## 19,05

# Влияние изовалентного замещения катионов на термические, калорические и магнетокалорические свойства манганитов (La<sub>1-v</sub>Eu<sub>v</sub>)<sub>0.7</sub>Pb<sub>0.3</sub>MnO<sub>3</sub>

© А.В. Карташев<sup>1,2</sup>, И.Н. Флёров<sup>1,3</sup>, М.В. Горев<sup>1,3</sup>, Н.В. Михашенок<sup>1</sup>

<sup>1</sup> Институт физики им. Л.В. Киренского СО РАН — обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия

<sup>2</sup> Красноярский государственный педагогический университет им. В.П. Астафьева,

Красноярск, Россия

<sup>3</sup> Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет, Красноярск, Россия

E-mail: akartashev@yandex.ru

(Поступила в Редакцию 25 июля 2018 г.)

Выращены кристаллические образцы твердых растворов манганитов  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$  (y: 0, 0.2, 0.4, 0.5, 0.6, 0.8). Исследованы температурные зависимости теплоемкости, теплового расширения и интенсивного магнетокалорического эффекта. Выполнен сравнительный анализ влияния изовалентного катионного замещения на термические и калорические параметры ферромагнитного фазового перехода. Увеличение концентрации атомов Еu приводит к уменьшению энтропии фазового перехода и росту барического коэффициента dT/dp. Определены полевые и температурные зависимости магнетокалорического эффекта (МСЕ). Показано, что варьирование соотношения катионов позволяет получить твердые растворы с максимальной величиной МСЕ в полях до 6 kOe в широкой области температур 90–340 K. В соответствии с близкими значениями приведенной относительной мощности охлаждения, исследованные твердые растворы могут служить в качестве модельных твердотельных хладагентов при проектировании каскадного охлаждения.

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 17-42-240076 "Комплексный подход к поиску и разработке перспективных ферроидных твердотельных хладагентов на основе моно- и мульти-калорических эффектов".

DOI: 10.21883/FTT.2019.01.46914.221

#### 1. Введение

В последнее время нарастает потребность в новых эффективных охлаждающих устройствах, конкурентоспособных по отношению к давно и широко используемым газокомпрессорным холодильным установкам. Среди прочих причин, объясняющих этот интерес, можно назвать экологические проблемы, связанные с использованием фреонов, потребность в миниатюризации рефрижераторов, необходимость увеличения удельной энергетической экономичности и холодопроизводительности и пр. Одним из наиболее перспективных и многообещающих является направление, связанное с разработкой рефрижераторов, в основе которых лежит использование калорических эффектов (электро-, баро- и магнетокалорического) в твердых телах, выражающихся в изменении температуры или энтропии материала при наложении/снятии внешнего поля — электрического, механических напряжений, магнитного [1-8]. Величины экстенсивного  $\Delta S_{\rm CE}$  и интенсивного  $\Delta T_{\rm AD}$  калорических эффектов пропорциональны температурным производным параметра порядка (поляризации, деформации, намагниченности) [1] и в связи с этим достигают максимальных величин в области фазовых переходов, имеющих место в ферроидных и мультиферроидных материалах.

Твердотельные хладагенты по сравнению с газовыми обладают рядом важных преимуществ: малым удельным объемом, более высокой экологической толерантностью и значительной энергетической эффективностью [1,9].

При исследовании калорических эффектов разной физической природы в твердых телах наибольшее внимание уделяется магнетокалорическому эффекту (МСЕ), что, скорее всего, обусловлено богатым разнообразием материалов магнитной природы и сравнительно легким их дизайном [10]. Наряду с созданием новых эффективных твердотельных хладагентов на основе МСЕ, до сих пор не снижается интерес к исследованию семейства манганитов на основе LaMnO<sub>3</sub>, имеющего перовскитоподобную структуру. Обычно твердые растворы манганитов со смешанной валентностью катионов синтезируются путем гетеровалентного замещения катиона La<sup>3+</sup> на Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup> [11–15] и Na<sup>+</sup>, Ag<sup>+</sup>, K<sup>+</sup> [16–18]. Вследствие наличия в структуре двухвалентного/одновалентного катиона трехвалентное состояние части ионов Mn<sup>3+</sup> изменяется на четырех/пятивалентное, что, согласно последним модельным представлениям [19] приводит, в свою очередь, к появлению ферромагнитного состояния. Известные к настоящему времени манганиты уступают соединениям на основе Gd и сплавам типа  $Gd_5(Si_XGe_{1-X})_4$  и La(Fe<sub>x</sub>Si<sub>1-x</sub>) [20] в плане максимальных величин калорических эффектов  $\Delta S_{MCE}$  и  $\Delta T_{AD}$ . Но, во-первых, они характеризуются сравнимой относительной мощностью охлаждения (RCP) за счет широкого интервала температур, в котором наблюдается значительный MCE и, во-вторых, являются более дешевыми.

Увеличение концентрации замещающего катиона приводит к повышению устойчивости ферромагнитной фазы, в частности, это ярко проявляется в системе твердых растворов  $La_{1-x}Pb_xMnO_3$  ( $T_C \approx 170$  и 350 К соответственно при y = 0.1 и 0.3) [21]. Исследования влияния изовалентного замещения La<sup>3+</sup> редкоземельными катионами на свойства манганитов  $(La_{1-y}Me_{3+y})_{0.7}Me_{0.3}^{2+}MnO_3$ , выполненные в ряде работ [22-24], показали, что при этом происходит сильная дестабилизация ферромагнитной фазы, а степень понижения температуры перехода Т<sub>С</sub> зависит от размера катиона-заместителя. Например, в соединениях  $(La_{1-v}Eu_{v})_{0.7}Pb_{0.3}MnO_{3}$  (LEPM)  $T_{C}$  понижается от 340 до 120 К при изменении концентрации катиона Eu<sup>3+</sup> от 0 до 60% [22]. Столь широкий интервал температур, в котором происходят фазовые переходы в твердых растворах LEPM, позволяет рассматривать их в качестве модельных твердотельных хладагентов, перспективных лля использования в шиклах каскалного охлажлении.

Необходимо отметить, что соединения LEPM испытывают фазовые переходы второго рода в отличие от родственных манганитов  $(La_{1-y}Me_y^{3+})_{0.7}Me_{0.3}^{2+}MnO_3$ (Me<sup>3+</sup>: Pr, Nd, Gd, Dy, Tb; Me<sup>2+</sup>: Ca<sup>2+</sup>, Ba<sup>2+</sup>) [15,24] и многих другого сорта магнитных материалов [20] и, таким образом, удовлетворяют одному из базовых требований, предъявляемых к твердотельным хладагентам, связанным с отсутствием гистерезиса температуры перехода [25].

В настоящей работе исследован характер влияния соотношения концентраций катионов  $Eu^{3+}$  и  $La^{3+}$  на магнитно-тепловые свойства системы твердых растворов  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$  (у: 0, 0.2, 0.4, 0.5, 0.6, 0.8) путем прямых измерений теплоемкости, теплового расширения и магнетокалорического эффекта.

#### 2. Образцы и методы исследований

Кристаллические образцы  $(La_{1-y}Eu_y)_{0,7}Pb_{0.3}MnO_3$ выращивались методом спонтанной кристаллизации [19]. Смесь соединений PbO и PbF<sub>2</sub> использовалась как растворитель и одновременно обеспечивала требуемое количество атомов Pb в кристаллах. Для получения поликристаллических образцов исходные монокристаллы растирались в агатовой ступке и прессовались в виде таблеток, которые подвергались обжигу при температуре 600°C в течение 3 h. Средний размер кристаллитов составлял около  $1-2\mu$ m согласно данным сканирующей электронной микроскопии. Состав полученных кристаллов был подтвержден рентгенофлуоресцентным анализом. Идентификация фаз и определение параметров решетки проведены с помощью рентгеновского порошкового дифрактометра D8 ADVANCE "Вгиске". Из анализа рентгенограмм следует, что кристаллы являются однофазными. Все дифрактограммы твердых растворов с  $Eu^{3+}$  соответствуют искаженной структуре типа перовскита с пространственной группой P4/m, тогда как исходное соединение  $La_{0.7}Pb_{0.3}MnO_3$  имеет ромбоэдрическую структуру (пр. гр. R3c).

Наиболее удобным инструментом для исследования теплоемкости и магнетокалорического эффекта является адиабатический калориметр, позволяющий получать информацию об этих свойствах в параллельных экспериментах на одном образце. В настоящей работе использован автоматизированный калориметр, конструкция которого подробно описана в [26].

Исследования теплоемкости  $C_p(T)$  выполнены методами дискретных (с шагом 1-3 K) и непрерывных  $(dT/dt \approx 0.01-2.0$  K/min) нагревов в температурном диапазоне 90-370 К. Погрешность определения теплоемкости не превышала 0.5-1.0%. Образцы помещались в измерительную ячейку, и фиксировались с помощью смазок ApiezonN и ApiezonH, обеспечивающих надежный тепловой контакт. В области температур ниже 90 К измерения теплоемкости ряда образцов проведены на универсальной установке для измерения физических свойств PPMS (Quantum design).

Исследования магнетокалорического эффекта выполнялись по ранее разработанной методике в режимах наложения и снятия магнитного поля в области температур выше и ниже температуры фазового перехода [26]. При определенной температуре адиабатический калориметр настраивался так, чтобы дрейф температуры образца был в пределах  $dT/dt \le |10^{-3}|$  K/min, как минимум, в течение часа и близким к линейному. Такое поведение температуры означало, что в криостате реализованы условия, максимально близкие к адиабатным: система стабилизирована и находится в устойчивом динамическом равновесии. В этом случае максимальная чувствительность к изменению температуры образца составляла не хуже 10<sup>-4</sup> К, в то время как абсолютная погрешность измерения температуры  $\pm 10^{-2}\, K$ была ограничена параметрами использованных в криостате платиновых термометров.

При наложении (снятии) магнитного поля в магнитном материале выделяется (поглощается) теплота, которая расходуется на изменение температуры всей системы (образец + ячейки + смазка), на которой проводятся измерения. Таким образом, в экспериментах с варьированием магнитного поля измеряется величина  $\Delta T_{exp}$ , которая меньше действительной величины  $\Delta T_{AD}$ , соответствующей интенсивному МСЕ в образце LEPM. Соотношение между этими температурными эффектами описывается следующим уравнением:

$$\Delta T_{\rm AD} = \Delta T_{\rm exp} \left( 1 + \frac{C_{\rm cell} + C_{\rm Ap}}{C_{\rm sample}} \right), \tag{1}$$

где  $C_{\text{cell}}$ ,  $C_{\text{Ap}}$  и  $C_{\text{sample}}$  соответственно теплоемкости ячейки, смазки и образца.

Дилатометрические исследования проводились на поликристаллических образцах с размерами L = 1.5-3.0 mm на индукционном дилатометре DIL-402C фирмы NETZSCH в потоке сухого газообразного гелия. Скорости нагрева образца в интервале температур 100–500 K варьировались от 2 до 4 K/min. Эталон из плавленого кварца был использован для калибровки и учета расширения измерительной системы. Данные, полученные в нескольких сериях измерений, согласовывались между собой в пределах 2-5%.

# 3. Экспериментальные результаты и обсуждение

Результаты калориметрических исследований в широком интервале температур представлены в виде удельных теплоемкостей твердых растворов LEPM на рис. 1, *a*, которые вне аномальных температурных областей практически совпадают.

Вследствие небольшого различия атомных масс лантана и европия отличие молярных масс твердых растворов, при варьировании у от 0 до 0.8, и соответственно молярных теплоемкостей оказывается очень небольшим  $\sim$  3%. В выбранном на рис. 1, *а* масштабе наиболее наглядно выглядят аномалии  $C_P(T)$ , связанные с переходом между парамагнитной и ферромагнитной фазами в соединениях  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$  с y = 0, 0.2, 0.5. В такой ситуации наиболее информативными являются аномальные вклады  $\Delta C_p(T)$  в теплоемкость, для выделения которых теплоемкость твердых растворов вдали от T<sub>C</sub> рассматривается как регулярный/решеточный вклад  $C_{\text{LAT}}$  в суммарную теплоемкость  $C_p(T)$ . Решеточная составляющая для каждого твердого раствора была определена путем интерполяции данных в индивидуальных интервалах температур комбинацией функций Дебая и Эйнштейна. Для всех составов зависимость  $C_{\text{LAT}}(T)$  была идентичной с близкими значениями температур Дебая и Эйнштейна:  $\Theta_D \approx 213 \text{ K}$  и  $\theta_E \approx 525 \text{ K}$ . Выделение аномальной теплоемкости  $\Delta C_P(T) = C_P(T) - C_{LAT}(T)$ (рис. 1, b), позволило определить для каждого из составов LEPM температуры максимумов  $\Delta C_p(T)$ , принимаемые за температуры фазовых переходов (таблица).

Из рис. 1, *b* видно, что рост концентрации  $Eu^{3+}$ приводит к размытию пика теплоемкости и значительному уменьшению его максимальной величины:  $\Delta C_p$ 

Некоторые термодинамические параметры фазового перехода в твердых растворах  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$ 

| у   | $T_C, \mathbf{K}$ | $\Delta H, J/g$ | dT/dp, K/kbar |
|-----|-------------------|-----------------|---------------|
| 0   | 339               | 4.70            | 0.8           |
| 0.2 | 287               | 2.60            | 1.0           |
| 0.5 | 172               | 0.70            | 1.6           |
| 0.6 | 120               | 0.63            | 2.3           |
| 0.8 | 90                | 0.44            | -             |

от 90 mJ/g · K при y = 0 до 7 mJ/g · K — y = 0.8. В соответствии с этим энтальпии фазовых переходов  $\Delta H$ , определенные путем интегрирования площади под пиком  $\Delta C_p(T)$ , также подвержены существенному уменьшению (таблица). Однако аномальные энтропии, связанные с фазовым переходом и определяемые комбинацией соотношений между теплоемкостью, энтальпией



**Рис. 1.** Температурные зависимости удельной (*a*), аномальной (*b*) теплоемкости и коэффициента линейного теплового расширения (*c*) твердых растворов  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$ : y = 0.0 (*1*); 0.2 (*2*); 0.4 (*3*); 0.5 (*4*); 0.6 (*5*) и 0.8 (*6*).



**Рис. 2.** Зависимости температуры (a) и энтропии (b) фазового перехода от концентрации катиона Eu<sup>3+</sup>.

и температурой перехода  $\Delta S = \int (\Delta C_p/T) dT \approx \Delta H/T_C$ , оказались менее чувствительными к изовалентному катионному замещению. Более того, величина  $\Delta S$  уменьшается в ~ 3.5 раза лишь при росте у от 0 до 0.5, а при дальнейшем увеличении концентрации Eu<sup>3+</sup> остается практически постоянной в пределах погрешности ее определения. Это обстоятельство связано с резким уменьшением температуры перехода (рис. 2, *a*).

Уменьшение энтропии фазового перехода можно объяснить в приближении термодинамической теории [27], в соответствии с которой эта величина пропорциональна квадрату параметра порядка (намагниченности в случае LEPM)  $\Delta S(T) = A_T M^2(T)$ . Здесь  $A_T$  — один из коэффициентов термодинамического потенциала  $\Delta \Phi = A_T M^2 + B M^2 + C M^2 + \ldots + HM$ , определяемый производной от обратной магнитной восприимчивости  $d\chi^{-1}/dT$ . Согласно [19] для твердого раствора с y = 0.6 величина M примерно в два раза меньше по сравнению с La<sub>0.7</sub>Pb<sub>0.3</sub>ZMnO<sub>3</sub>, что должно привести к уменьшению энтропии в четыре раза, которое близко к наблюдавшемуся нами изменению  $\Delta S$  (рис. 2, *b*).

Температурные зависимости коэффициента линейного теплового расширения твердых растворов  $\alpha(T)$  представлены на рис. 1, *с*. Из-за малых линейных размеров образцов ошибка измерений оказалась довольно большой 5–10%. Для каждого из составов LEPM обнаружена одна небольшая аномалия  $\alpha(T)$ , температура максимума которой, принимаемая за температуру фазового

перехода, уменьшается при увеличении у. В соответствии с концентрационной фазовой диаграммой характер зависимостей  $T_C(y)$ , определенных в калориметрических и дилатометрических экспериментах, полностью идентичен (рис. 1, *c*), что свидетельствует о высокой надежности данных, полученных разными методами.

Из зависимостей  $\alpha(T)$  (рис. 1, c) следует, что в отличие от теплоемкости  $\Delta C_p$ , величины аномалий коэффициента теплового расширения весьма мало меняются с изменением соотношения между концентрациями лантана и европия. Положительный знак аномалий  $\alpha$  свидетельствует о том, что при переходе в парамагнитную фазу объем увеличивается.

Фазовый переход в твердых растворах LEPM является типичным превращением второго рода. В связи с этим, используя уравнение Эренфеста  $dT_C/dp = T_C(\Delta\beta/\Delta C_p)$ , подробные калориметрические и дилатометрические данные, а также принимая, что  $\Delta\beta = 3\Delta\alpha$ , можно получить информацию о восприимчивости соединений к внешнему гидростатическому давлению. Рассчитанные величины начального сдвига температуры фазового перехода под гидростатическим давлением, представленные в таблице, свидетельствуют об увеличении барического коэффициента с ростом концентрации Eu<sup>3+</sup>.

Результаты одной из серий измерений интенсивного МСЕ, выполненных в парамагнитной фазе в окрестности 290 К на образце с y = 0.2 в магнитных полях от 1 до 6 kOe, показаны на рис. 3, *а*. Средняя скорость изменения температуры, связанного с собственным температурным



**Рис. 3.** Зависимость температуры образца  $(La_{0.8}Eu_{0.2})_{0.7}Pb_{0.3}MnO_3$  (*a*) и интенсивного магнетокалорического эффекта  $\Delta T_{AD}$  (*b*) от времени при включении и выключении магнитного поля:  $H_1 = 1.2$  kOe,  $H_2 = 2.2$  kOe,  $H_3 = 3.3$  kOe,  $H_4 = 4.1$  kOe,  $H_5 = 5.4$  kOe,  $H_6 = 6.0$  kOe.

ходом калориметра, за время эксперимента (120 min), составляла  $dT/dt \approx 7 \cdot 10^{-4}$  K/min.

Очевидно, что исследуемому твердому раствору свойственен заметный интенсивный магнетокалорический эффект — включение (выключение) магнитного поля сопровождается надежно регистрируемым увеличением (уменьшением) температуры системы образец + ячейка + смазка. Степень обратимости МСЕ оказалась весьма высокой — после выключения магнитного поля температура системы возвращается на ожидаемый уровень, получаемый экстраполяцией температурного хода dT/dt из области температур, предшествующей включению поля.

В момент включения и выключения магнитного поля наблюдаются резкие скачкообразные изменения ("всплески") температуры, имеющие обратный знак по отношению к знаку МСЕ и связанные с наводками ЭДС-индукции на высокочувствительный усилитель сигнала термопары в цепи терморегулирования. Постоянство величины температурного хода dT/dt в условиях H = 0 и  $H \neq 0$  свидетельствует о том, что этот эффект ни в коей мере не оказывает влияния на надежность регулирования адиабатических условий. Эксперименты, выполненные при этих же температурах в магнитных полях противоположного направления, показали неизменность знака и величины как интенсивного МСЕ, так и температурных "всплесков", что подтверждает их нефизическую природу.

Рис. 3, *b* демонстрирует соотношение между экспериментально зафиксированными изменениями температуры ( $\Delta T_{exp}$ ) и скорректированными с учетом соотношения (1) величинами МСЕ ( $\Delta T_{AD}$ ).

Аналогичным образом были выполнены измерения интенсивного МСЕ для других составов LEPM в окрестностях индивидуальных фазовых переходов. Температурные зависимости  $\Delta T_{AD}$  в магнитных полях 3.2, 4.1 и 4.8 kOe для исследованных твердых растворов показаны на рис. 4.

Следует отметить своеобразный характер изменения  $\Delta T_{\rm AD}$  при увеличении концентрации Eu<sup>3+</sup>. За резким уменьшением максимального интенсивного МСЕ в соединении с y = 0.2 по сравнению с La<sub>0.7</sub>Pb<sub>0.3</sub>MnO<sub>3</sub> следует незначительное изменение его величины в других твердых растворах. Однако для твердого раствора с y = 0.8 величина  $\Delta T_{\rm AD}^{\rm MAX}$  оказалась на ~ 20% больше, чем для состава с y = 0.6, и наблюдалась в более узком интервале температур (рис. 4). Причина наблюдаемых особенностей может быть связана с тем, что интенсивный МСЕ определяется соотношением между температурой, теплоемкостью и температурной производной намагниченности [1]

$$\Delta T_{\rm AD} = -\frac{T}{C_p} \left(\frac{\partial M}{\partial T}\right)_H dH.$$
 (2)

Очевидно, что на комбинацию этих величин может оказывать существенное влияние качество образцов, которое в случае твердых растворов в значительной мере



**Рис. 4.** Температурные зависимости интенсивного магнетокалорического эффекта  $\Delta T_{AD}$  в манганитах  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$  при различных напряженностях магнитного поля.

определяется однородностью упорядочения замещающего катиона Eu<sup>3+</sup> в кристаллической решетке манганита. Из уравнения (2) также следует, что при определенных условиях зависимость  $\Delta T_{AD}(H)$  может быть близка к линейной, что видно на рис. 5, *a*.

Однако более информативной является полевая зависимость приведенной величины  $(\Delta T_{AD}/H)(H)$  (рис. 5, *b*). Видно, что влияние коэрцитивного поля значительно уменьшается в твердых растворах (~ 1 kOe) по сравнению с La<sub>0.7</sub>Pb<sub>0.3</sub>MnO<sub>3</sub> (3 kOe).

Эффективность магнитного хладагента определяется не только величиной абсолютного МСЕ, но и температурными интервалами, в которых присутствуют сравнительно большие величины  $\Delta T_{AD}$  и  $\Delta S_{MCE}$ . В связи с этим наиболее объективными параметрами для сравнения эффективности различных магнетокалорических материалов являются интегральные характеристики относительные мощности охлаждения (RCP) [1]

$$\operatorname{RCP}(T) = \Delta T_{\mathrm{AD}}^{\max} \delta T_{\mathrm{FWHM}},\tag{3}$$

$$\operatorname{RCP}(S) = \Delta S_{\operatorname{MCE}}^{\max} \delta T_{\operatorname{FWHM}},\tag{4}$$

где  $\Delta T_{AD}^{\max}$ ,  $\Delta S_{MCE}^{\max}$  максимальные величины интенсивного и экстенсивного МСЕ, а  $\delta T_{FWHM}$  — полная ширина на половине высоты  $\Delta T_{AD}^{\max}(T)$  и  $\Delta S_{MCE}^{\max}(T)$ .

Полевые зависимости относительных мощностей охлаждения, отнесенных к величине поля RCP(T)/H и RCP(S)/H, приведены на рис. 5, *c* и 5, *d*. Наиболее эффективным хладагентом оказался твердый раствор с y = 0.5, для которого параметры RCP/H на 30% выше по сравнению с  $\text{La}_{0.7}\text{Pb}_{0.3}\text{MnO}_3$  и твердыми растворами с y = 0.2 и 0.6. Благодаря широкому интервалу температур, в котором существуют близкие по значениям величины  $\Delta T_{\text{AD}}^{\text{max}}$ , и небольшим напряженностям магнитного поля, приводящим к практически постоянным значениям RCP(T)/H и RCP(S)/H, система твердых растворов



**Рис. 5.** Зависимости от магнитного пола абсолютных и приведенных величин: интенсивного  $\Delta T_{AD}$  (*a*) и  $\Delta T_{AD}/H$  (*b*) магнетокалорического эффекта и приведенной относительной мощности охлаждения RCP(*T*)/*H* (*c*) и RCP(*S*)/*H* (*d*).

 $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$  может рассматриваться в качестве модельной при проектировании циклов каскадного охлаждения на основе твердотельных хладагентов.

#### 4. Заключение

Выполнены исследования влияния изовалентного катионного замещения на теплоемкость, тепловое расширение, МСЕ и RCP твердых растворов манганитов  $(La_{1-y}Eu_y)_{0.7}Pb_{0.3}MnO_3$  (y: 0, 0.2, 0.4, 0.5, 0.6, 0.8).

Обнаружено значительное снижение температуры ферромагнитного фазового перехода и существенное уменьшение максимумов аномалий теплоемкости при увеличении концентрации катиона Eu<sup>3+</sup>. Аномалии коэффициента теплового расширения меняются в значительно меньшей степени, что в соответствии с уравнением Эренфеста приводит к росту восприимчивости твердых растворов к гидростатическому давлению.

Несмотря на значительное уменьшение энтальпии фазового перехода при изменении y от 0 до 0.8, энтропия твердых растворов оказалась менее чувствительной к катионному замещению и при  $y \ge 0.5$  остается практиче-

ски неизменной, что обусловлено резким уменьшением температуры перехода.

Варьирование соотношения катионов  $Eu^{3+}/La^{3+}$  от 0 до 0.8 позволяет получить твердые растворы с максимальной величиной МСЕ в очень широкой области температур — от 340 K до 90 K.

В соответствии с близкими значениями абсолютных величин  $\Delta T_{AD}^{max}$  при одном и том же поле для твердых растворов с y = 0.2-0.8 и постоянными значениями RCP(T)/H и RCP(S)/H, реализуемыми при невысоких полях, система твердотельных хладагентов (La<sub>1-y</sub>Eu<sub>y</sub>)<sub>0.7</sub>Pb<sub>0.3</sub>MnO<sub>3</sub> может быть рекомендована в качестве исходной для моделирования циклов каскадного охлаждения.

Авторы признательны М.С. Молокееву за структурную характеризацию образцов.

## Список литературы

 A.M. Tishin, Y.I. Spichkin. The Magnetocaloric Effect and its Applications. Institute of Physics Publishing, Bristol and Philadelphia (2003). 475 p.

- [2] L. Mañosa, A. Planes, M. Acet. J. Mater. Chem. A 1, 4925 (2013).
- [3] P. Blumenthal, C. Molin, S. Gebhardt, A. Raatz. Ferroelectrics 497, 1 (2016).
- [4] M. Ožbolt, A. Kitanovski, J. Tušek, A. Poredoš. Int. J. Refrigeration 37, 16 (2014).
- [5] M. Ožbolt, A. Kitanovski, J. Tušek, A. Poredoš. Int. J. Refrigeration 40, 174 (2014).
- [6] G. Suchaneck, G. Gerlach. Phase Transitions 88, 333 (2015).
- [7] S. Qian, Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, J. Cui. Int. J. Refrigeration. 64, 1 (2016).
- [8] L. Mañosa, A. Planes. Adv. Mater. 29, 1603607 (2017).
- [9] K.A. Gschneider, V.K. Pecharsky. Ann. Rev. Mater. Sci. 30, 387 (2000).
- [10] N.A. Zarkevich, D.D. Johnson, V.K. Pecharsky. J. Phys. D 51, 024002 (2018).
- [11] J. Gutiérrez, J.R. Fernández, J.M. Barandiarán, I. Orúe, L. Righi. Sensors Actuators A 142, 549 (2007).
- [12] M.A. Hamad. J. Therm Anal Calorim. 111:1251 (2013).
- [13] M.H. Phan, S.C. Yu. J. Magn. Magn. Mater. 308, 325 (2007).
- [14] X. Moya, L.E. Hoes, F. Maccherozzi, A.I. Tovstolytkin, D.I. Podyalovskii, C. Ducati, L.C. Phillips, M. Ghidini1, O. Hovorka, A. Berger, M.E. Vickers, E. Defay, S.S. Dhesi, N.D. Mathur. Nature Mater. 12, 52 (2013).
- [15] R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade. J. Mater. Sci. 49, 8244 (2014).
- [16] W. Chen, W. Zhong, D.L. Hou, R.W. Gao, W.C. Feng, M.G. Zhu, Y.W. Du. J. Phys.: Condens. Matter. 14 11889 (2002).
- [17] Z.M. Wang, T. Tang, Y.P. Wang, S.Y. Zhang, Y.W. Du. J. Magn. Magn. Mater. 246, 254 (2002).
- [18] А.Г. Гамзатов, А.М. Алиев, И.К. Камилов, А.Р. Кауль. ФТТ 58, 1303 (2016).
- [19] N. Volkov, G. Petrakovskii, P. Böni, E. Clementyev, K. Patrin, K. Sablina, D. Velikanov, A. Vasiliev. J. Magn. Magn. Mater. **309**, 1 (2007).
- [20] K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol. Rep. Prog. Phys. 68, 1479 (2005).
- [21] S.G. Min, K.S. Kim, S.C. Yu, H.S. Suh, S.W. Lee. IEEE Transact. Magn. 40, 2760 (2005).
- [22] N. Volkov, G. Petrakovskii, K. Patrin, K. Sablina, E. Eremin, V. Vasiliev, A. Vasiliev, M. Molokeev, P. Böni, E. Clementyev. Phys. Rev. B 73, 104401 (2006).
- [23] Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du. J. Appl. Phys. 90, 5689 (2003).
- [24] H. Chen, Ch. Lin, D. Dai. J. Magn. Magn. Mater. 257, 254 (2003).
- [25] G.L. Liu, D.A. Zhao, H.Y. Bai, W.H. Wang, M.X. Pan. J. Phys. D 49, 055004 (2016).
- [26] А.В. Карташев, И.Н. Флёров, Н.В. Волков, К.А. Саблина. ФТТ **50**, 2027 (2008).
- [27] Л.Д. Ланлдау, Е.М. Лифшиц. Статистическая физика. Наука, М. (1964). 567 с.

Редактор Т.Н. Василевская