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Abstract—Simple formulas are obtained for calculating the scattering matrix of a plane electromagnetic wave
incident normally on an infinite 2D lattice formed by square strip conductors and located at the interface of
two dielectric media. For the first time, the vortex behavior of the electric field of the lattice was taken into
account, which made it possible to repeatedly reduce the computation error at high frequencies. This is con-
firmed by the close agreement of the amplitude-frequency responses of the structure calculated by the for-
mulas with the characteristics obtained by the numerical electrodynamic analysis of the 3D model when the
lattice period is less than half the wavelength.
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INTRODUCTION
As is known, multilayer thin-film dielectric mirrors

are widely used in optics due to their high reflectance.
The possibility of varying the reflectivity of such mir-
rors by changing the contrast of the dielectric constant
and the number of layers [1] allows us to use them in
band-pass filters (BPF) as the coupling elements
between the resonators forming the bandwidth, as well
as the coupling elements of the terminal resonators
with the surrounding space [2]. However, such filters
are difficult to manufacture and, as a rule, have a large
non-uniformity of the amplitude-frequency response
(AFR) in the passband when the filter order is higher
than the second order. The known methods for reduc-
ing the non-uniformity of the frequency response in
the passband of multilayer dielectric filters [3–5] do
not reduce the complexity of their manufacture.
Therefore, the search for and study of new approaches
for designing BPFs on layered structures is an import-
ant and urgent task.

At present, many researchers use designs based on
dielectric layers on the surface of which resonant 2D
structures are made of metal conductors, the so-called
frequency selective surfaces, to create filters. Such
constructions serve as BPFs and band-stop filters in
the ranges from micron [6–8] to decimeter [9–11]
wavelengths. We note an important feature of fre-
quency-selective surfaces, which lies in the fact that
their frequency characteristics depend on the angle of
incidence and polarization of the electromagnetic
wave [12].

The first frequency-selective surfaces were f lat
two-dimensionally periodic metal lattices, the ele-
mentary cells of which were made both as rectangular
holes in a thin metal screen (grids) and thin f lat rect-
angular conductors located on a dielectric substrate
[13]. The size of the unit cell of the lattice is approxi-
mately equal to the wavelength at the resonant fre-
quency. The cascading of several such metal resonant
lattices allows us to create multilayer structures, the
frequency response of which corresponds to a high-
order BPF [12]. However, f lat metal lattices contain-
ing resonant elementary cells have a low self-Q
because of the high ohmic losses in the conductors.

Therefore, the designs of frequency selective sur-
faces, in which, as in traditional optical filters [12],
half-wave dielectric layers are resonators, are more
promising. However, instead of multilayer dielectric
mirrors, they use the nonresonant subwave wave lat-
tices of the strip conductors located at the interfaces of
the dielectric resonator layers. Such lattices, in partic-
ular, can be 1D-lattices of ribbon strip conductors
with a period much shorter than the wavelength, hav-
ing a parallel direction of the axes of symmetry on all
layers [14, 15]. An electrodynamic analysis of such
tape strip structures is presented in [16, 17]. Filters on
dielectric layers, the mirrors of which are tape strip
structures with parallel axes, have frequency selective
properties only for electromagnetic waves with linear
polarization and the direction of the electric field vec-
tor along the strip lines. Such filters pass orthogonal
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Fig. 1. Strip conductor lattice; I, II, III and IV are consid-
ered sections of its unit cell.
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polarization waves with low losses in the frequency
range from zero and above.

The resonators in the construction of the filters
under consideration can consist not of one but of two
dielectric layers, also separated by a subwave 1D lattice
of stripline conductors, but with the orthogonal axis
with respect to 1D lattices at the boundaries of two-
layer resonators [18]. Such a filter is also a polarizer. In
the given frequency band, it transmits waves of linear
polarization with the direction of the electric field vec-
tor along the outer strip conductors; however, it barely
transmits waves of orthogonal polarization [18].

The filter in which sub-wave metal grids with
square windows are used as mirrors at the boundaries
of the dielectric resonator layers does not exhibit
polarization properties. In the work [19], an experi-
mental sample of a third-order filter with grids
between dielectric layers, possessing not only high
characteristics but also good agreement of the fre-
quency response of the measured and the frequency
response calculated by the numerical electrodynamic
analysis of a 3D model of the device, was investigated.
However, the electrodynamic analysis programs of
such complex structures require significant machine
time; therefore, the parametric synthesis of the filter
was carried out by the speed matrix method using the
formulas obtained in [20], which describe the reflec-
tive properties of the metal grids quite well. The design
parameters found as a result of the synthesis were used
as the initial parameters in parametric synthesis using
the electrodynamic analysis of the 3D model.

For grids of square strip conductors, which can also
serve as mirrors in filters on dielectric resonator layers,
similar formulas describing their reflective properties
have not yet been obtained. In calculations of a grid of
strip conductors, formulas are usually used for the
scattering matrix of electromagnetic waves of linear
polarization on the corresponding grid of parallel rib-
bon conductors [13, 21] with the same period and
width when the electric field vector is orthogonal to
the direction of the conductors. Obviously, with this
approach, the elements of the scattering matrix
describe only the capacitive interactions of the strip
conductors, but the inductive interactions are com-
pletely ignored, the relative contribution of which
increases in proportion to the square of the frequency.

In this paper, we calculated the scattering matrix of
electromagnetic waves that are orthogonal to a f lat 2D
lattice of square strip conductors located at the inter-
face of two dielectric media. In the calculation, the
method of solving Maxwell’s equations is used for cer-
tain selected areas of the structure under consider-
ation, which was used in [20]. In this calculation,
along with the potential part of the electric field, the
vortex part is also considered, which significantly
increases the accuracy of the calculation in the high-
frequency region.
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1. ELECTROMAGNETIC FIELD OF GRID 
OF SQUARE STRIP CONDUCTORS

Calculate the electromagnetic fields near the lattice
of square strip conductors at the interface of two
dielectric media (Fig. 1). The fields are excited by lin-
early polarized waves with the components normally
incident on the lattice on both sides.

(1)

where

(2)

are wave numbers, and

(3)

are the haracteristic resistances, subscripts 1 and 2
indicate the sides of the lattice in contact, respectively,
with the medium with a dielectric constant ε1 and with
a medium with a dielectric constant ε2. The origin of
coordinates z is selected on the surface of the lattice.

Since the components of the field of incident
waves (1) are homogeneous in the lattice plane, the
components of the lattice field excited by them 
and  are generally periodic functions of coordi-
nates x and y with the period equal to the lattice period
T. This means that any of the components of the elec-
tromagnetic field can be decomposed into a double
Fourier series of arguments x and y. Given the symme-
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try of the field components relative to the lattice sym-
metry planes, we can write the following expansions:

(4)

where kn = 2πn/T and km = 2πm/T. We require each
member of the double Fourier series in expressions (4)
to satisfy the Helmholtz equations

(5)

(6)

In this case, at z < 0, formulas (4) take the form
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and at z > 0, they take the form
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Here we have taken into account that the field compo-
nents  and  are continuous when z = 0. Formu-
las (7) and (8) can be considered as a decomposition of
the lattice field components  in a row in
all modes corresponding to the lattice symmetry and
polarization of the incident waves.

We will assume that the lattice period T is much
shorter than the wavelength, i.e., k1, 2T  2π. This
allows us to perform an electrodynamic calculation in
the quasi-static approximation and, instead of the
Helmholtz equations (5) and (6), solve the Laplace
equations

(10)

(11)

In this case, in expansions (7) and (8), all members of
the Fourier series, except the main members with n =
m = 0, rapidly decrease as |z| increases. Therefore, for-
mulas (7) and (8) in the far zone at k1.2|z|  1 are sim-
plified and take the form

(12)

where the amplitudes of the field components are
expressed by the integrals

(13)

(14)

Here w is the size of the side of the square strip con-
ductor in the lattice. Obviously by finding the magni-
tude , and  we can calculate the elements
of the desired scattering matrix S for the far zone of the
lattice under consideration.

To find amplitudes , and  according to
formulas (13) and (14), we need to obtain solutions of
the Maxwell equations only near the surface of the grid
conductors. We write the boundary conditions which
these solutions must satisfy. For this, it is convenient
to divide the surface of the unit cell of the lattice into four
rectangular regions  (Fig. 1). Then, in region I,
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which occupies a quarter of the area of the strip conduc-
tor, the boundary conditions have the form

(15)

and in regions II, III, and IV, free from metallization,
apart from the continuity conditions, there are no
other restrictions on the components of the electro-
magnetic field.

Maxwell’s equations for the electromagnetic field
in the near-surface region of the lattice have two solu-
tions that satisfy the boundary conditions (15). The
first quasi-static solution is trivial. In the static limit, it
has a single magnetic component, H0, independent of
the coordinates and directed along the magnetic field
vector of the incident wave, i.e., along axis y. In the
first solution, the electric field  exists only in
dynamics; it is vortex and vanishes on the entire sur-
face of the lattice.

The second quasi-static solution has only the com-
ponents of the electric field in the static limit  It
contains only the potential part  The magnetic
field  in the second solution appears only in
dynamics. It is a vortex, as it is connected with the
electric field  by Maxwell’s equation

(16)
Therefore, in the future, the magnetic field of the sec-
ond solution will be denoted as  The electric
field in this case should be represented by the sum

(17)

where  is the potential part of the electric field and
 is the swirl part. The potential part of the electric

field is conveniently described by the scalar potential ϕ
using equation

(18)
The surface of each strip conductor, together with the
plane of symmetry intersecting it, orthogonal to axis x,
is equipotential. This follows from the boundary con-
ditions (15) and from the symmetry of the problem.
Assuming that the potential difference ϕ between adja-
cent conductors equals U, according to formula (13)
find the magnitude of the contribution to the ampli-
tude  from the potential part of the electric
field

(19)

Here, the subscript TT indicates that averaging 
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period T.
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The potential part  of the electric field is asso-
ciated with surface charges ρ on strip conductors by
the boundary condition

(20)

In turn charges ρ connected to surface currents  by
the conservation law

(21)

and the surface currents  are associated with the vor-
tex magnetic field  on both sides of the lattice by
the boundary condition

(22)

Since the magnetic field  is vortex, its tangential
components change sign when switching from one
side of the strip conductor to the other side. Therefore,
the boundary conditions (22) can be rewritten as
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From formulas (14) and (23) we get
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Potential ϕ(x, z), corresponding to the average
function  and potential differences U is
expressed by the formula

(28)

Formula (28) is an exact solution of the 2D Laplace
equation for the quasi-static potential of a strip of con-
ductors [16]. This potential is constant on the surface
of the lattice at |x| < w/2 and with |x–T| < w/2.

By formulas (18) and (28), we find the normal
component of the potential part of the electric field on
the upper side of the lattice
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Since the potential ϕ is an even function of the z coor-
dinate. The component  on the lower side of the
strip conductor is different from the components 
only by the sign. Then from formulas (20) and (29)
we get
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Hence, by formula (27), we find the average longitudi-
nal current
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and by formula (23), we find the averaged magnetic
field

(32)

Substituting expression (31) into integral (24), we find
the amplitude of the magnetic field
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To do this, we write the averaging formulas for the cur-
rent Jx(x, y) and magnetic components  by
coordinate x:

(36)

(37)

These values are in agreement with the boundary con-
dition (23) and are bound on the surface of the lattice
by the equality

(38)
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can be obtained by the method of conformal mappings
[16]. This solution is
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The same current  can be calculated from
the charge conservation law (21); however, in addition
to the longitudinal current Jx(x, y), we also we need to
know the density of surface charges ρ(x, y). Therefore,
we approximate the unknown function ρ(x, y) by the
function  obtained by averaging ρ(x, y) by
coordinate y. Unlike the function  given by
formula (26), we will not average over the lattice
period T but instead over the width of strip w. From
formula (30) we get

(42)

Substituting formulas (41) and (42) into Eq. (21), we
find the transverse current

(43)

Here the integration constant is chosen to be zero so
that the current Jy vanished on the edge of the strip
conductor when y = w/2. According to the boundary
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the derivative components  and  by coordi-
nate y compared to the derivatives of the same compo-
nents by the coordinate x. Then from formula (44), it
follows that the component  in area II can be
approximated by the function

(46)

Obviously, such an approximation  in region II is
valid only in the case when the width of this region
(T‒w) is less than its height w. However, this case is
interesting from the point of view of the practical
applications of a strip of strip conductors.

At the other end of the conductor, between areas I
and IV, according to conditions (45), the singularity
contains components  and  Therefore, in
region IV of formula (40) and Maxwell’s equations

(47)

we find the normal component

(48)

To find the vortex field  in domains II, III, and
IV, we turn to Maxwell’s equation (35).

In area III, according to formulas (40) and (44),
the magnetic components  and  are missing;

therefore, there will be no third component  asso-
ciated with the first two components of Eq. (47).
Therefore, in region III, the vortex electric field is

In region II, we integrate Eq. (35) by the area
bounded by inequalities w/2 < x < T–w/2 and y' < y <
w/2. Using the Stokes rotor theorem, we obtain

(49)

where we took into account that on the edges of the
conductors, i.e., at x = w/2 and x = T – w/2, compo-
nent  and on the border of regions II and III
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 Equation (49) after substitution of expres-
sion (46) into it takes the form

(50)

where the function I(ζ, a) denotes the integral

(51)

In order to find the contribution of  in ampli-

tude  from components  on section II, we sub-
stitute expression (50) in formula (13). After integra-
tion we have

(52)

Here the function X(a) denotes the double integral

(53)

In region IV, we integrate Eq. (35) by the area
bounded by inequalities |x| < w/2 and w/2 < y < y'.
Using the Stokes rotor theorem, we obtain

(54)

where we took into account that on the edge of the
strip conductor, i.e., at y = w/2, component 
and on the border of regions III and IV we also took
into account component  The equation (54),
after substituting expression (48) into it, takes the form

(55)
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substitute expression (55)  formula (13). After inte-
gration we get

(56)

where the value of the integral was taken into account:

(57)

Summing up the contributions  ,

and  expressed by formulas (19), (52), and
(56), we find

(58)

Formulas (33) and (58) for amplitudes  and 
allow us to proceed to the direct calculation of the
scattering matrix.

2. FORMULAS FOR SCATTERING MATRIX

Calculate the scattering matrix S, considering the
surfaces on both sides of the lattice as two ports of a
quadrupole. This matrix relates the normalized
amplitudes of the scattered waves. b1 and b2 emanat-
ing from the first and second ports with the normal-
ized amplitudes of the incident waves a1 and a2 by the
equation [23]

(59)

The normalized amplitudes themselves are deter-
mined by the formulas [23]

(60)
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In Eq. (61) it is taken into account that the wave with
amplitude b1 extends against the direction of the z axis
and therefore the magnetic field of this wave is different.

Similar equations are written for the electric and
magnetic fields at the second port.

(62)

Note that the wave with amplitude a2 extends against
the direction of the z axis; therefore, the intensity of its
magnetic field has the opposite sign, just as for the
wave with amplitude b1 in the formula (61).

Jointly solving Eqs. (61) and (62) and taking into
account that amplitudes  and  differ only in
sign, we find the normalized amplitudes of the scat-
tered waves

(63)

where the entered value  which
according to formulas (33) and (58) takes the value

(64)

From Eqs. (63) we get the desired scattering matrix

(65)

Note that the value Z lat is the impedance of the lat-
tice unit cell. The first term in formula (64), which is
inversely proportional to frequency ω, describes the
capacitive component of the impedance. The second
term, proportional ω, describes the inductive compo-
nent of the impedance. In this case, the first term of
the inductive part of the impedance is due to the lon-
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gitudinal currents Jx, and the second term is propor-
tional to the transverse currents Jy.

The matrix elements S are bound by equalities
S12 = S21 and |S11| = |S22|. The first equality indicates
that the lattice in question is a mutual quadrupole.
Formula (65) exactly matches the formula for the scat-
tering matrix of waves at the junction of the transmis-
sion lines with wave impedances Z1 and Z2 expressed
by formula (3) when this joint is loaded on a parallel
oscillating circuit with impedance Z lat.

3. ANALYSIS 
OF THE OBTAINED FORMULAS

We analyze formula (64). In accordance with the
points discussed above, it can be written as

(66)

where

(67)

is the capacity of the unit cell of the lattice,

(68)

is the first part of the inductance of the unit cell asso-
ciated with the longitudinal current Jx, and

(69)

is the second part of the inductance of the elementary
cell associated with the transverse current Jy.

In Fig. 2, the capacity dependences C and induc-
tances Lx and Ly of the unit cell lattice on width w of its
strip conductors are constructed. These dependences
are calculated by formulas (65)–(69) for lattices with
period T = 3 mm, located at the interface of media
with dielectric constant ε1 = 1 and ε2 = 2. It can be
seen that with the width of conductors w increasing
from zero to T, capacity C grows from zero to infinity,
inductance Lx, corresponding to the longitudinal cur-
rents, decreases from infinity to zero, and inductance
Ly, corresponding to transverse currents, decreases to
zero from some final value. However, as noted, the
validity of the approximation used in the calculation is
determined by the following condition: the width of
region II (see Fig. 1) (T–w) must be less than its height
w. The zone where this condition is not fulfilled is
indicated in Fig. 2 in gray.

The dependence of the ratio of the transverse part
of inductance Ly to the complete inductance Lx + Ly
on the relative width of conductors w/T is presented in
Fig. 3. This ratio does not depend on period T nor on
the dielectric constant of the media between which the
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Fig. 2. Capacity dependences C (1), and longitudinal
Lx (2) and transverse Ly (3) inductances of elementary lat-
tice cell from width of its conductors during lattice period
T = 3 mm.
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lattice is located. It can be seen that it always grows
with an increase in the width of the strip conductor
and approaches unity at w → T. The zone where the
condition for the validity of the approximation used in
the calculation is not satisfied is also marked with a
gray background.
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Fig. 3. Dependence of ratio of transverse part of induc-
tance to total inductance on relative width of strip conduc-
tors of lattice.
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We built the frequency dependences of the reflec-
tion coefficient |S11|2 and the coefficient of the passage
|S21|2 of the electromagnetic wave through a lattice on
the interface between media and dielectric constant
ε1 = 1 and ε2 = 2 according to formulas (53), (64), and
(65) (Fig. 4). These dependences are calculated for
several widths w of the conductors with a fixed lattice
period of T = 3 mm. It is seen that the reflection coef-
ficient |S11|2 grows as the frequency increases and also
as the width of the strip conductors increases.

In order to estimate the error of the formulas
obtained, we performed a numerical electrodynamic
calculation of a 3D model of a square strip conductor
grid in the CST Microwave Studio software package.
It was assumed that the conductors have infinite con-
ductivity and zero thickness. A comparison of the
matrix elements calculated by the formulas and
obtained using a software package was made for the
grid of conductors located at the interface between
media with dielectric constants ε1 = 1 and ε2 = 2 hav-
ing a period of T = 3 mm. Numerical calculations of
the 3D model showed that for the lattices considered
the lowest resonant frequency at which the transmis-
sion coefficient |S21|2 vanishes is approximately
70 GHz. However, in the region of such high frequen-
cies, the conditions of the quasi-static approximation
are not satisfied; therefore, the formulas obtained here
can no longer be used.

In Fig. 5, the frequency dependences of the relative
errors in the calculation of the elements of the scatter-
ing matrix are presented for three strip widths w. The
OLOGY AND ELECTRONICS  Vol. 64  No. 7  2019

Fig. 4. Frequency dependence of reflection coefficients |S11|2

and transmission |S21|2 for lattice with period T = 3 mm and
conductor width w = 2.85 (1), 2.95 (2), 2.99 mm (3).
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Fig. 5. Frequency dependences of relative error in calcula-
tion of elements of scattering matrix S11 (a) and S21 (b) for
three values of width of strip conductor, w = 2.85 (1),
2.95 (2), 2.99 mm (3); dashed lines are calculation by
known formulas, dotted lines are calculation by obtained
formulas (65)–(69); solid lines obtained using averaged
formula (71).
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dotted lines represent the calculation error using the
formulas (65)–(69) obtained. The dashed lines repre-
sent the calculation error using the well-known for-
mula [12, 24]

(70)

if we substitute it in formula (65) to calculate the scat-
tering matrix of electromagnetic waves on the capaci-

( )( )
= ε + ε πωε
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tive lattice of strip conductors. This formula differs
from formula (66) only by the absence of inductance
Lx and Ly. As we can see, the difference between the
dotted and dashed lines lies primarily in the opposite
signs of the errors they display. Therefore, instead of
the resulting formula (66), we suggest using the aver-
aged formula

(71)

with the same values of electrical parameters C, Lx,
and Ly. The error in calculating the scattering matrix
when using the averaged formula (71) is also shown in
Fig. 5. This error is smaller by many factors than the
error obtained by using formulas (66) or (70).

CONCLUSIONS
The solution of Maxwell’s equations, obtained in

the work in the quasi-static approximation, confirms
the fact that the lattice of strip conductors at the inter-
face of two media is equivalent to a series oscillatory
circuits connected in parallel to the cascade points of
two transmission lines. The values of the elements of
the scattering matrix of such a lattice depend only on
the impedance Z lat of its unit cell, which is determined
by the topology of the strip conductors and the dielec-
tric constant of media ε1 and ε2. Impedance Z lat,
according to formula (66), is the sum of two parts that
differ in frequency dependence. Its capacitive part
decreases in absolute value in inverse proportion to
frequency ω, and the inductive part grows in absolute
value in direct proportion to ω. This means that at low
frequencies the capacitive part Z lat prevails in absolute
value over the inductive part. Therefore, at sufficiently
low frequencies, the inductance of the unit cell can be
neglected in comparison with its capacity, expressed
by formula (67).

Formula (67) confirms the empirical hypothesis
[13, 21] about the coincidence at low frequencies of
the reflective properties of a subwave lattice of square
strip conductors and the strip travel of strip conduc-
tors in the case of a linearly polarized electromagnetic
wave falling on it with the direction of the electric field
vector orthogonal to the strip conductors. In this case,
both grids must have the same period, and the width of
the strip conductors must be equal to the size of the
side of the square conductors.

However, with increasing frequency, it is necessary
to consider not only the capacitive but also the induc-
tive part of the impedance Z lat due to both the longitu-
dinal Jx and transverse Jy current components in the
square strip conductors. The inductive part of an imped-
ance is characterized by the sum of the corresponding
inductances Lx and Ly described by formulas (68) and
(69), which were obtained for the first time. A com-
parison of the frequency characteristics calculated by

+
= − ω

ω
lat

2
x yL LiZ i

C
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the formulas and obtained by the numerical electrody-
namic calculation of the 3D model of the structure
under consideration showed that taking the inductive
part of the impedance into account allows us to
repeatedly increase the accuracy of the calculation at
high frequencies.

It is important to note that the structure studied
can be used to create mirrors with the given reflectivity
at the interfaces of the dielectric layers. Such mirrors
are necessary when designing optical and microwave
multilayer band-pass filters or radio-transparent sur-
faces in a given frequency range in order to hide anten-
nas. In this case, the lattices of the square strip con-
ductors at the boundaries of the dielectric layers of the
resonators make it possible to ensure the optimal con-
nections between the resonators with each other, and
of the resonators on the edges with space. The similar-
ity of such filters is demonstrated by their similar mul-
tilayer structures, but with the lattices in the form of
metal grids at the interfaces of the dielectric layers
[19]. Using the formulas derived in [20] for metal
grids, and the formulas obtained in this work for
square metal conductor lattices, will allow us to sig-
nificantly reduce the design time of frequency selec-
tive devices on multilayer dielectric structures.
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