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We consider light scattering by two-dimensional arrays of high-index dielectric spheres arranged into a triangular
lattice. It is demonstrated that in the case of a triple degeneracy of resonant leaky modes in the gamma point, the
scattering spectra exhibit a complicated picture of Fano resonances with extremely narrow linewidth. The Fano
features are explained through coupled-mode theory for a Dirac cone spectrum as a signature of optical bound
states in the continuum (BIC). It is found that the standing wave in-gamma BIC induces a ring of off-gamma BICs
due to different scaling laws for real and imaginary parts of the resonant eigenfrequencies in the Dirac cone
spectrum. A quantitative theory of the spectra is proposed. © 2019 Optical Society of America
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1. INTRODUCTION

Photonic band engineering plays an important role in modern
science and technology [1,2]. Among numerous implementa-
tions, attention has been paid to photonic crystalline designs
supporting the Dirac cone spectrum about the Γ point, which
paves a way to all-dielectric zero-refractive-index materials
[3,4]. Recently, zero-index all-dielectric metamaterials have
been proposed [5], relying on the effect of optical bound states
in the continuum (BICs), which are lossless localized solutions
coexisting with the continuous spectrum of the scattering states
[6,7]. The emergence of BICs is remarkable due to their effect
on the scattering of electromagnetic waves. The BICs are
known to induce sharp Fano [8–12] resonances in the scatter-
ing spectra due to interference between two optical pathways:
the resonant pathway via the subradiant mode associated with
the BIC, and the direct pathway due to nonresonant scattering
[12–16]. In principle, in the spectral vicinity of a BIC, the Q
factor of the resonances can be tuned to arbitrary high value
once the material losses are neglected [17,18]. In this paper,
we examine the effect of the radiation losses on the spectrum
of the leaky bands and Fano resonances about the Dirac point
in a dielectric structure extended in two dimensions.

2. SPECTRUM OF LEAKY MODES AND FANO
RESONANCES

We consider a periodic two-dimensional (2D) array of high-
contrast (ε � 15) dielectric spheres of radius R arranged into
a triangular lattice in the x0y plane with period a, as shown in
Fig. 1. Further on, the frequency will be expressed in terms of

the vacuum wave vector k0. To recover the optical properties of
the system, we employ the Korringa–Kohn–Rostoker (KKR)
method, which was adapted to scattering of electromagnetic
(EM) waves by 2D arrays of dielectric spheres by Ohtaka
[19,20]. The method was later generalized for finding the band
structure [21]. Here the KKR method has been directly applied
according to [19–21] for both the band structure and scattering
spectra. The primary advantage of the method is a straightfor-
ward implementation of the Mie solutions for individual
spheres, which results in a set of equations for multipolar expan-
sion coefficients. The numerical data presented in the paper are
obtained with four multipoles. The convergence has been
checked by increasing the number of multipoles with no signifi-
cant effect.

The triangular lattice complies with the C6v point symmetry
group [22], which has four one-dimensional �A1,A2,B1,B2�
and two 2D representations �E1,E2�. According to Sakoda
[23], a Dirac cone can be engineered through a triple degeneracy
between two modes, px and py, of irreducible representation E1,
and one mode, s, of irreducible representationA1 in the Γ point.
px and py have the same frequencyΩ1 in the Γ point, since they
are of the same irreducible representation. The s mode, though,
generally has a different frequency Ω2. The degeneracy Ω1 �
Ω2 is accidental in nature and can be obtained by tuning the
radius of the spheres. In the case of ε � 15, the degeneracy
is found at R � 0.4705a. Once the degeneracy is achieved,
the spectrum in the vicinity of the Γ point consists of an iso-
tropic Dirac cone and a quadratic dispersion surface [23].

The spectrum of the leaky modes against the x component
of the wave vector, kx , is shown in Fig. 2. One can see in Fig. 2

Research Article Vol. 36, No. 8 / August 2019 / Journal of the Optical Society of America B 2221

0740-3224/19/082221-05 Journal © 2019 Optical Society of America

mailto:mdn@tnp.krasn.ru
mailto:mdn@tnp.krasn.ru
mailto:mdn@tnp.krasn.ru
https://doi.org/10.1364/JOSAB.36.002221
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAB.36.002221&amp;domain=pdf&amp;date_stamp=2019-07-25


that the real parts of the eigenfrequencies demonstrate a behav-
ior very close to that predicted in Ref. [23], with two bands
forming a Dirac cone while the third, weakly dispersive band
is parabolic. The Dirac spectrum in the x direction is formed by
hybridization between s and px modes, which both have their
electric fields antisymmetric with respect to y → −y. Notice that
the radiation losses result in an anomaly in the spectrum, with
the dispersion deviating from a Dirac cone at small values of kx ,
as can be seen from the insets. That anomaly associated with an
exceptional point has been considered in detail by Zhen and co-
authors [24]. We mention in passing that the electric vector of
py mode is symmetric with respect to y → −y. At the same time,
both s and py are antisymmetric with respect to x → −x, while
px is symmetric. For a detailed analysis of mode symmetries on
the triangular lattice, we address the reader to [25].

More interesting, though, is the behavior of the imaginary
parts of the eigenfrequency, which correspond to the widths of
the resonances. In the Γ point, the low-frequency band obtains
zero imaginary parts, which indicates the emergence of sym-
metry-protected BIC standing waves decoupled from outgoing

waves by symmetry [5]. The other two modes, px and py, are
leaky in the Γ point. With the slightest offset in the k space, the
imaginary parts undergo dramatic changes due to hybridization
between the s and px modes. That results in almost equal imagi-
nary parts at akx ≈ 10−3. Then, the imaginary part of the high-
frequency band gradually increases with kx , while the imaginary
part of the low-frequency band drops to zero at akx ≈ 0.317,
where we find the second BIC. Since the BICs of that type have
a nonzero wave vector along the axis of periodicity of the struc-
ture, they are termed Bloch BICs [13].

Next, we propose a simple phenomenological approach
explaining the structure of the spectrum in Fig. 2. According
to [23], the spectrum of hybridized modes of E1 and A1 rep-
resentations is found as the eigenvalues of the “Hamiltonian”
matrix

C0 �
0
@ 0 0 bkx

0 0 bky
b�kx b�ky 0

1
A, (1)

where b is a constant that can be evaluated by solving Maxwell’s
equations numerically [23]. Assume that the propagation direc-
tion of the incident wave is orthogonal to the y axis, i.e.,
ky � 0. Then Eq. (1) is reduced to a 2 × 2 matrix,

H 0 �
�

0 bkx
b�kx 0

�
: (2)

The radiation losses can be incorporated into Eq. (2) by apply-
ing coupled-mode theory [26] for the hybridized resonances in
the following manner:

H � H 0 �
i
2
W †W , (3)

where W † � � ffiffiffiffiγpp ,
ffiffiffiffi
γs

p �, with γs and γp being the decay rates
of the hybridizing s and px modes into the TE wave radiation
channel with the TE outgoing (incoming) wave being defined
as that whose electric vector is perpendicular to the plane of
incidence. Notice that for ky � 0, the hybridized modes are
decoupled from the TM wave by symmetry. Having in mind
the definition of Eq. (3), the quantity γp can be found from
Fig. 2 as one-half of the imaginary part of the resonant eigen-
frequency of the px mode in the Γ point. Here we found
aγp � 9.040 · 10−4. On the other hand, γs in the vicinity of
the Γ point must be a dispersive quantity to reflect the singular
nature of the symmetry-protected BIC [14]. The leading term
in the kx expansion of γs is quadratic, since kx � 0 is the
absolute minimum of the linewidth corresponding to the
symmetry-protected BICs. The dispersion of γs can be accessed
by slightly detuning the radius R to lift the degeneracy so the
individual features of the s mode can be resolved. By running
simulations with R � 0.4514, one finds aγs �1.028 ·10−3 ·k2x .
Finally, the parameter b can be found via the perturbative ap-
proach in Ref. [23], or simply extracted from Fig. 2 as the real
parts’ repulsion rate away from the feature at akx ≈ 10−3. Here
we found b � 0.04. In Fig. 2, we demonstrate the spectrum of
the matrix Eq. (3), which is found to be in quantitative agree-
ment with numerical data. One can see that the model predicts
the emergence of the satellite Bloch BIC as well as the anoma-
lous spectral feature in the immediate vicinity of the Γ point.

Fig. 1. Triangular lattice of dielectric spheres.

Fig. 2. Spectrum of leaky bands in the vicinity of the Γ point. The
real part of the eigenfrequency, left panel; the imaginary part, right
panel. The insets resolve the spectra to akx ≈ 10−3. The dashed blue
lines show the spectrum of the hybridized modes; dashed-dotted
magenta lines, the py mode. The red lines are eigenvalues of the matrix
Eq. (3).
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Now, let us discuss the effect of the spectra on the scattering.
It is known that the presence of high-Q leaky modes results in
narrow Fano features that collapse as the spectral parameters are
tuned to a BIC [12–14,16]. In our situation, away from the
exceptional point, the TE wave scattering should reveal two
isolated Fano resonances whose positions are given by the real
parts of the Dirac cone eigenfrequencies, while the width is
controlled by the imaginary part of the spectrum. That state-
ment is in full agreement with the numerical data shown in
Fig. 3. In the vicinity of the exceptional point, the Fano res-
onances merge into a single feature, which can only be resolved
on a zoomed scale in k0, as shown in the inset in Fig. 3. Finally,
we mention in passing that TM waves are only coupled to the
single parabolic band, resulting in a single, almost nondisper-
sive Fano feature.

3. RING OF BICS

What is remarkable, according to Eq. (1), is that the Dirac cone
is isotropic in the momentum space in the vicinity of the Γ
point. Let us see whether the presence of the radiation losses
breaks that symmetry. Let us specify the propagation direction
specified by arbitrarily azimuthal angle ϕ such that kx �
k∥ cos�ϕ� and ky � k∥ sin�ϕ� with k∥ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2y

q
. The

Hamiltonian has to be written in the following form [26]:

C � C0 �
i
2
W †W , (4)

where W is a 2 × 3 matrix composed of the row matrices,
W � �W TE,W TM�, which describe the coupling with TE
and TM waves, correspondingly. Taking into account that
px → py and py → −px under rotation by ϕ � π, we can write

W TE �
h ffiffiffiffi

γp
p

cos�ϕ�, ffiffiffiffi
γp

p
sin�ϕ�, ffiffiffiffi

γs
p i

, (5)

W TM �
h
−

ffiffiffiffi
γp

p
sin�ϕ�, ffiffiffiffi

γp
p

cos�ϕ�, 0
i
: (6)

Next, one can easily check that after transforming the
Hamiltonian C 0 � R†CR with matrix R,

R �
0
@ cos�ϕ� − sin�ϕ� 0

sin�ϕ� cos�ϕ� 0
0 0 1

1
A, (7)

one finds

C 0 �
0
@ 0 0 bk∥

0 0 0
b�k∥ 0 0

1
A� i

2

0
@ γp 0

ffiffiffiffiffiffiffiffiγsγp
p

0 γp 0ffiffiffiffiffiffiffiffiγsγp
p

0 γs

1
A,

(8)

which reduces to Eq. (3) in terms of coupling to the TE wave.
Moreover, one can immediately see that the spectrum of com-
plex eigenfrequencies is invariant under rotation. It means that
our observation on the TE wave scattering applies for any ori-
entation of the plane of incidence given by ϕ. This statement is
illustrated in Fig. 3 for the incident wave with kx � 0,

Fig. 3. Transmittance spectrum of the TE wave, ky � 0. Red line,
akx � 0.01; blue dashed line, akx � 0.05; dashed-dotted magenta
line, akx � 0.1. The inset shows the resonant feature in the vicinity
of the exceptional point; teal dashed line, akx � 10−3; solid black line,
akx � 8 · 10−5. The thick gray line shows the case of the TE wave with
akx � 0, aky � 0.05.

Fig. 4. Eigenfrequencies of the off-Γ BICs as the function of the
azimuthal angle ϕ.

Fig. 5. Transmittance spectrum of TE waves in the vicinity of the
ring of BICs. Upper panel, ak∥ � 0.15; thick gray line, ϕ � 0; thin
dashed blue line, ϕ � π∕2. Solid red line is the transmittance of TM
waves. Lower panel, ak∥ � 0.25; solid blue line, ϕ � 0; dashed red
line, ϕ � π∕4; dashed-dotted green line, ϕ � π∕2.
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aky � 0.05. Since the two-state model applies for any ϕ, the
frequencies of the satellite Bloch BIC form a ring around
the Γ point.

In Fig. 4, we show the eigenfrequencies of the off-Γ BICs as
a function of the azimuthal angle ϕ. One can see from Fig. 4
that the BICs form an almost ideally circular ring, with the
lattice anisotropy footprint emerging only in the seventh sig-
nificant digit. Let us consider the transmittance spectrum in
the immediate vicinity of the off-Γ BICs. Assume that the fre-
quency of the incident wave is tuned to the lowest branch in
Fig. 2. Then, if k∥ of the incident is matched to that of the leaky
mode, the scattering spectrum of TE waves exhibits an
extremely narrow Fano feature whose profile is almost indepen-
dent of the azimuthal angle. This is illustrated in Fig. 5 (upper
panel) for ak∥ � 0.15. In the same subplot, we also demon-
strate that the resonant feature can be only observed with
TE waves, while the transmittance of the TM waves remains
independent of frequency on the scale of the Fano resonance.
Finally, on the further approach to the ring of BICs, the lattice
anisotropy emerges as a small shift of the resonance positions
with respect to each other, as seen from Fig. 5 (lower panel).

4. CONCLUSION

In summary, here we went beyond the ring of exceptional
points predicted in Ref. [24] by taking into account the
dispersion of the hybridized mode linewidths. We have dem-
onstrated that the presence of a Dirac cone in the Γ point
results in the emergence of high-Q Fano resonances in the
transmittance spectrum of TEwaves near the normal incidence.
The positions and widths of the resonances can be estimated
from a simple coupled-mode approach, leading to a 2 × 2 ma-
trix whose parameters are easily extracted from the dispersion of
the hybridized leaky modes. It is shown that in the vicinity of
the Γ point, the scattering spectra are insensitive to the orien-
tation of the plane of incidence. Most remarkably, it is found
that the presence of a Dirac cone together with an in-Γ sym-
metry-protected BIC induces a ring of Bloch BICs surrounding
the Γ point and the k-space. The emergence of the BICs in the
model is a result of destructive interference between two res-
onant modes with the condition for BICs [27] being fulfilled
by tuning the wavenumber due to the difference in asymptotic
behavior between Hermitian and non-Hermitian parts of the
matrix in Eq. (3). Finally, we believe that a single parameter
semianalytical model of the scattering spectra could be con-
structed by fitting the numerical spectrum to the coupled-mode
solution [26]. That, however, falls out of the scope of the paper.

The presence of the BICs allows for fine-tuning the width of
Fano resonances by changing the angle of incidence. Lately, we
have seen a great deal of interest in the application of Fano
resonances to sensing and switching [28–30]. More recently,
topologically enabled ultrahigh Q resonances that are resistant
to out-of-plane scattering were demonstrated due to the effect
of a constellation of nine BICs about the Γ point [31]. The ring
of BICs might potentially serve as an alternative to that ap-
proach, with the advantage of an isotropic dispersion of the
Q factor. We believe that the proposed model may be a useful
platform for engineering Fano resonances in all-dielectric set-
ups [32]. The possibility of BICs eigenfrequencies forming a

ring in momentum space has been recently pointed out in a
view of multipolar decompositions [33]. We speculate that a
further detailed analysis of multipolar structure could shed light
onto interference mechanisms leading to BICs.

Funding. Ministry of Higher Education and Science of the
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