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Abstract 

 

An assumption on general regularities and chemical mechanisms of solid-state reactions in 

nanofilms and nanothermite mixtures is made. It is demonstrated that the moving force of all Al-

based nanothermite reactions is the synthesis of the Al2O3 phase with a high negative enthalpy of 

formation. According to this assumption, all Al-based nanothermite reactions should have the 

same initiation temperature Tin. Indeed, an analysis of literature data shows that the synthesis of 

the Al2O3 phase in Al/Fe2O3, Al/CuO, Al/Co3O4, Al/MoO3, Al/Bi2O3, and Al/NiO nanothermite 

mixtures starts at the same temperature Tin ~ 510°C. We also demonstrate the same initiation 

temperatures ~250°C, ~300°C, and ~180°C for Zr-, Mg- and In-based nanothermite reactions, 

respectively.  It is predicted that nanothermite reactions based on other fuels have their own 

initiation temperatures. 
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temperature.  

 

1. Introduction  

 

The control and predictability of the synthesis of new materials is one of the most 

fundamental challenges in material science. The traditional approach to this problem is to use the 

prediction of crystal structure from first principles [1- 4]. However, now the lack of control and 

predictability are indeed notorious characteristics of the synthesis of new materials [5].  The 

prediction of the phases in binary systems that will be formed during the thin film solid-state  

reaction has been a subject of numerous studies, and different empirical rules have been 

developed for predicting first phase formation [6-14].  

Studies of solid-state reactions in nanolayers have shown three fundamental features that 

strongly distinguish them from bulk powders:  
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(i) Formation of only the first phase at the film reagent interface at a certain temperature 

Тin called the initiation (formation) temperature Тin. As the annealing temperature is increased, 

other phases can occur and form the phase sequence [11-14]. 

(ii) The threshold of the reaction, characterized by intense intermixing at the interface and 

formation of compounds, arises at temperatures above the initiation (formation) temperature Тin. 

The values of Тin in the first phase can be about room temperature [15, 16] or even at cryogenic 

temperatures [17-20]   

(iii) Migration of the dominant diffusing species through the interface during first phase 

formation [13, 21, 22]. 

The formation of only the first phase among equilibrium phases, low initiation 

temperatures, and migration of the dominant diffusing species are unique, unexplained features 

of solid-state reactions in nanofilms. From the above results it follows that the first phase and its 

initiation temperature Тin are control characteristics of the thin film solid-state reactions.  

 

2. Presentation of the hypothesis  

 

Over the past decade, investigations focused on the nanoenergetic materials, such as 

reactive multilayer thin films [23, 24] and nanostructured reactive mixtures [25-27]. Thermite 

mixtures belong to a wide class of energetic materials that comprise a metal fuel (e.g., Al, Mg, or 

B) and an oxidizer (e.g., Fe2O3, MoO3, CuO, Bi2O3, or WO3). These mixtures react with a lot of 

heat release; therefore, the thermite reactions often occur in a self-sustaining mode [28-30]. 

Typical thermite mixtures contain micron particles and have a combustion wave velocity of 1-20 

m/s. In recent years, there has been an increasing interest in nanothermites (superthermites) 

where the particle size is reduced to a few nanometers. In nanothermite mixtures, the combustion 

wave velocity grows to 1000 m/s [25-27].  Studies of nanothermite combustion are mainly aimed 

at measuring the combustion wave velocity, burning temperature, delay time, and their 

dependences on density, morphology, and composition of the reaction mixture. Despite the 

intense investigations of thermite reactions, their general regularities and mechanisms remain 

unclear. Currently, the classical nanothermite Goldschmidt reaction Fe2O3 + 2Al = Al2O3 + 2Fe 

and other Al-based reactions are well studied.  

In this work, we extend the existing concepts of the first phase and its initiation 

temperature Tin, which describe the initial stage of solid-state reactions in nanofilms onto 

thermite reactions and demonstrate that in all Al-based nanothermite mixtures the synthesis of 

the Al2O3 phase starts at the same initiation temperature Tin ~ 510°C. These results open up a 

way for understanding the exclusive role of the initiation temperature Tin in the solid-state 
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reactions at the nanoscale. Our previous studies and the analysis of solid-state thin film reactions 

for many bilayers have shown that the initiation temperatures Tin often coincide with 

temperatures TK of structural phase transformations (Tin = TK). In particular, initiation 

temperatures Tin(Cu/Au) and Tin(Ni/Fe) of reactions in the Cu/Au and Ni/Fe bilayers coincide 

with the minimum temperature of the order-disorder phase transition in Cu-Au [31] and the 

eutectoid decomposition temperature in the Fe-Ni system [32], respectively. In Ni/Al and Cd/Au 

films, the reactions start at the temperature of the inverse martensitic transformation in the Ni-Al 

[33] and Cd-Au [34] binary systems, respectively. The equality Tin = TK was also established for 

the eutectic reactions, superionic transition, and spinodal decomposition in Al/Ge [35], Se/Cu      

[36], and Mn/Ge [37, 38] films, respectively. The equality Tin = TK indicates the common nature 

of chemical interactions that control both solid-state reactions in thin films and solid-state 

transformations.  

 

3. Testing of the hypothesis   

 

The above results demonstrate that the first phase and its temperature Tin are the 

fundamental characteristics of a reaction bilayer. It follows that low-temperature reactions occur 

only between the reacting layers whose reaction products have low-temperature solid-state 

transformations. Therefore, the study of phase sequences in reaction couples makes it possible to 

refine and supplement the phase equilibrium diagrams especially in low-temperature part. Thus, 

recently we investigated the reaction in Ge/Mn bilayers and confirmed the existence of spinodal 

decomposition in an in Ge-Mn system at 120°C. It is important to note that the formation of the 

first Mn5Ge3 phase was independent of whether Mn and Ge atoms are in a solid solution or in 

Ge/Mn bilayers [37, 38]. 

The one important characteristic of reactive multilayer films is the ignition temperature Tig, 

which can be defined as a minimum temperature of onset of a self-sustaining reaction for a given 

experiment [23, 24]. As known, the self-sustaining regime of reaction arises when the rate of 

heat generation Qreaction overcomes the rate of heat losses Qloss (Qreaction > Qloss). Unlike Tig, the 

initiation temperature Tin is the start temperature of reactions at which the rate of heat generation 

Qreaction is less than the rate of heat losses Qloss (Qreaction < Qloss) and so the initiation temperature 

Tin is always less than the ignition temperature Tig (Tin < Tig). As discussed above the initiation 

temperature Tin is the threshold temperature: no reaction below Tin and reaction initiate just the 

temperature of sample overcomes Tin. Thus, the initiation temperature Tin is the characteristic 

temperature of our given reaction couple. In contrast to Tin, the ignition temperature Tig is a 

kinetic quantity that depends on the heating rate and the rate of heat loss. Nevertheless, Frits et 
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al. have recently shown that, similar to Tin, the ignition temperature Tig in Ni/Al multilayers with 

a given bilayer thickness is a threshold temperature because in hot plate experiments the 

multilayers do not ignite when the specimens are heated to temperatures just 1°C below Tig [39]. 

The enthalpy of formation of the first phase is a good measure of the free energy variation 

during the solid-state interaction; therefore, the heats of formation were used in several initial 

models to predict the first phase and phase sequence formation. Pretorius et al. [13] proposed an 

effective model for the enthalpy of formation, which was successfully used for predicting the 

first phase formation in many binary systems. 

As mentioned above, with the increasing of the temperature of the bilayer above Tin leads 

to the beginning of intermixing of the reagents and first phase synthesis on the interface and 

consequently physical characteristics of the film samples, such as electrical resistance, 

magnetization, transparence, and heat release, begin to radically change. Obviously, the start 

temperature of these changes is the reaction initiation temperature Tin. In most cases the 

energetic properties of thermite nanocomposites were investigated by differential thermal 

analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry 

(DSC). In this case the initiation temperature Tin is the temperature at which heat release starts. 

An important characteristic of the DSC curves is also the exothermic peak temperature, which, 

unlike the initiation temperature Tin, depends on the heat removal conditions from the reaction 

zone.  

It is important to note that the contaminants that form on the reagent interface during 

various methods of sample preparation (especially for chemically produced samples) can form 

thin barrier layers that slightly change the initiation temperature of Tin but do not suppress the 

reaction. An error in finding the exact value of the initiation temperature Tin can also follow from 

the certain inaccuracy in determining Tin from DTA, TGA and DSC plots. To find the exact Tin 

value, low heating rates are required. Therefore, we referred only to the studies in which the heat 

release curves were obtained at minimum heating rates (5,10 or 20 °C/min). 

The main results of the work are summarized in the schematic diagram in Figure 1, 

showing the initiation temperature Tin ~ 510°С of the Al2O3 phase in Al/Fe2O3, Al/Co3O4, 

Al/NiO, Al/MnO2, Al/Bi2O3, Al/CuO, Al/MoO3 nanothermite reactions and oxidation of Al 

nanomaterials. 

 

3. Implication of the hypothesis  

 

3.1. The initiation temperature Tin ~ 510°С of the Al-based nanothermite reactions 
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It can be seen from Tables 1 – 4 that, taking into account the errors in measuring the DTA, 

TGA, DSC curves, and magnetic and resistivity plots by different authors, the initiation 

temperatures of all Al-based nanothermite reactions are centered around ~ 510 °C. As can be 

seen from Tables 1- 4, at heating rates 5, 10, 20 °C/min the heat release curves also have closely 

exothermic peak temperatures. It must be noted that at a heating rate of 5 °C/min, the oxidation 

of nanosized aluminum powders also starts at about 510 °C [60, 92-100]. Recently it was shown 

that the DSC curves of the NiCo2O4/Al core-shell nanowires thermite film [101] and three-

dimensional ordered macroporous NiFe2O4/Al nanothermites [102] have an exothermic peak 

with an initiation temperature ~ 530°C and an exothermic peak temperature ~ 600°C. This 

unambiguously proves, that the synthesis of Al2O3 is the driving force of the thermite reaction 

8Al + 3Ni(Co or Fe)2O4 → 4Al2O3 +3Ni + 6(Co or Fe)  in the NiCo2O4/Al and NiFe2O4/Al 

nanocomposites. 

These results suggest the following reaction mechanism: below the initiation temperature 

Tin < ~ 510 °C, Al and O atoms remain chemically neutral. At Tin > ~ 510 °С, strong chemical 

interactions occur between Al and O atoms that break old chemical bonds causing the directed 

atomic migration to the reaction zone and the synthesis of Al2O3 regardless of the system they 

exist in. Therefore, the initiation temperature Tin ~ 510 °С is a universal parameter of all Al-

based nanothermite reactions. 

 

3.2. The initiation temperature Tin ~ 250 °С of the Zr-based nanothermite reactions 

 

The driving force of the Zr-based nanothermite reactions is the formation of the ZrO2 

phase, which has a relatively high negative enthalpy of formation (ΔHf = -601 kJ/mol). The 

analysis of the synthesis of Co-ZrO2 and Fe- ZrO2 ferromagnetic nanocomposites show, that 

thermite reactions in the Zr/Co3O4 [103] and Zr/Fe2O3 [104] thin films have the same initiation 

temperature Tin (Zr/Co3O4)
 = Tin(Zr/Fe2O3) ~ 250 °С. This value Tin ~ 250 °C is in agreement 

with the initiation temperature Tin(Zr/CuO) ~ 250 °C in the Zr/CuO nanothermite mixture [105] 

and with the study where the ZrO2 nanoparticles were obtained by glycothermal processing 

[106]. From these facts we predict the same initiation temperature Tin ~ 250 °С for all the Zr-

based nanothermite reactions. 

 

3.3. The initiation temperature Tin ~ 450 °С of the Mg-based nanothermite reactions 

 

The driving force of the Mg-based nanothermite reactions is the synthesis MgO phase 

having a high negative enthalpy of formation (ΔHf = -1097 kJ/mol) with some low enthalpy of 
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formation of Al2O3 (ΔHf = -1676 kJ/mol). Using the results of this paper [105], we determined 

that the thermite multilayer Mg/CuO stacks the initiation temperature Tin(Mg/CuO) ~ 450 °С. 

The nearest value of the initiation temperature has nanoenergetic Mg/CuO core/shell arrays, 

which exhibit an onset reaction temperature (~ 450 °С) [107]. The initiation temperatures are 

close to ~ 450 °C in fresh CuO/Mg/fluorocarbon nanoenergetic composites [108] and μm-

Mg/nmCuO thermite mixtures prepared by physical and ultrasonic mixing [109]. Magnesium 

particles with a nominal size of 6 μm begin an intensive oxidation above 500 °С, which suggests 

that the starting temperature of the oxidation of nanosized magnesium powders is below 500 °С 

[110]. In these papers the initiation temperature Tin was defined as the temperature at which heat 

release started using the curves of differential thermal analysis (DTA), thermogravimetric 

analysis (TGA), and differential scanning calorimetry (DSC). Although the exact value of the 

initiation temperature of Mg-based nanothermite reactions remains unknown, it lies around  

450 °С.  

 

3.4. The initiation temperature Tin ~ 180 °С of the In-based nanothermite reactions 

 

Recently, we have demonstrated a new way to synthesize ferromagnetic Fe-In2O3 and Co-

In2O3 nanocomposite thin films using the new thermite reactions Fe2O3 + 2In = In2O3 + 2Fe 

[111] and 3Co3O4 + 8In + 4In2O3 + 9Co [112] which starts above the initiation temperature Tin = 

180 °С - 190 °С with the predominant formation of the Fe, Co and In2O3 phases. In [113] the 

general strategy of the fabrication of metal oxide films has been proposed. The choice of suitable 

combustion precursors, containing indium nitrates as oxidizers and urea or acetyl acetone as fuel, 

were used for the low-temperature fabrication of In2O3 films. The initiation temperatures of 

combustion reactions, measured from DTA and DSC curves, are in the range 175 °C - 200 °C 

[113-115]. Our studies of the self-sustaining oxidation of In films have shown that the initiation 

temperature is ~ 180 °C [116]. The emergence of a strong chemical interaction between the In 

and O atoms above 180 °C may be the cause of rapid crystallization of amorphous In2O3 films 

within the temperature range 165-210 °C [117, 118]. The above data suggests that for the In-

based nanothermites, oxidation of In and temperature crystallization of amorphous In2O3 films 

should have the same initiation temperature Tin ~ 180 °C. 

It is worth noticing that all nanothermite reactions have low initiation temperatures and 

occur in the solid state (excluding In-based reactions). On the conceptual level, the initiation 

temperatures are ignored in modern models described the thin-film solid-state reactions. In 

contrast to this, our approach assumes the decisive role of the leading (first) phase and its 

initiation temperature not only in thermite reactions but also in other types of chemical reactions.   
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Progress in understanding and predicting the structural transformations and reactions in the 

solid state is limited by a lack-of-knowledge inference about the chemical interactions at 

nanoscale. Undoubtedly, future investigations of thin-film solid-state reactions and nanothermite 

reactions will discover new amazing properties of chemical interactions in solids.  

 

4. Conclusions 

 

The main concepts of this study are the first phase and its initiation temperature Tin, which 

describe thin-film solid-state reactions and were extended onto nanothermite reactions. The 

paper results prove that all Al-based nanothermite reactions have the same initiation temperature. 

The analysis of the initiation temperatures reported in the literature and our data has shown that 

the synthesis of the Al2O3 phase in Al/Fe2O3, Al/CuO, Al/Co3O4, Al/MoO3, Al/Bi2O3, Al/NiO 

and Al/Mn2O3 nanothermite mixtures starts at a temperature of about 510 °С. The same initiation 

temperatures ~250 °C, ~450 °C, and ~180 °C also have Zr-, Mg- and In-based nanothermite 

reactions, respectively. Finally, these findings predict that nanothermite reactions based on other 

fuels (e.g., Ti and B) must have their own initiation temperatures. This approach can be widely 

applicable in the study of the multicomponent thin-film solid-state reactions. 
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Figure 1. The schematic illustration of the initiation temperature Tin ~ 510 °С for the Al-based 
nanothermite reactions with Fe2O3, Co3O4, NiO, MnO2, Bi2O3, CuO, MoO3 oxidizers and the 

oxidation of Al nanomaterials. The initiation temperature Tin ~ 510 °C is characteristic of the 

leading Al2O3 phase, which has a high negative enthalpy of formation (ΔHf = -1676 kJ/mol) and 

is the driving force of all the Al-based nanothermite reactions. 
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Table 1. Summary of Al-based nanothermite reactions with Fe2O3 oxidizer and with an 

associated record of the initiation temperatures. 

 

 
Nanothermite 

Systems 

Initiation 

Temperature Tin 

(°C) 

Techniques Temperature 

Rate  

η (K/min.) 

Exothermic 

Peak 

Temperature 

(°C) 

Samples Refs. 

Al/Fe2O3 ~ 490 DSC 10 ~ 530 Fe2O3/Al xerogel 

nanocomposites 

[40] 

Al/Fe2O3 ~ 530 TGA/DSC 10 ~ 550 Fe2O3/Al xerogel 

nanocomposites 

[41] 

Al/Fe2O3 ~ 510 DSC 10  588 Fe2O3 nanotubes,   

Al nanocomposites 

[42] 

Al/Fe2O3 ~ 520 DSC 10 ~ 545 Fe2O3 nanoporous 

particles,   

Al powder 

[43] 

Al/Fe2O3 ~ 520 DSC 20  548 Fe2O3/Al 

nanothermite 

membranes. 

[44] 

Al/Fe2O3 ~ 530 Magnetization 

vs temperature  

> 10  Fe2O3/Al bilayers. [45] 

Al/Fe2O3 

 

~ 525 

 

TGA/DSC 

 

8-30 

 

~ 590 

 

Fe2O3/Al 

nanothermite 

membranes 

[46] 

 

Al/Fe2O3 

 

507-508 

 

TGA/DSC 10 ~ 590 

 

Fe2O3, Al 

nanoparticles 

[47] 

 

Al/Fe2O3 

 

~ 520 

 

TGA/DTA 20 ~ 620 

 

Al/Fe2O3 

nanothermite film 

[48] 

 

Al/Fe2O3 

 

~ 490 

 

TGA/DTA  

 

10 ~ 570 

 

Porous Core/Shell 

Structure Fe2O3/Al 

[49] 

 

Al/Fe2O3 

 

~ 490 

 

DSC 10 ~ 570 

 

core–shell structured 

Al@Fe2O3 

nanothermite 

[50] 

 

Al/Fe2O3 

 

~ 500 

 

DSC 20 ~ 550 

 

Al@Fe2O3 

nanocomposites 

 

[51] 

 

Al/Fe2O3 

 

~ 500 

 

TGA/DSC  

 

10 ~ 590 

 

Al/Fe2O3/MWCNT 

nanostructured 

energetic materials 

[52] 

 

Al/Fe2O3 

 

~ 480 

 

DSC 20 ~ 560 

 

nanostructured 

energetic materials 

sol–gel–Al/Fe2O3 

[53] 

 

Al/Fe2O3 

 

504-525 DSC/TG 5 546-569 

 

n-Al/n-Fe2O3 

nanothermite 

[54] 
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Table 2. Summary of Al-based nanothermite reactions with CuO oxidizer and with an associated 

record of the initiation temperatures. 

 

 

 
Nanothermite 

Systems 

Initiation 

Temperature Tin 

(°C) 

Techniques Temperature 

Rate  

η (K/min.) 

Exothermic 

Peak 

Temperature 

(°C) 

Samples Refs. 

Al/CuO ~ 520 DTA/DSC 15/5 580/560 CuO nanowires, Al 

films. 

[55] 

Al/CuO 515 DSC 10 ~ 530 Al/CuO bilayes [56] 

Al/CuO ~ 520 DTA/DSC 5 ~ 560 Al/CuO multilayers [57] 

Al/CuO ~ 500 TG/DSC 15 ~ 540 CuO nanowires 

coated with deposited 

nano-Al 

[58] 

Al/CuO ~ 520 DTA/DSC 10 ~ 566 CuO nanowires, Al 

nanoparticles 

[59] 

Al/CuO ~ 500 TGA/DSC  10 ~ 560 Al, CuO 

nanoparticles 

[60] 

Al/CuO ~ 500 DSC/TG  10 ~ 620 nanoAl, 
CuO nano-array 

[61] 

Al/CuO ~ 500 DSC 10 ~ 550 CuO/Al multilayers  [62] 

Al/CuO ~ 520 DSC 5 ~ 540 Al, CuO 

nanoparticles 

[63] 

Al/CuO ~ 500 DSC 10 ~ 560 Al, CuO  

nanoparticles 

[64] 

Al/CuO ~ 520 DSC 5 ~ 560 Al/CuO 

nanoparticles 

core-shell structures  

[65] 

Al/CuO ~ 530 DG/DSC  10 ~ 590 Al, CuO 

nanoparticles 

[66] 

Al/CuO ~ 480 DSC 10 ~ 550 Al, CuO 

nanoparticles 

[67] 

Al/CuO ~ 480 DSC 10 ~ 550 Al/CuO core/shell 

arrays 

[68] 

 



 

21 

 

Table 3. Summary of Al-based nanothermite reactions with Bi2O3, MoO3 oxidizers and with an 

associated record of the initiation temperatures. 

 
Nanothermite 

Systems 

Initiation 

Temperature Tin 

(°C) 

Techniques Temperature 

Rate  

η (K/min.) 

Exothermic 

Peak 

Temperature 

(°C) 

Samples Refs. 

Al/MoO3 

 

476 DTS 10 ~ 500 MoO3 nanoparticles,  

Al micro particles  

[69] 

Al/MoO3 ~ 500 DTS 10 ~ 550 Al/MoO3 

nanocomposites  

[70] 

Al/MoO3 ~ 520 DSC 20 ~ 560-590 Reactive multilayer 

films 

[71] 

Al/MoO3 ~ 475-515 DTA/DSC  ~ 550 nano-Al, MoO3 

nanobelts 

[72] 

Al/MoO3 ~ 520 TG/DSC 10 ~ 560 Al/MoO3 xerogel 

nanocomposite 

[73] 

Al/MoO3 ~ 440 TGA/DSC 20 ~ 520 (2D) molybdenum 

trioxide, Al 

nanoparticles 

[74] 

Al/MoO3 ~ 480 DSC 10 ~ 550 Al, MoO3 

nanoparticles 

[67] 

       

Al/Bi2O3 ~ 520 DTS 10 ~ 550 Al, Bi2O3 

nanopowders 

[75] 

Al/Bi2O3 ~ 510 TG/DTS 10 ~ 572/589 Al, Bi2O3 nanofilms [76] 

Al/Bi2O3 ~ 480 DSC 20 591 Al, Bi2O3 

nanoparticles 

[77] 

 

Al/Bi(OH)3 ~ 520 DSC 20 603 Al-Bi(OH)3 nano-

thermite  

[78] 

 

Al/Bi2O3 ~ 480 DSC 10 ~ 550 Al, Bi2O3 

nanoparticles 

[67] 
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Table 4. Summary of Al-based nanothermite reactions with Co3O4, NiO, MnO2, oxidizers and 

with an associated record of the initiation temperatures. 

 

 
Nanothermite 

Systems 

Initiation 

Temperature Tin 

(°C) 

Techniques Temperature 

Rate  

η (K/min.) 

Exothermic 

Peak 

Temperature 

(°C) 

Samples Refs. 

Al/Co3O4 ~ 520 DTA/TGA 10 574/569 Co3O4 nanowires,  

nano-Al 

[79] 

Al/Co3O4 ~ 551 DSC 10 ~ 600 Co3O4/Al core/shell 

nanowires 

[80] 

Al/Co3O4 ~ 500 DSC 10-30 ~ 560-590 Al/Co3O4 

nanothermites film 

[81] 

Al/Co3O4 ~ 500 DSC 10 ~ 560-590 the Co3O4 particles 

were embedded in 

the aluminum 

particles 

[82] 

Al/Co3O4 ~ 535 TG-DSC 10 ~ 605 Co3O4/nanoAl [83] 

Al/Co3O4 ~ 510 Magnetization 

and electrical 

resistance as a 

function 

temperature 

~ 4  Co3O4/Al nanofilms [84-

85] 

       

Al/NiO ~ 475-515 DTA/DSC 10 ~ 550 NiO nanowires, 

 Al nanopaticles  

[86] 

Al/NiO ~ 490 DSC 10 ~ 549 NiO nanowires,  

Al nanoparticles 

[87] 

Al/NiO ~ 460 DSC 20 ~ 530-565 Three-dimensionally 

ordered macroporous  

NiO/Al nanothermite 

film. 

[88] 

Al/NiO ~ 520 DSC 20 ~ 590 Nano-Al/NiO 

thermite films 

[89] 

Al/NiO ~ 516 DGA/DSC 10 ~ 535 Al/NiO thermite Film [60] 

       

Al/Mn2O3 474-518 DSC 20 563-599 Mn2O3 macroporous 

skeleton, Al films 

[90] 

MnO2/SnO2/ 

n-Al  

~520 DSC 20 600 MnO2/SnO2/n-Al 

ternary thermite 

membrane 

[91] 

 

 

 

 

 


