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Abstract

An assumption on general regularities and chemical mechanisms of solid-state reactions in
nanofilms and nanothermite mixtures is made. It is demonstrated that the moving force of all Al-
based nanothermite reactions is the synthesis of the Al,O3 phase with a high negative enthalpy of
formation. According to this assumption, all Al-based nanothermite reactions should have the
same initiation temperature Tin. Indeed, an analysis of literature data shows that the synthesis of
the Al.O3 phase in Al/Fe203, Al/CuO, Al/Co304, Al/M00Os3, Al/Bi2O3, and Al/NiO nanothermite
mixtures starts at the same temperature Tin ~ 510°C. We also demonstrate the same initiation
temperatures ~250°C, ~300°C, and ~180°C for Zr-, Mg- and In-based nanothermite reactions,
respectively. It is predicted that nanothermite reactions based on other fuels have their own

initiation temperatures.

Keywords: Solid-state reactions, Nanofilms, Nanothermite reactions, First phase, Initiation

temperature.

1. Introduction

The control and predictability of the synthesis of new materials is one of the most
fundamental challenges in material science. The traditional approach to this problem is to use the
prediction of crystal structure from first principles [1- 4]. However, now the lack of control and
predictability are indeed notorious characteristics of the synthesis of new materials [5]. The
prediction of the phases in binary systems that will be formed during the thin film solid-state
reaction has been a subject of numerous studies, and different empirical rules have been
developed for predicting first phase formation [6-14].

Studies of solid-state reactions in nanolayers have shown three fundamental features that

strongly distinguish them from bulk powders:
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(i) Formation of only the first phase at the film reagent interface at a certain temperature
Tin called the initiation (formation) temperature Tin. As the annealing temperature is increased,
other phases can occur and form the phase sequence [11-14].

(if) The threshold of the reaction, characterized by intense intermixing at the interface and
formation of compounds, arises at temperatures above the initiation (formation) temperature Tin.
The values of Tin in the first phase can be about room temperature [15, 16] or even at cryogenic
temperatures [17-20]

(i11) Migration of the dominant diffusing species through the interface during first phase
formation [13, 21, 22].

The formation of only the first phase among equilibrium phases, low initiation
temperatures, and migration of the dominant diffusing species are unique, unexplained features
of solid-state reactions in nanofilms. From the above results it follows that the first phase and its

initiation temperature Tin are control characteristics of the thin film solid-state reactions.

2. Presentation of the hypothesis

Over the past decade, investigations focused on the nanoenergetic materials, such as
reactive multilayer thin films [23, 24] and nanostructured reactive mixtures [25-27]. Thermite
mixtures belong to a wide class of energetic materials that comprise a metal fuel (e.g., Al, Mg, or
B) and an oxidizer (e.g., Fe203, M0Os, CuO, Bi203, or WO3z). These mixtures react with a lot of
heat release; therefore, the thermite reactions often occur in a self-sustaining mode [28-30].
Typical thermite mixtures contain micron particles and have a combustion wave velocity of 1-20
m/s. In recent years, there has been an increasing interest in nanothermites (superthermites)
where the particle size is reduced to a few nanometers. In nanothermite mixtures, the combustion
wave velocity grows to 1000 m/s [25-27]. Studies of nanothermite combustion are mainly aimed
at measuring the combustion wave velocity, burning temperature, delay time, and their
dependences on density, morphology, and composition of the reaction mixture. Despite the
intense investigations of thermite reactions, their general regularities and mechanisms remain
unclear. Currently, the classical nanothermite Goldschmidt reaction Fe2O3 + 2Al = Al,O3 + 2Fe
and other Al-based reactions are well studied.

In this work, we extend the existing concepts of the first phase and its initiation
temperature Tin, which describe the initial stage of solid-state reactions in nanofilms onto
thermite reactions and demonstrate that in all Al-based nanothermite mixtures the synthesis of
the Al>O3 phase starts at the same initiation temperature Tin ~ 510°C. These results open up a

way for understanding the exclusive role of the initiation temperature Ti, in the solid-state
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reactions at the nanoscale. Our previous studies and the analysis of solid-state thin film reactions
for many bilayers have shown that the initiation temperatures Tin often coincide with
temperatures Tk of structural phase transformations (Tin = Tk). In particular, initiation
temperatures Tin(Cu/Au) and Tin(Ni/Fe) of reactions in the Cu/Au and Ni/Fe bilayers coincide
with the minimum temperature of the order-disorder phase transition in Cu-Au [31] and the
eutectoid decomposition temperature in the Fe-Ni system [32], respectively. In Ni/Al and Cd/Au
films, the reactions start at the temperature of the inverse martensitic transformation in the Ni-Al
[33] and Cd-Au [34] binary systems, respectively. The equality Tin = Tk was also established for
the eutectic reactions, superionic transition, and spinodal decomposition in Al/Ge [35], Se/Cu
[36], and Mn/Ge [37, 38] films, respectively. The equality Tin = Tk indicates the common nature
of chemical interactions that control both solid-state reactions in thin films and solid-state

transformations.

3. Testing of the hypothesis

The above results demonstrate that the first phase and its temperature Tin are the
fundamental characteristics of a reaction bilayer. It follows that low-temperature reactions occur
only between the reacting layers whose reaction products have low-temperature solid-state
transformations. Therefore, the study of phase sequences in reaction couples makes it possible to
refine and supplement the phase equilibrium diagrams especially in low-temperature part. Thus,
recently we investigated the reaction in Ge/Mn bilayers and confirmed the existence of spinodal
decomposition in an in Ge-Mn system at 120°C. It is important to note that the formation of the
first MnsGes phase was independent of whether Mn and Ge atoms are in a solid solution or in
Ge/Mn bilayers [37, 38].

The one important characteristic of reactive multilayer films is the ignition temperature Tig,
which can be defined as a minimum temperature of onset of a self-sustaining reaction for a given
experiment [23, 24]. As known, the self-sustaining regime of reaction arises when the rate of
heat generation Qreaction OVercomes the rate of heat 10sses Qioss (Qreaction > Qioss). Unlike Tig, the
initiation temperature Tin is the start temperature of reactions at which the rate of heat generation
Qreaction 1S less than the rate of heat losses Qioss (Qreaction < Qioss) and so the initiation temperature
Tin is always less than the ignition temperature Tig (Tin < Tig). As discussed above the initiation
temperature Tin is the threshold temperature: no reaction below Ti, and reaction initiate just the
temperature of sample overcomes Tin. Thus, the initiation temperature Tin is the characteristic
temperature of our given reaction couple. In contrast to Tin, the ignition temperature Tig is a

kinetic quantity that depends on the heating rate and the rate of heat loss. Nevertheless, Frits et
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al. have recently shown that, similar to Tin, the ignition temperature Tig in Ni/Al multilayers with
a given bilayer thickness is a threshold temperature because in hot plate experiments the
multilayers do not ignite when the specimens are heated to temperatures just 1°C below Tig [39].

The enthalpy of formation of the first phase is a good measure of the free energy variation
during the solid-state interaction; therefore, the heats of formation were used in several initial
models to predict the first phase and phase sequence formation. Pretorius et al. [13] proposed an
effective model for the enthalpy of formation, which was successfully used for predicting the
first phase formation in many binary systems.

As mentioned above, with the increasing of the temperature of the bilayer above Tin leads
to the beginning of intermixing of the reagents and first phase synthesis on the interface and
consequently physical characteristics of the film samples, such as electrical resistance,
magnetization, transparence, and heat release, begin to radically change. Obviously, the start
temperature of these changes is the reaction initiation temperature Tin. In most cases the
energetic properties of thermite nanocomposites were investigated by differential thermal
analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry
(DSC). In this case the initiation temperature Tiy is the temperature at which heat release starts.
An important characteristic of the DSC curves is also the exothermic peak temperature, which,
unlike the initiation temperature Tin, depends on the heat removal conditions from the reaction
zone.

It is important to note that the contaminants that form on the reagent interface during
various methods of sample preparation (especially for chemically produced samples) can form
thin barrier layers that slightly change the initiation temperature of Tin but do not suppress the
reaction. An error in finding the exact value of the initiation temperature Tin can also follow from
the certain inaccuracy in determining Tin from DTA, TGA and DSC plots. To find the exact Tin
value, low heating rates are required. Therefore, we referred only to the studies in which the heat
release curves were obtained at minimum heating rates (5,10 or 20 °C/min).

The main results of the work are summarized in the schematic diagram in Figure 1,
showing the initiation temperature Tin ~ 510°C of the Al2Osz phase in Al/Fe203, Al/C030s4,
Al/NiO, Al/MnO, Al/Bi20s, Al/CuO, Al/MoOs nanothermite reactions and oxidation of Al

nanomaterials.

3. Implication of the hypothesis

3.1. The initiation temperature Tin ~ 510°C of the Al-based nanothermite reactions



It can be seen from Tables 1 — 4 that, taking into account the errors in measuring the DTA,
TGA, DSC curves, and magnetic and resistivity plots by different authors, the initiation
temperatures of all Al-based nanothermite reactions are centered around ~ 510 °C. As can be
seen from Tables 1- 4, at heating rates 5, 10, 20 °C/min the heat release curves also have closely
exothermic peak temperatures. It must be noted that at a heating rate of 5 °C/min, the oxidation
of nanosized aluminum powders also starts at about 510 °C [60, 92-100]. Recently it was shown
that the DSC curves of the NiCo204/Al core-shell nanowires thermite film [101] and three-
dimensional ordered macroporous NiFe;O4/Al nanothermites [102] have an exothermic peak
with an initiation temperature ~ 530°C and an exothermic peak temperature ~ 600°C. This
unambiguously proves, that the synthesis of Al>Os is the driving force of the thermite reaction
8Al + 3Ni(Co or Fe)20s4 — 4A1,03 +3Ni + 6(Co or Fe) in the NiCo204/Al and NiFe;O4/Al
nanocomposites.

These results suggest the following reaction mechanism: below the initiation temperature
Tin < ~ 510 °C, Al and O atoms remain chemically neutral. At Tin > ~ 510 °C, strong chemical
interactions occur between Al and O atoms that break old chemical bonds causing the directed
atomic migration to the reaction zone and the synthesis of Al>Oz regardless of the system they
exist in. Therefore, the initiation temperature Tin ~ 510 °C is a universal parameter of all Al-

based nanothermite reactions.

3.2. The initiation temperature Tin ~ 250 °C of the Zr-based nanothermite reactions

The driving force of the Zr-based nanothermite reactions is the formation of the ZrO;
phase, which has a relatively high negative enthalpy of formation (AHf = -601 kJ/mol). The
analysis of the synthesis of Co-ZrO; and Fe- ZrO, ferromagnetic nanocomposites show, that
thermite reactions in the Zr/Coz04 [103] and Zr/Fe,O3 [104] thin films have the same initiation
temperature Tin (Zr/C0304) = Tin(Zr/Fe203) ~ 250 °C. This value Tin ~ 250 °C is in agreement
with the initiation temperature Tin(Zr/CuO) ~ 250 °C in the Zr/CuO nanothermite mixture [105]
and with the study where the ZrO» nanoparticles were obtained by glycothermal processing
[106]. From these facts we predict the same initiation temperature Tin ~ 250 °C for all the Zr-

based nanothermite reactions.

3.3. The initiation temperature Tin ~ 450 °C of the Mg-based nanothermite reactions

The driving force of the Mg-based nanothermite reactions is the synthesis MgO phase

having a high negative enthalpy of formation (AHs = -1097 kJ/mol) with some low enthalpy of
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formation of Al2O3 (AHf = -1676 kJ/mol). Using the results of this paper [105], we determined
that the thermite multilayer Mg/CuO stacks the initiation temperature Tin(Mg/CuQ) ~ 450 °C.
The nearest value of the initiation temperature has nanoenergetic Mg/CuO core/shell arrays,
which exhibit an onset reaction temperature (~ 450 °C) [107]. The initiation temperatures are
close to ~ 450 °C in fresh CuO/Mg/fluorocarbon nanoenergetic composites [108] and pm-
Mg/nmCuO thermite mixtures prepared by physical and ultrasonic mixing [109]. Magnesium
particles with a nominal size of 6 pm begin an intensive oxidation above 500 °C, which suggests
that the starting temperature of the oxidation of nanosized magnesium powders is below 500 °C
[110]. In these papers the initiation temperature Ti, was defined as the temperature at which heat
release started using the curves of differential thermal analysis (DTA), thermogravimetric
analysis (TGA), and differential scanning calorimetry (DSC). Although the exact value of the
initiation temperature of Mg-based nanothermite reactions remains unknown, it lies around
450 °C.

3.4. The initiation temperature Tin ~ 180 °C of the In-based nanothermite reactions

Recently, we have demonstrated a new way to synthesize ferromagnetic Fe-InO3 and Co-
In203 nanocomposite thin films using the new thermite reactions Fe;Oz + 2In = In203 + 2Fe
[111] and 3C0304 + 8In + 41n203 + 9Co [112] which starts above the initiation temperature Tin =
180 °C - 190 °C with the predominant formation of the Fe, Co and In,O3 phases. In [113] the
general strategy of the fabrication of metal oxide films has been proposed. The choice of suitable
combustion precursors, containing indium nitrates as oxidizers and urea or acetyl acetone as fuel,
were used for the low-temperature fabrication of In,Oz films. The initiation temperatures of
combustion reactions, measured from DTA and DSC curves, are in the range 175 °C - 200 °C
[113-115]. Our studies of the self-sustaining oxidation of In films have shown that the initiation
temperature is ~ 180 °C [116]. The emergence of a strong chemical interaction between the In
and O atoms above 180 °C may be the cause of rapid crystallization of amorphous In203 films
within the temperature range 165-210 °C [117, 118]. The above data suggests that for the In-
based nanothermites, oxidation of In and temperature crystallization of amorphous 1n203 films
should have the same initiation temperature Tin ~ 180 °C.

It is worth noticing that all nanothermite reactions have low initiation temperatures and
occur in the solid state (excluding In-based reactions). On the conceptual level, the initiation
temperatures are ignored in modern models described the thin-film solid-state reactions. In
contrast to this, our approach assumes the decisive role of the leading (first) phase and its

initiation temperature not only in thermite reactions but also in other types of chemical reactions.
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Progress in understanding and predicting the structural transformations and reactions in the
solid state is limited by a lack-of-knowledge inference about the chemical interactions at
nanoscale. Undoubtedly, future investigations of thin-film solid-state reactions and nanothermite

reactions will discover new amazing properties of chemical interactions in solids.

4. Conclusions

The main concepts of this study are the first phase and its initiation temperature Tin, which
describe thin-film solid-state reactions and were extended onto nanothermite reactions. The
paper results prove that all Al-based nanothermite reactions have the same initiation temperature.
The analysis of the initiation temperatures reported in the literature and our data has shown that
the synthesis of the Al.Oz phase in Al/Fe20s3, Al/CuO, Al/Co304, Al/M0Os3, Al/Bi20Os, AI/NiO
and Al/Mn.O3 nanothermite mixtures starts at a temperature of about 510 °C. The same initiation
temperatures ~250 °C, ~450 °C, and ~180 °C also have Zr-, Mg- and In-based nanothermite
reactions, respectively. Finally, these findings predict that nanothermite reactions based on other
fuels (e.g., Ti and B) must have their own initiation temperatures. This approach can be widely

applicable in the study of the multicomponent thin-film solid-state reactions.
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Figure 1. The schematic illustration of the initiation temperature Tin ~ 510 °C for the Al-based
nanothermite reactions with Fe;O3, C0304, NiO, MnO3, Bi»O3z, CuO, M0Os3 oxidizers and the
oxidation of Al nanomaterials. The initiation temperature Tin ~ 510 °C is characteristic of the
leading Al>O3 phase, which has a high negative enthalpy of formation (AHf = -1676 kJ/mol) and

is the driving force of all the Al-based nanothermite reactions.

Table 1. Summary of Al-based nanothermite reactions with Fe-Oz oxidizer and with an

associated record of the initiation temperatures.

Table 2. Summary of Al-based nanothermite reactions with CuO oxidizer and with an

associated record of the initiation temperatures.

Table 3. Summary of Al-based nanothermite reactions with Bi>Os, MoO3 oxidizers and with an

associated record of the initiation temperatures.

Table 4. Summary of Al-based nanothermite reactions with Co304, NiO, MnOg, oxidizers and

with an associated record of the initiation temperatures.
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Figure 1. The schematic illustration of the initiation temperature Tin ~ 510 °C for the Al-based
nanothermite reactions with Fe;O3, C0304, NiO, MnO3, Bi»O3, CuO, MoOz oxidizers and the
oxidation of Al nanomaterials. The initiation temperature Tin ~ 510 °C is characteristic of the
leading Al2O3 phase, which has a high negative enthalpy of formation (AHs = -1676 kJ/mol) and
is the driving force of all the Al-based nanothermite reactions.
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Table 1. Summary of Al-based nanothermite reactions with Fe;Oz oxidizer and with an
associated record of the initiation temperatures.

Nanothermite | Initiation Techniques Temperature | Exothermic Samples Refs.
Systems Temperature Tin Rate Peak
(°C) 1 (K/min.) Temperature
O

Al/Fe;0s ~ 490 DSC 10 ~530 Fe,03/Al xerogel [40]
nanocomposites

Al/Fe;0s ~530 TGA/DSC 10 ~ 550 Fe,03/Al xerogel [41]
nanocomposites

Al/Fe;03 ~510 DSC 10 588 Fe,O3 nanotubes, [42]
Al nanocomposites

Al/Fe;03 ~520 DSC 10 ~ 545 Fe,O3 nanoporous [43]
particles,
Al powder

Al/Fe;0s ~ 520 DSC 20 548 Fe20s/Al [44]
nanothermite
membranes.

Al/Fe;03 ~ 530 Magnetization | > 10 Fe,O3/Al bilayers. [45]

Vs temperature

Al/Fe;0s ~525 TGA/DSC 8-30 ~590 Fe20s/Al [46]
nanothermite
membranes

Al/Fe;03 507-508 TGA/DSC 10 ~590 Fe>0s, Al [47]
nanoparticles

Al/Fe;03 ~ 520 TGA/DTA 20 ~ 620 Al/Fe;03 [48]
nanothermite film

Al/Fe;03 ~ 490 TGA/DTA 10 ~570 Porous Core/Shell [49]
Structure Fe,O3/Al

Al/Fe;03 ~ 490 DSC 10 ~570 core—shell structured | [50]
AI@Fe203
nanothermite

A|/F6203 ~ 500 DSC 20 ~ 550 A|@F6203 [51]
nanocomposites

Al/Fe;03 ~ 500 TGA/DSC 10 ~590 Al/Fe;0s/MWCNT [52]
nanostructured
energetic materials

Al/Fe;0s ~ 480 DSC 20 ~ 560 nanostructured [53]
energetic materials
sol-gel-Al/Fe;03

Al/Fe;0s 504-525 DSC/TG 5 546-569 n-Al/n-Fe;0s [54]

nanothermite
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Table 2. Summary of Al-based nanothermite reactions with CuO oxidizer and with an associated
record of the initiation temperatures.

Nanothermite | Initiation Techniques Temperature | Exothermic Samples Refs.
Systems Temperature Tiq Rate Peak
(°C) N (K/min.) Temperature
O

Al/CuO ~520 DTA/DSC 15/5 580/560 CuO nanowires, Al [55]
films.

Al/CuO 515 DSC 10 ~ 530 Al/CuO bilayes [56]

Al/CuO ~ 520 DTA/DSC 5 ~ 560 Al/CuO multilayers [57]

Al/CuO ~500 TG/DSC 15 ~ 540 CuO nanowires [58]
coated with deposited
nano-Al

Al/CuO ~520 DTA/DSC 10 ~ 566 CuO nanowires, Al [59]
nanoparticles

Al/CuO ~ 500 TGA/DSC 10 ~ 560 Al, CuO [60]
nanoparticles

Al/CuO ~ 500 DSC/TG 10 ~ 620 nanoAl, [61]
CuO nano-array

Al/CuO ~ 500 DSC 10 ~ 550 CuO/Al multilayers [62]

Al/CuO ~ 520 DSC 5 ~ 540 Al, CuO [63]
nanoparticles

Al/CuO ~ 500 DSC 10 ~ 560 Al, CuO [64]
nanoparticles

Al/CuO ~ 520 DSC 5 ~ 560 Al/CuO [65]
nanoparticles
core-shell structures

Al/CuO ~ 530 DG/DSC 10 ~ 590 Al, CuO [66]
nanoparticles

Al/CuO ~ 480 DSC 10 ~ 550 Al, CuO [67]
nanoparticles

Al/CuO ~ 480 DSC 10 ~550 Al/CuO core/shell [68]
arrays
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Table 3. Summary of Al-based nanothermite reactions with Bi>O3, M0oOs oxidizers and with an
associated record of the initiation temperatures.

Nanothermite | Initiation Techniques Temperature | Exothermic Samples Refs.
Systems Temperature Tiq Rate Peak
(°C) N (K/min.) Temperature
O

Al/MoOs3 476 DTS 10 ~500 MoOs3 nanoparticles, | [69]
Al micro particles

Al/Mo0Os ~ 500 DTS 10 ~ 550 Al/Mo0Os [70]
nanocomposites

Al/M0Os ~ 520 DSC 20 ~560-590 Reactive multilayer [71]
films

Al/Mo0Os ~ 475-515 DTA/DSC ~ 550 nano-Al, MoOs [72]
nanobelts

Al/MoOs3 ~ 520 TG/DSC 10 ~ 560 Al/MoO3 xerogel [73]
nanocomposite

Al/MoOs3 ~ 440 TGA/DSC 20 ~ 520 (2D) molybdenum [74]
trioxide, Al
nanoparticles

Al/Mo0Os ~ 480 DSC 10 ~ 550 Al, MoO3 [67]
nanoparticles

Al/Bi,03 ~ 520 DTS 10 ~ 550 Al, Bi;Os [75]

nanopowders

Al/Bi,03 ~510 TG/DTS 10 ~572/589 Al, Bi;Os nanofilms | [76]

Al/Bi,03 ~ 480 DSC 20 591 Al, Bi;Os [77]
nanoparticles

Al/Bi(OH);3 ~ 520 DSC 20 603 Al-Bi(OH)s nano- [78]
thermite

Al/Bi,03 ~ 480 DSC 10 ~ 550 Al, Bi;Os [67]

nanoparticles
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Table 4. Summary of Al-based nanothermite reactions with CozOs, NiO, MnO2, oxidizers and
with an associated record of the initiation temperatures.

Nanothermite | Initiation Techniques Temperature | Exothermic Samples Refs.
Systems Temperature Tin Rate Peak
(°O) 1 (K/min.) Temperature
O
Al/C0304 ~ 520 DTA/TGA 10 574/569 Co304 nanowires, [79]
nano-Al
Al/C0304 ~551 DSC 10 ~ 600 Co304/Al core/shell [80]
nanowires
Al/C0304 ~ 500 DSC 10-30 ~560-590 Al/C030, [81]
nanothermites film
Al/C0304 ~500 DSC 10 ~560-590 the Co304 particles [82]
were embedded in
the aluminum
particles
Al/C030,4 ~ 535 TG-DSC 10 ~ 605 Co304/nanoAl [83]
Al/C030, ~ 510 Magnetization | ~ 4 Co304/Al nanofilms | [84-
and electrical 85]
resistance as a
function
temperature
AI/NIO ~ 475-515 DTA/DSC 10 ~ 550 NiO nanowires, [86]
Al nanopaticles
AI/NiIO ~ 490 DSC 10 ~ 549 NiO nanowires, [87]
Al nanoparticles
Al/NiO ~ 460 DSC 20 ~ 530-565 Three-dimensionally | [88]
ordered macroporous
NiO/Al nanothermite
film.
AIl/NiIO ~ 520 DSC 20 ~590 Nano-Al/NiO [89]
thermite films
AIl/NiO ~ 516 DGA/DSC 10 ~535 AI/NiO thermite Film | [60]
Al/Mn,03 474-518 DSC 20 563-599 Mn,O3 macroporous | [90]
skeleton, Al films
Mn0O2/Sn02/ | ~520 DSC 20 600 MnO./SnO2/n-Al [91]
n-Al ternary thermite

membrane
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