowire the result of calculating
the fermionic parity index P allows the system’s phase
diagram presented in Fig. 4 to be constructed. The
value of P can be found as the sign of the Pfaffian of
the Bogoliubov–de Gennes matrix (16) brought to an
antisymmetric form:

(20)

where  is a 2N × 2N unit matrix.

P = –1, at which the partial contributions to the
ground state contain an odd number of fermions, cor-
responds to the hatched regions in Fig. 4. The para-
metric lines for which the ground state is doubly
degenerate and the minimum excitation energy is zero
serve as the boundaries of these regions. The boundar-
ies of the topological phases of a closed chain dis-
played in Fig. 1 are again represented by thick dashed
lines. We see that the lines of zero modes can be real-
ized both inside and outside the TNPR. When the
nanowire length increases, the lines of change of the
fermion parity disappear in the parametric region with

 = 1, while in the parameter region with  = –1
their number grows and they form a quasi-continuum
in the TNPR in the limit N → ∞.

Thus, a peculiarity of the TNPR in a nanowire is
the realization of a cascade of quantum transitions in
it as the external parameters (the external magnetic
field or voltage) change. Such a cascade can be effi-
ciently detected using the observed characteristics. In
particular, the spin and electron density redistribu-
tions (18) become nonzero for the parameters corre-
sponding to these lines. However, the TNPR can
apparently be detected most efficiently by measuring
the magneto- and electrocaloric effects.

5. MAGNETO- AND ELECTROCALORIC 
ANOMALIES

The caloric effects, magnetic and electric, are
known to be effective thermodynamic characteristics
that allow the quantum transitions to be identified [69,
70]. These effects manifests themselves as a change in
the system’s temperature as the magnetic field or volt-
age changes adiabatically and are defined by the
expressions

= = Λ
 − 
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(21)

where N, M, and C(T) are the electron density,
specific magnetization, and specific heat, respectively.
It is quite easy to show that the quantities (21) have dif-
ferent signs in the right and left neighborhoods of the
quantum critical point and diverge at these points at
low temperatures. The first singularity is related to the
change in the number of fermions and the ground-
state spin structure during quantum transitions.
Accordingly, N and M change at the quantum crit-
ical point abruptly at T = 0. At low, but finite tempera-
tures the quantum phase transition is replaced by a
crossover and, accordingly, the derivatives of these
quantities with respect to the temperature have differ-
ent signs in the neighborhoods of the critical point. To
demonstrate the second singularity, let us rewrite the
expressions for the specific heat and the derivatives

 and  as

(22)

where

f(εm/T) is the Fermi–Dirac function.
It can be seen from an examination of these expres-

sions that at temperatures much lower than the char-
acteristic gap of the bulk spectrum the edge modes
with an oscillating excitation energy ε0 make a major
contribution to the functions ∂N/∂T, ∂M/∂T, and
C(T). An inverse dependence of the caloric effects (21)
on minimum excitation energy ε0 must be observed in
the neighborhoods of the parametric lines of zero
modes (because the system’s specific heat C(T) ∝ ,
while the increments ∂N/∂T and ∂M/∂T ∝ ε0).
Thus, at low temperatures the caloric effects must
diverge at the quantum critical point and have a nearly
zero value far from them. This behavior is displayed in
Fig. 5. The dashed lines indicate the dependences of
the caloric effects for a closed nanowire, in which the
quantum transitions are accompanied by a change in
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Fig. 5. (Color online) Field dependences of the magneto-
caloric (a, μ/|t| = 0.5) and electrocaloric (b, h/|t| = 0.6)
effects. T = 57 mK, the remaining parameters correspond
to Fig. 4. It can be seen from a comparison with Fig. 4 that
the caloric effects exhibit an anomalous behavior in the
TNPR.
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the topological index . The solid lines represent the
analogous dependences for an open nanowire.

It can be seen from Fig. 5 that the magnitudes of
the magneto- and electrocaloric effects have bright
features in the TNPR at low temperatures. The identi-
fication of these features can serve as a criterion for
detecting the TNPR complementary to the already
proposed ones in the literature (see, e.g., [2, 45, 71]).

6. STABILITY OF THE CALORIC ANOMALIES

In this section we demonstrate the stability of the
series of magneto- and electrocaloric anomalies in the
TNPR with respect to allowance for the electron–
electron interactions, diagonal disorder, and changes
in the system’s sizes.

As was shown in [16], the classification of the topo-
logical phases of one-dimensional systems using the

 invariant is retained when four-fermion terms are
added to the quadratic Hamiltonian. Accordingly,
when studying the regions of realization of the sys-
tem’s topologically nontrivial phase described by the
Hamiltonian (1) with nonzero single-site (U > 0) and

}

2Z
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intersite (V > 0) electron–electron interaction param-
eters, we still used the definition of the topological
index (2). For example, the Majorana number  of a
system with interactions was identified with the
ground-state fermionic parity of the corresponding
closed chain with an even number of sites. The spec-
tral and thermodynamic peculiarities of the TNPR
were analyzed numerically using the following two
approaches.

In the first approach we used an exact diagonaliza-
tion of the Hamiltonian for a chain with a small num-
ber of sites by means of which the low-energy branches
of the Fermi excitation spectrum were found. The lat-
ter was done based on Lehmann’s representation [72]:

(23)

where ( )s0 = s| |0. Here, |0 and |s are the
ground state and the sth excited eigenstate of the
Hamiltonian (1), E0 and Es are the energies of the cor-
responding states. In the absence of a Coulomb inter-
action, 2N transitions are known to be effective, for
which the energies and the matrix elements ( )m0 and
(alσ)m0 are related to the excitation energies and the u – 
Bogoliubov coefficients:

(24)

In the presence of a four-fermion interaction, in
general, 22N – 1 matrix elements ( )m0 and (alσ)m0 are
nonzero. However, if 2N transitions can be chosen
from these 22N – 1 transitions in such a way that the
condition

is fulfilled, then relation (24) will also hold with a high
accuracy after the substitution ulσ, m, , εm → ,

, and . By , , and  we already mean
the coefficients of the Bogoliubov u –  transforma-
tion and the excitation energies obtained when consid-
ering the system in terms of the second method,
namely in the generalized mean-field approximation
[73, 74].

To analyze the system in this approximation, let us
transform the four-fermion terms of the Hamiltonian (1)
using the decoupling:

(25)
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Fig. 6. (Color online) Dependence of the minimum exci-
tation energies  for an open nanowire with Coulomb
interactions at n = 6, h = |t|, U = 0.5|t|, and V = 0.3|t| on
chemical potential. The black dashed line represents the
dependence calculated in the generalized mean-field
approximation. The blue solid line represents the depen-
dence of  found using an exact diagonalization and Leh-
mann’s representation. Δ = 0.35|t| and α = 0.22|t|.
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In this case, the system’s Hamiltonian in the Bogoli-
ubov–de Gennes form can be written as

(26)

(27)

a† = ( , , a↑, a↓), aσ = (a1σ, …, aNσ), and the matri-
ces Aσ, σ’ and Bσ, σ’ have the following nonzero compo-
nents dependent on the intensity of electron–electron
interactions (Aσσ =  and Bσσ = – ):

(28)

The site-dependent energy of the electrons in the chain
Δμl simulating the presence of diagonal disorder in the
system was included in the expression for (Aσσ)l, l. In
this paper we considered the case of relatively weak
diagonal disorder: Δμl ∈ [–t/2, t/2]. The eigenvectors
Ym = ( , , , )T of the Bogoliubov–de
Gennes Hamiltonian (27) describe the electron-like
and hole-like wave functions of a state with an exci-
tation energy . The latter were calculated self-con-
sistently with equilibrium correlation functions:
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For short chains (N = 6) a comparison of the results
of our calculations obtained by the two methods
described above showed that at U, V ≲ |t| the low-
energy branches of the excitation spectrum  and the
single-particle wave functions corresponding to them
coincide to within a few percent (as demonstrated for
U = 0.5|t| and V = 0.3|t| in Fig. 6). Accordingly, the
parametric lines of change of the ground-state fermi-
onic parity are also well reproduced in the mean-field
approach.

The spectral properties, ground-state characteris-
tics, and low-temperature thermodynamics of nanow-
ires with a large number of sites were calculated by tak-
ing into account the Coulomb interactions in the gen-
eralized mean-field approximation. When the
electron–electron interactions were taken into
account, the system’s peculiarities noted in previous
sections turned out to be retained: for closed chains
there is a parameter region for which a topologically
nontrivial phase is realized. As the parameters change
inside this region, a cascade of quantum transitions is
realized for an open chain with a change in the
ground-state fermionic parity, which is accompanied
by caloric anomalies.

Examples of the fermionic parity map for an open
chain and the lines of topological transitions for a
closed chain for U = 0.5|t| and V = 0.3|t| and at the
remaining parameters corresponding to Fig. 4 are pre-
sented in Fig. 7. The quantum transitions in the
TNPR are seen to be retained when the interactions
are taken into account; the TNPR itself can change its
position in the system’s phase space. Since the inter-
action is an electron–electron one, the regions for
which the occupation numbers of single-electron

ε�m
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Fig. 7. Fermionic parity map for an open chain consisting
of 30 sites and boundaries of the topological phases
(dashed curves) for a closed chain when the electron cor-
relations are taken into account: U = 0.5|t| and V = 0.3|t|.
There is no diagonal disorder (Δμl = 0). The remaining
parameters and color notation are the same as those in
Fig. 4.
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Fig. 8. (Color online) (a) Field dependence of the electro-
caloric effect for h = 0.5|t|, U = 0.5|t|, V = 0.3|t|, and Δμl =
0. (b) Dependence of the magnetocaloric effect on exter-
nal magnetic field for a longer chain (N = 50) with elec-
tron–electron interactions (U = 0.5|t|, V = 0.3|t| and in the
presence of diagonal disorder Δμl ∈ [–t/2, t/2]. The
ground-state fermion parity P (green line) is plotted on the
right axis. 
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states are  alσ ≃ 1 are subjected to the greatest
change. Figure 8a presents the field dependence of the
electrocaloric effect for a nanowire with N = 30 and
h = 0.5|t|. Likewise, Fig. 8b presents the field depen-
dence of the magnetocaloric effect for a longer chain
with 50 sites obtained by simultaneously taking into
account the electron correlations (U = 0.5|t|, V = 0.3|t|)
and diagonal disorder. The caloric anomalies are seen
to be also realized in the TNPR when the electron–
electron interactions, disorder, and variations in the
system’s sizes are taken into account.

Note that the temperatures at which the anomalies
of the magneto- and electrocaloric effects manifest
themselves clearly must be much lower than the char-
acteristic gap of the bulk excitation spectrum and of
the order of the characteristic edge-mode energy ε0.

Since ε0 ∝ , this temperature drops as the chain
length increases. However, at temperatures T ≈ 20 mK
(at which a quantized differential conductance peak
has been observed in recent experiments [45]) the
caloric anomalies still manifest themselves clearly for
chains with N ≈ 200. Nanowires with such a length
may be deemed intermediate between the limiting
cases of the regime of quantum dots (to which the pre-
vious constructions refer) and the regime of long
chains with well-defined Majorana fermions at the
edges.

7. CONCLUSIONS
Our analysis showed that caloric effects are realized

in a semiconductor nanowire with a strong Rashba
spin–orbit interaction and proximity-induced super-
conductivity as the external magnetic field changes if
the nanowire parameters correspond to a topologically

σ
†
la

− 0/L le
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nontrivial phase determined for periodic boundary
conditions. This effect can be used as an alternative
method (relative to the methods proposed previously
in [2, 45]) for experimentally identifying the topologi-
cally nontrivial parameter region of a nanowire. The
relevance of the proposed tool for studying quantum
nanowires with nontrivial properties stems from an
active study of the phenomena related to the manifes-
tation of Majorana modes in condensed matter. For
practical purposes, it is important that the predicted
caloric anomalies are stable with respect to the inclu-
sion of Coulomb repulsion and diagonal disorder.

Note also that the presented effects are not
restricted to a superconducting nanowire and can take
place in other quasi-one-dimensional systems of sym-
metry class D, for example, such as an ensemble of
electrons on a triangular lattice in the phase of coexis-
tence of chiral superconductivity and noncollinear
magnetic order considered in the geometry of a cylin-
der [31, 32].
YSICS  Vol. 129  No. 3  2019
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