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Abstract

We study behavior of resonant modes with a distance be-
tween two dielectric resonators shaped as cylinders and
disks. We reveal two basic scenarios of evolution of res-
onances with the distance between the cylinders. For larger
distances and respectively weaker interaction of particles
the resonances are bound around the resonances of isolated
resonators and evolve by spiral way. For shorter distances
and respectively stronger interaction the resonances bypass
the isolated resonances. Both scenarios demonstrate con-
siderable enhancement of the () factor compared to the case
of isolated particle.

1. Introduction

It is rather challenging for optical resonators to support res-
onances of simultaneous subwavelength mode volumes and
high @ factors. The traditional way for increasing the @)
factor of optical cavities is a suppression of leakage of res-
onance mode into the radiation continua. That is achieved
usually by decreasing the coupling of the resonant mode
with the continua by the use of metals, photonic band gap
structures, or whispering-gallery-mode resonators. All of
these approaches lead to reduced device efficiencies be-
cause of complex designs, inevitable metallic losses, or
large cavity sizes. On the contrary, all-dielectric subwave-
length nanoparticles have recently been suggested as an
important pathway to enhance capabilities of traditional
nanoscale resonators by exploiting the multipolar Mie res-
onances being limited only by radiation losses [1, 2].

The decisive breakthrough came with the paper by
Friedrich and Wintgen [3] which put forward the idea of
destructive interference of two neighboring resonant modes
leaking into the continuum. Based on a simple generic two-
level model they formulated the condition for the bound
state in the continuum (BIC) as the state with zero resonant
width for crossing of eigenlevels of the cavity or avoided
crossing of resonances. This principle was later explored
in open plane wave resonator where the BIC occurs in the
vicinity of degeneracy of the closed integrable resonator
[4].

However, these BICs exist provided that they embedded
into a single continuum of propagating modes of a direc-
tional waveguide. In photonics the optical BICs embedded
into the radiation continuum can be realized by two ways.
The first way is realized in an optical cavity coupled with

the continuum of 2d photonic crystal (PhC) waveguide [5]
that is an optical variant of microwave system [4]. Alterna-
tive way is the use periodic PhC systems (gratings) or arrays
of dielectric particles in which resonant modes leak into a
restricted number of diffraction continua [6, 7, 8, 9, 10].
Although the exact BICs can occur only in infinite peri-
odical arrays, the finite arrays demonstrate resonant modes
with the very high @ factor which grows quadratically [11]
or even cubically [12] with the number of particles (quasi-
BICs). Even arrays of five dielectric particles demonstrate
the @) factor exceeding the () factor of individual particle
by six orders in magnitude [13].

Isolated subwavelength high-index dielectric resonators
are more advantageous from an applied point of view
to achieve high @ resonant modes (super cavity modes)
[2, 14, 15]. Such super cavity modes originate from avoided
crossing of the resonant modes, specifically the Mie-type
resonant mode and the Fabry-Pérot resonant mode under
variation of the aspect ratio of the dielectric disk which
could result in a significant enhancement of the ) factor. It
is worthy also to notice the idea of formation of long-lived,
scar like modes near avoided resonance crossings in optical
deformed microcavities [16]. The dramatic () factor en-
hancement was predicted by Boriskina [17, 18] for avoided
crossing of very highly excited whispering gallery modes
in symmetrical photonic molecules of dielectric cylinders
on a surface. In the present paper we consider a simi-
lar way to enhance the () factor by variation of the dis-
tance between two identical dielectric cylinders and coax-
ial disks as sketched in Fig. 1. As different from papers
[16, 17, 18, 19, 20] we consider the avoided crossing of low
excited resonant modes (monopole, dipole and quadruple)
with variation of the distance between two cylinders. Be-
cause of lifting of the axial symmetry many Mie resonances
contribute into the resonances of two cylinders which show
two basic scenarios of evolution with the distance, bound to
the Mie resonances and unbound. The same scenarios show
the resonances of two coaxial dielectric disks however with
those difference that for small distance between them there
might be avoided crossing of different resonances of the
isolated disk.
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Figure 1: Two parallel dielectric cylinders (a) and coaxial
disks (b)

Figure 2:

2. Avoided crossings under variation of the
distance between two cylinders

The problem of scattering of electromagnetic waves from
two parallel infinitely long dielectric cylinders sketched in
Figs. 2 was solved long time ago in papers [21, 22, 23].
The solutions for electromagnetic field, the component of
electric field directed along the cylinders ¥ = E, outside
the cylinders are given by
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By means of the Graf formula [24]
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Figure 3: The behavior of resonant frequencies vs the dis-
tance between cylinders. Open green circles correspond
L = 1000a, closed red circles correspond to minimal dis-
tance L = 2a, where a is the radius of cylinders and black
crosses are the Mie resonances shown in the next Fig. 4.

the total field ¥ = ;. +1 +1)2 can be written completely
in the coordinate system of either cylinder.

Applying the boundary conditions at r; = a leads to
[21, 23]

Ay =1i"Sp(k) Y, 0 " Hyqm (kL) Agp,
Agp = ln5n<k) Zm i n-‘rm(kL)Alm (7

where S,, are the scattering matrix amplitudes for the iso-
lated cylinder
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The resonances are given by the complex roots of the fol-
lowing equation

Sn (k)

Det[M? —1] =0 )
where matrix elements M is given by Eq. (7) and equal
M = S (k)i ™" Hyp i (kL) (10)

and [ is the unit matrix. In what follows the dimensionless
complex eigenvalues k are measured in terms of ¢/a where
c is the light velocity and a is the radius of cylinders and L
is measured in terms of a. .

In general Eq. (9) has an infinite number of complex
resonant frequencies k,, = k,, — ¢y,. The total view of
the dependence of resonant eigenvalues is shown in Fig.
3 which demonstrates complicated evolution of resonant
poles against the distance between the cylinders. First of
all one can see the major part of the resonances are un-
bound bypassing the Mie resonances of the isolated cylin-
der marked by crosses which are collected in Fig. 4. Sec-
ond, there are a small part of resonances which are bound
around the Mie resonances with smaller imaginary parts.
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Figure 4: The Mie resonant complex eigenfrequencies
(close circles) and corresponding resonant modes (the com-
ponent E,) of isolated cylinder.

Let us consider the asymptotic behavior of resonances
for L — oco. By use of asymptotical behavior of the Hankel
functions [25] we have for matrix (10) the following

2 .
~ i(kL—m/4) —1)"™. 11
Mn \/ WkLe Sm<k)( ) (1)

—~ =
Let us take the eigenvector of matrix M T
(1,19,1s3,...). Then Eq. (9) takes the following form

2 ikL n .
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which has the solution provided that

2 kL
—e' —-1)"S, (k) = £1. 13
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For the absolute value we have
2¢2nL 1
° (14)

kL~ [, (—1)" S, (k)2

where v, = —Im(k,). The resonances of the isolated
cylinder are given by poles of the S-matrix, i.e., by equa-
tion ﬁ = 0. Therefore from (14) it follows that, first,
the resonances of two cylinders do not converge to the res-
onances of the isolated cylinder. Second, because of finite
value of right hand side of Eq. (14) the line widths and res-
onance positions limit to zero at L — oo. Therefore we can
conclude that the resonances of two dielectric cylinders do
NOT limit to the Mie resonances of the isolated cylinders
at L — oo. The reason is related to to the exponential fac-
tor exp (v, L) of the resonant modes (the Gamov states) at
large distances between the cylinder.

Next, we consider the behavior of some typical reso-
nances in Fig. 4 in detail from the limiting case L = 2a
to L = 1000a. Due to the symmetry of the system rela-
tive to x — —x and y — —y the resonant modes can be
classified as 1).,+ where the indices o = s, a correspond to
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Figure 5: Evolution of resonant frequencies and monopole
resonant modes 9/, (a) and the @) factors (b) with the
distance between the cylinders. Solid/dash lines show sym-
metric/antisymmetric resonant frequencies. Closed circles
correspond to L = 2a, open circles correspond to L =
1000a and cross corresponds to the monopole Mie reso-
nance 1.

the symmetric and antisymmetric modes respectively. We
start with the first two lowest symmetric and antisymmetric
monopole resonant modes ¥, /4.

The quality factor is most commonly defined as the
ratio of the stored energy in the resonator over the dis-
sipated energy per optical cycle Q = kW/P,ss where
W is the stored energy, and Pj,ss represents the power
losses. When the stored energy dissipates through radi-
ation of the resonant mode with complex eigenfrequency
kn = kn, — iy, we observe exponential decay of the
stored energy W = Wy exp(—2v,t). Therefore the ra-
diation power Pj,ss = —dW/dt = 2, W that allows to
find the quality factor directly from the eigenfrequency as
Q = kn,/2v,. Fig. 5 (b) shows that the ) factor of the
antisymmetric monopole resonance exceeds the () factor
of the isolated cylinder by one order in magnitude. The
reason for that follows from the Mie resonances shown in
Fig. 4. As seen from Fig. 5 (a) at the closest distance be-
tween the cylinders L = 2a the symmetric resonant mode
becomes the monopole mode with corresponding () factor
close to the () factor of isolated cylinder which is rather
low as marked by cross in Fig. 5 (b). At the same time the
antisymmetric mode of two cylinders at L = 2a becomes



Figure 6: The same as in Fig. 5 for the dipole resonant
modes 5.5/, symmetric relative to x — —x. Cross marks
the Mie resonance (a) and respectively () factor of the iso-
lated cylinder (b).

the dipole resonance which as seen from Fig. 4 has the @
factor exceeding the () factor of the monopole Mie reso-
nance by one order in magnitude. The next resonances
illustrate that the evolution of resonances strongly depend
on interaction between the cylinders via the radiating Mie
resonances. The general expressions and physical origin
of the coupling of dielectric resonators was considered in
Refs. [26, 27, 28]. The coupling constant can be written as

[27]
K= /dv[e(?) - 1]Bfﬁg

15)

where BLQ are normalized solutions by the factor

V[ 6(?)|3172|2d’0. Here the indices 1 and 2 imply the

resonant modes of the corresponding dielectric particles.
The coupling constant is determined by overlapping of res-
onant modes which in turn depend on the distance between
the particles and prevailing direction of radiation of the
modes.

That conclusion is well illustrated by the Mie dipole res-
onant modes which are degenerate. The first dipole Mie
resonant mode, symmetric relative to x — —x, radiates
prevalently towards the neighboring cylinder as shown in
insets in Fig. 6 while the second antisymmetric dipole Mie
resonant mode radiates away from the neighboring cylinder
as shown in insets of Fig. 7. As a result the interaction in
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Figure 7: The same as in Fig. 6 for the dipole resonant
modes 14,5/, antisymmetric relative to x — —x.

former case turns out stronger compared to the latter case
as it follows from Eq. (15). That explains why the evolu-
tion of resonances shown in Fig. 6 (a) is similar to the case
of interaction via the monopole resonant modes in Fig. 5
while the evolution of resonances in Fig. 6 is bound to the
Mie dipole resonance 2 as seen from Fig. 7 (a). Respec-
tively the gain in the () factor in the former case is smaller
than in the latter case as seen from Fig. 7 (b).

With further increase of the distance L the resonance
bypasses the monopole Mie resonance 1 of the isolated
cylinder. As a result the solution of the Maxwell equa-
tions becomes close to the resonant mode 1,.s/,. That
rule for the solutions when the resonances bypass the Mie
resonances is fulfilled for all other resonances as one can
see from Fig. 8. Similar evolution scenarios can be ob-
served for the quadruple resonances shown in Fig. 9 (a).
In this case the Mie resonant mode radiates from one cylin-
der to another that gives rise to interaction between cylin-
ders stronger than the case of the modes 1,5/, shown in
Fig. 9 (c). Both cases result in interaction weaker than the
case of dipole Mie resonances. As a result in both cases
one can observe that the resonances are bound around the
Mie quadruple resonance 3 shown in Fig. 4 for distances
from L = 2a to L = 350a. However, in the first case of
stronger interaction between the cylinders the resonances
s;s/a 20 away from the initial Mie resonance 3 and conse-
quently go to zero bypassing the Mie resonance 2 as seen in
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Figure 8: Evolution of symmetric and antisymmetric hy-
bridizations of higher Mie dipole resonant modes (a) and
respective ( factors (b) with the distance.

Fig. 4. meanwhile in the second case of weaker interaction
the resonances ¢4/, remain bound around the quadruple
Mie resonance 3 as shown in Fig. 9 (c). The dependence of
the @ factor on L is shown in Fig. 9 (b) and (d).

3. Avoided crossings in system of two coaxial
disks

The system of two parallel dielectric cylinders has advan-
tage of analytical consideration of the resonances by means
of Egs. (9) and (10). However in actual design the cylin-
ders will have finite length that substantially complicates
equations for the resonant frequencies [29]. The system of
two coaxial disks sketched in Fig. 1 (b) is practically more
preferable. On the one hand the system preserves the ax-
ial symmetry that allows to separate the azimuthal angle ¢
and consider the resonances with fixed azimuthal index m.
Experimentally disks are to be fixed by a special holder.
However in the GHz range the holder from a Styrofoam
material with a permittivity close 1.1 compared to the per-
mittivity of ceramic disks around 40 only slightly disturb
the axial symmetry [11]. If to restrict ourselves by by the
sector m = ( the resonances can be excited by coaxial loop
antenna [11] that is the present subject of consideration. For
the case m = 0 the solutions are separated by polarization
with H, = 0 (E modes) and £, = 0 (H modes). In what
follows we consider the H-modes. In general the resonant
modes and their eigenfrequencies are given by solving the
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Figure 9: The evolution of quadruple resonant modes under
vs the distance. Crosses mark the Mie resonances shown in
Fig. 4. Red closed circle marks the case of the smallest dis-
tance and open green circle marks the distance L = 1000a.

time-harmonic source-free Maxwell’s equations [30, 31]

(e W) () =m () 0o

where E,, and H,, are the EM field components defined in
Ref. [31] as quasinormal modes which are also known as

E,
H,

E,
H,
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Figure 10: The resonant eigenfrequencies (close circles)
and corresponding resonant modes (the component E of
isolated dielectric disk with the height h = a and permit-
tivity € = 40.
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Figure 11: (a) The behavior of resonant eigenfrequencies
under variation of the distance between the disks L with
the € = 40,a = h. (b) and (d) zoomed areas highlighted
in (a) with symmetric (solid lines) and antisymmetric (dash
lines) resonant modes. (c) and (e) show the behavior of
the @) factor vs the distance for corresponding insets at the
left. Closed circles mark the eigenfrequencies of isolated
disks and respectively the () factors while crosses mark the
limiting case L = h when two disks stick together.

resonant states [32, 33] or leaky modes [34]. It is impor-
tant that they can be normalized and the orthogonality rela-
tion can be fulfilled by the use of perfectly matched layers
(PMLs) [31]. With the exception of very restricted number
of symmetrical particles Eq. (16) can be solved only numer-
ically. The eigenfrequencies are complex k,a = w, + iy,
where a is the disk radius. In what follows the light velocity
is taken unit. Fig. 10 shows resonant frequencies of the iso-
lated disk complimented by insets with the resonant modes
(only the component E is shown). There are modes with
nodal surfaces crossing the z-axis and the modes with nodal
surfaces crossing the plane z = 0. They correspond to the
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Fabry-Perot resonant modes and the radial Mie modes by
the terminology introduced in paper [14].

Fig. 11 shows the solutions of Eq. (16) for the case of
two coaxial dielectric disks as dependent on the distance L
between the disks. The necessity to use PMLs restricts the
distance between the disks which is to be considerably less
than the distance between the PMLs in the z-direction.

In spite of an illusive complexity in Fig. 11 the zoomed
pictures reveal remarkably simple behavior of resonant fre-
quencies in the form of a spiral convergence of the eigen-
frequencies to the resonant frequencies of the isolated disk
marked by closed circles. However, when the disks ap-
proach close enough to each other the spiralling behavior
is replaced by strong repulsion of resonant frequencies be-
cause of interaction enhancement.

In order to quantitatively evaluate this interaction we
start consideration with an isolated disk for which the ma-
trix of derivatives in Eq. (16) becomes diagonal with the
complex eigenfrequencies k,, in the eigenbasis presented in
Fig. 10. It is reasonable to assume that for enough separa-
tion between disks the matrix is still diagonal with pairs of
degenerate k,, shown in Fig. 11 by blue closed circles. As
the distance between the disks is reduced the interaction be-
tween the disks via the resonant modes splits the degenerate
resonant modes k,, giving rise to an avoided crossing. We
also assume also that the value of splitting much less than
the distance between the different k,,. These assumptions
are justified numerically as shown in insets of Fig. 11, how-
ever, for only in definite domains of the frequency % around
the resonances of the isolated disk where spiral behavior of
the resonant frequencies takes place. In the framework of
these assumptions we can use two-level approximation for
the Hamiltonian matrix in Eq. (16) for each resonance k&,

[16, 15, 31]
(n) _ 17(0) _( kpa O Uy Up
HeffHeff+V< 0 m)*( Vn U >
(17)

where v, is responsible for interaction between the disks
via the resonant modes while wu,, is the result of the
backscattering by the first disk. Therefore one can expect
that arg(v,) = wpL/a, arg(u,) = 2w,L/a. Fig. 12
shows the behavior of the absolute value and phase both of
the matrix elements. The matrix elements v,, and u,, can be
easily found from numerically calculated resonances shown
in Fig. 11

Ea = ka4 uy, + Uns

a,s

(18)

k() 4 g (m)

k() g .
aSVp = St Uy = gt — k,,. From Fig. 12 one

can evaluate that the interaction term in (17)
ikn L

L2

621knL

L4

e

Un ~ y Un ™~ (19)
The distance behavior (19) is observed with a good accu-
racy for all resonances shown in Fig. 12, however, for only
spiral convergence of the resonances. Numerically calcu-
lated behavior of the matrix elements v,, and u,, for n = 2

is shown in Fig. 12. In spiralling around the resonances
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Figure 12: Dependence of the matrix elements v,, and wu,,
on the distance between disks L.

of the isolated disk the hybridized resonant eigenmode is
given by symmetric and antisymmetric combinations of the
resonant modes of the isolated disk

YoalP) = Un(P — 5122) (P + 512.) (20)
where € is the unit vector along the z-axis and 1%(7)
are the corresponding resonant modes of the isolated disk
shown in the insets in Fig. 10.

At first the resonant frequencies slowly spiral away
from the limiting point given by k,. Respectively the @
factor in Fig. 11 (c) demonstrates oscillating behavior ex-
ceeding the @ factor of the isolated disk a few times. As
the disks approach each other the spiral behavior of the
pair of resonances k&”a) is replaced by strong repulsion as
shown Fig. 11 (b). Fig. 11 (d) shows a remarkable feature
caused by the avoided crossing of resonances with different
n. To be specific there is an avoided crossing of symmet-
ric resonances kg) and k:gS) according to enumeration in
Fig. 10. Because of the same symmetry these resonances
undergo typical avoided crossing with a considerable de-
crease of the imaginary part of the resonant frequency and
correspondingly enhancement of the () factor by one order
in magnitude. Respectively the two-mode approximation
(17) breaks down.

It is interesting to trace the behavior of resonances and
the () factors for the aspect ratio i = 1.0395a and € = 40
for which the isolated disk shows the maximal () factor.
The results are presented in Fig.13. One can see that with
decrease of the distance between the disks we have the same
spiralling behavior of the hybridized resonances around the
resonances of the isolated disks which is terminated by
strong repulsion of the symmetric and antisymmetric reso-
nances for L — h. However, we don’t see a pronounced
effect of the avoiding crossing of hybridized resonances
with different n and respectively have no enhancement of
the () factor by one order in magnitude as it was achieved
for the aspect ratio a/h = 1 (see Fig. 12 (e)). With ac-
count of material losses the () factor is to be corrected via
the relation é = 21?21((% + tand where tand = ¢ /€
is result of material losses given by the imaginary part of
the permittivity ¢ = ¢ — ie . For ceramic disks with
€ =40,tand = 2.5 x 10~4 and therefore ¢ = 0.01 [11].
In Fig. 13 (c) and (e) we show that even small material
losses become important for enhancement of the () factor.
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Figure 13: (a) Behavior of resonant eigenfrequencies under
variation of the distance between the disks L with ¢ = 40
(ceramics in THz range) and the aspect ratio a/h = 0.7. (b)
and (d) zoomed areas highlighted in (a) by red rectangles
with symmetric (solid lines) and antisymmetric (dash lines)
hybridized resonant modes (20) of. (c) and (e) show be-
havior of the Q factor vs the distance. Closed circles mark
the eigenfrequencies of isolated disks and respectively the
@ factors while crosses mark the limiting case L = a when
the two disks stick together. Dotted lines show the behavior
of the () factors with account of material losses in ceramic
disks with tan§ = 2.5 x 10~* in THz range [11]

Up to now we considered the permittivity e = 40 and
a = lem (ceramic disks) that enters the resonant frequen-
cies into the THz range. Finally, we consider e = 12 (sil-
icon disks) and a = h = 1lum with the resonant frequen-
cies in the infrared range A = 1.2um where material losses
are extremely small [35]. Results of computations are pre-
sented in Fig. 14 which shows that there is no qualitative
difference between the ceramic disks with e = 40 and sil-
icon disks with e = 12. Similar to Fig. 11 and Fig. 13
we observe spiral behavior of the resonant frequencies for
the enough distance between the disks. But what is more
remarkable we also observe an avoided crossing of the res-
onances with different indices as shown in Fig. 14 (d) with
corresponding strong enhancement of the () factor by one
order in magnitude (Fig. 14 (e)).

4. Conclusions

For the isolated dielectric cylinder we have well known
Mie resonances specified by azimuthal index m =
0,%+1,+£2,... (monopole, dipole, quadruple etc reso-
nances) due to axial symmetry. Two parallel cylinders have
no axial symmetry and therefore the solutions of the ho-
mogeneous Maxwell equations are given by series of the
Bessel (inside) or Hankel (outside cylinders) functions in
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Figure 14: (a) Behavior of resonant eigenfrequencies under
variation of the distance between the disks L with e = 12
(silicon in optical range) and aspect ratio a/h = 1. (b)
zoomed area highlighted in (a) with symmetric (solid lines)
and antisymmetric (dash lines) hybridization (20) of reso-
nant modes of the isolated disk. (c) shows behavior of the
@ factor vs the distance for corresponding insets at the left.
Closed circles mark the eigenfrequencies of isolated disks
and respectively the () factors while crosses mark the lim-
iting case L = a when two disks stick together.

m. By the use of Graf formula the coefficients in series
satisfy linear algebraic equations and can be easily found
[21, 22, 23]. However, there were no studies on the be-
havior of resonances of two cylinders in dependence on the
distance between them except the studies of the () factor
for extremely highly excited resonances, whispering gallery
modes by Boriskina [17, 18]. The study presented in this
paper reveals surprisingly rich evolution of the resonances
with the distance that can be described by two scenarios.
In the first scenario the resonances subsequently bypass the
Mie resonances. Each time when the resonance is close to a
Mie resonance the resonant mode inside the cylinders takes
the field profile of the corresponding Mie resonant mode.
At the same time the () factor achieves maximal magni-
tudes. It is worthy to notify recent publication by Abdrabou
and Ya Yan Lu [36] in which exceptional points for resonant
states were achieved for variation of the distance between
dielectric cylinders.

The evolution of resonances bound by the Mie res-
onances follows the second scenario and typical for the
higher resonances with n = 2, 3, ... (where the index enu-
merates resonances as shown in Fig. 4). It is interesting
that the dipole resonance which leaks aside from the other
cylinder bears features of the both families. When the leak-
age from the first cylinder is directed to the second cylinder,
the overlapping (15) exceeds the coupling of the Mie dipole
resonant modes which leakage aside the the cylinders. As
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a result in the first case the resonances consequently bypass
the Mie resonances while in the second case the resonances
are bound to the dipole Mie resonance of isolated cylinder.
For variation of the distance the () factor shows oscillating
behavior with maxima which can exceed the () factor of the
isolated cylinder three times. That enhancement is typical
for all types of resonances except the monopole resonance
which demonstrates enhancement by one order in magni-
tude. As one could see from Fig. 13 an observation of the
resonances as dependent on the distance between the di-
electric resonators needs in high quality dielectric materials
with extremely low material losses.

5. Discussions

The recept to enhance the () factor by means of the avoided
crossing of resonances is well known. Friedrich and Wint-
gen [3] were the first who investigated the quantitative influ-
ence of the interference of resonances on their positions and
widths. Moreover, in the framework of two-level effective
Hamiltonian they found out that one of the widths can turn
to zero to identify the BIC. A single isolated dielectric par-
ticle of finite dimensions can not trap light because of the
infinite number of radiation continua or diffraction chan-
nels [10]. However, for sufficiently large refractive index
the particle shows distinctive resonances with the Q-factors
which can be substantially enhanced owing to the avoided
crossing of the resonances under variation of the aspect ra-
tio of the disk [14, 15]. Technologically, it might be chal-
lengeable to vary the size of the disk in the optical range. In
the present paper we propose to vary the distance between
two coaxial disks that is preferable from the experimental
viewpoint. Continuous variation of the distance gives rise
to an avoided crossing of the resonances due to interaction
between the disks through radiating resonant modes.

Although in the present paper we considered only di-
electric cylinders and disks, it is clear that the phenomenon
of the avoided crossing and respective enhancement of the
@ factor would occur with particles of arbitrary shape when
the distance between them is varied. The case of two coax-
ial disks simplifies computations because the solutions with
different angular momentum m are independent. In the
present paper we have presented only the case m = 0 be-
cause of a possibility to consider separately E and H polar-
izations. That case is especially preferable because of ex-
perimental setup in the form of two loop antennas coaxial
to the disks. That setup was successfully used for observa-
tion of the symmetry protected BICs in long periodic array
of ceramic disks [11].
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