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1. Introduction

The existence of strong electron correlations (SEC), due to the significant Coulomb

interaction of holes in dx2−y2-orbitals of copper ions, essentially complicates the study

of low-temperature properties of cuprate high-temperature superconductors (HTSC).

On the other hand, it is the large value of this interaction that allows to integrate out

the high-energy states in the, most realistic for cuprates, three-band p−d model or the

Emery model [1, 2, 3, 4, 5] and to obtain a more simple spin-fermion model (SFM)

[6, 7, 8, 9, 10]. An important difference of the last model from the other effective low-

energy models of cuprates, such as the Hubbard model (for example, [11, 12]) or the

t−J model ([13]), is that the SFM clearly takes into account the spatial separation of

hole states on the copper ion and two oxygen ions in the unit cell of CuO2-planes.

Within SFM, the concept of a spin polaron was developed [14, 15, 16], which made

it possible to achieve significant progress in describing the properties of cuprates both in

the normal [16, 17, 18, 19, 20, 21], and superconducting [22, 23, 24] phases. In particular,

in [22, 23, 24] it was shown that the Cooper instability develops in an ensemble of spin

polarons, and the exchange interaction between the spins localized on copper ions causes

an effective attraction between spin-polaron quasiparticles.

Recently, in [25], the spin polaron concept was used to describe the dependence of

the London penetration depth λ on the temperature T in hole-doped cuprate HTSCs.

An important result of these studies was the detection of the so-called inflection point

in the calculated curves of λ−2(T ), which was experimentally observed, for example, in

La1.83Sr0.17CuO4 [26, 27], YBa2Cu3O7−δ [28, 29] and Bi2.15Sr1.85CaCu2O8+δ [30].

Unfortunately in [25] the theoretical curves λ−2(T ) exceeded the experimental ones

for the La2−xSrxCuO4 (LSCO) [31] by 30%-40%, both regarding the value of λ−2
0 (i.e.

λ−2 at T = 0) and the value of Tc which is the temperature at which λ diverges. It

is important to note that parameters of the SFM were not adjusted, but were chosen

equal to those used earlier [18, 19, 21, 22, 23, 24]. To obtain a satisfactory agreement

of the λ−2(T ) curves with the experimental data, it was necessary to reduce by almost

two times both the parameter of the spin-fermion coupling J , which significantly affects

the value of the superconducting current, and the super-exchange parameter I, which is

the coupling constant in the spin-polaron ensemble, and thus, determining the critical

temperature Tc. If the two-fold reduction of J , used to fit the results in [25], could

still be somehow justified (the effective parameter J depends on the parameters of the

original Emery model and can vary within the specified limits), then the reduction of

the exchange integral I was only illustrative.

In this work, it will be shown that taking into account the Coulomb repulsion

between the holes on oxygen ions, eliminates the need to artificially underestimate

the value of the super-exchange integral to achieve a satisfactory agreement between

the theoretical and experimental temperature dependencies of the function λ−2(T ) in

cuprate HTSCs.

The paper is organized as follows. In the second Section, SFM is formulated and
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necessary notations are introduced. The third Section describes the modification of the

SFM Hamiltonian, when the magnetic field is switched on, and the method of calculating

the London length. In the fourth Section, the projection method is briefly discussed, on

the basis of which the spin polaron concept is implemented, and the system of equations

for the Green’s functions in the superconducting phase is given. The equations for the

order parameter and spectrum of spin-polaron quasiparticles in the superconducting

phase are discussed in Section 5. Section 6 presents the results of numerical calculations

of the function λ−2(T ). The main conclusions of the paper are formulated in the final

seventh Section.

2. Spin-Fermion Model

The following ratio between the parameters of the Emery model corresponds to the SEC

regime in the cuprate HTSCs:

∆pd ∼ (Ud −∆pd) ≫ tpd > 0, (1)

where Ud is the Coulomb repulsion parameter of two holes on a copper ion, ∆pd is

the charge transfer gap between the hole states on copper and oxygen ions, and tpd is

the hybridization parameter between the d- and p-orbitals on copper and oxygen ions,

respectively.

Inequalities (1) allow reducing the Emery model and obtaining SFM [6, 7, 8, 9, 10].

Using the quasi-momentum representation for Fermi operators we write the SFM

Hamiltonian in the form [32]

Ĥsp-f = Ĥh + Ĵ + Î + Ûp + V̂pp, (2)

where

Ĥh =
∑

kα

(

ξkxa
†
kαakα + ξkyb

†
kαbkα

+ tk(a
†
kαbkα + b†kαakα)

)

, (3)

Ĵ =
J

N

∑

f,k,q

α,β

eif(q−k)u†
kα(

~Sf~σαβ)uqβ, (4)

Î =
I

2

∑

f,δ

~Sf
~Sf+δ, (5)

Ûp =
Up

N

∑

1,2,3,4

[

a†1↑a
†
2↓a3↓a4↑ + (a → b)

]

δ1+2−3−4, (6)

V̂pp =
4V1

N

∑

1,2,3,4
α,β

φ3−2 a†1αb
†
2βb3βa4α δ1+2−3−4

+
V2

N

∑

1,2,3,4
α,β

[

θxy2−3 a†1αa
†
2βa3βa4α

+ θyx2−3(a → b)
]

δ1+2−3−4. (7)
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When writing (3-7) the following notations were used

ξkx(y) = ε̃p + 2τs2k,x(y) − µ, ε̃p = εp + 2Vpd,

tk = (2τ − 4t)sk,xsk,y, sk,x(y) = sin(kx(y)/2),

φk = cos
kx
2

· cos
ky
2
, θ

xy(yx)
k = eikx(y) + e−iky(x),

τ = t2pd(1− η)/∆pd, η = ∆pd/(Ud −∆pd − 2Vpd),

J = 4t2pd(1 + η)/∆pd, ukβ = sk,xakβ + sk,ybkβ. (8)

The Ĥh operator describes holes on oxygen ions. a†kα(akα) denotes the hole creation

(annihilation) operators with a quasi-momentum k and with a spin projection α = ±1/2

in the oxygen ion subsystem with the px-orbitals. Similar operators from the oxygen ion

subsystem with the py-orbitals are denoted by b†kα(bkα). The parameter εp corresponds

to the bare binding energy of the holes on oxygen ions. This energy is increased by 2Vpd

taking into account the Coulomb interaction of the oxygen hole with the two nearest

copper ions (Vpd is the value of this interaction). The integral of the hole hopping

between the oxygen ions is denoted by t. The parameter τ is due to hybridization of

the p- and d-orbitals on the copper and oxygen ions. µ is the chemical potential.

The Ûp operator defined by (6) describes the Hubbard repulsion of two holes on

an oxygen ion with the intensity of Up. For brevity, quasi-momenta and spins with

the corresponding indices are denoted by numbers, for example: 1 ≡ {k1, σ1}. The

Kronecker symbol δ1+2−3−4 accounts for the momentum conservation law: δk1+k2−k3−k4.

N is the number of unit cells.

Intersite Coulomb interactions of the holes located at the nearest-neighbor and

next-nearest-neighbor oxygen ions (figure 1) are described by the operator V̂pp (see (7)).

The value of these interactions is determined by the parameters V1 and V2, respectively.

The functions φk and θ
xy(yx)
k appear in the transition from the Wannier representation

to the quasi-momentum representation and take into account the crystal symmetry of

the CuO2-plane.

The Ĵ operator appears in the second order in the hybridization parameter tpd and is

defined by (4). This operator takes into account both the exchange interaction between

the spins of the holes on copper and oxygen ions, and the spin-correlated hoppings of

the hole in the oxygen subsystem with the simultaneous flipping of the localized spin.

The spin on the copper ion with the site index f is described by the operator ~Sf , and

the vector ~σ in (4) is composed of the Pauli matrices: ~σ = (σx, σy, σz).

Finally, the Î operator takes into account the super-exchange interaction between

the nearest-neighbor spins on copper ions and appears in the fourth order of the

perturbation theory on the parameter tpd. Vector δ in (5) connects the site f from

the copper sublattice with four nearest sites from the same sublattice.

The SFM parameters — the effective hopping τ , the integrals of the p−d-exchange

(J) and super-exchange (I) interactions — are expressed in terms of the parameters

of the original Emery model (see, for example, [7]). The latter are obtained with

satisfactory accuracy [33, 34, 35]. Taking this into account as well as the results in
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[21, 24], we have chosen the following values of the SFM parameters (in eV): J = 1.76,

I = 0.118, τ = 0.225, Up = 3 [33]. The value of the Coulomb interaction parameters V1

can be estimated in the range 1−2 eV [35] albeit, as will be shown below, the particular

value of V1 turns out not to be too significant for d-wave superconductivity. The value

of V2 we estimated within 0.1−0.2 eV according to [36]. For the oxygen-oxygen hopping

integral we take t = 0.12 eV which is a reduced value as compared to the one usually

used. For choosing this value of t we have at least two reasons following from our

previous study of cuprate HTSC in both normal phase [21] and d-wave superconducting

phase [24].

An important circumstance to be taken into account in the spin-polaron approach

is that the localized spin subsystem is in the quantum spin-liquid state. This means

that the long-range magnetic order is absent in the copper ion subsystem: 〈Sα
f 〉 = 0

(α = x, y, z), but short-range spin correlations remain. These correlations are taken into

account through the spin correlation functions Cj, which are defined as thermodynamic

average of the two spin operators located at a distance rj: Cj = 〈~Sf
~Sf+rj〉, where

j is the number of the coordination sphere of the site f . In the spin-liquid phase,

these correlators satisfy the sequence of equalities: Cj = 3〈Sx
fS

x
f+rj

〉 = 3〈Sy
fS

y
f+rj

〉 =

3〈Sz
fS

z
f+rj

〉. In the low temperature range (. 100 K) the spin correlators are almost

independent of temperature, but strongly depend on the doping x. The correlators Cj

as functions of x were calculated, for example, in [37] based on the frustrated Heisenberg

model on a square lattice in the framework of the spherically symmetric approach [38].

The values of Cj (with j = 1, 2, 3) used for different x were taken from [19].

Figure 1. (Color online) The structure of the CuO2-plane. Oxygen px(py) orbitals

and copper dx2
−y2 orbitals are shown. Wavy lines denote Coulomb interactions: Up(d)

— on-site Coulomb repulsion of holes on an oxygen (copper) ion; V1 and V2 — intersite

Coulomb interactions of the holes located at the nearest-neighbor and the next-nearest-

neighbor oxygen ions, respectively. The bold green line with arrows stands for the

super-exchange interaction (I) between spins on the nearest-neighbor copper ions.

The bold blue lines next to the letter J correspond to both the spin-fermion exchange

interaction and the spin-correlated hoppings. τ — effective hole hoppings arising due

to p−d-hybridization in the second order of perturbation theory, t — the integral of

direct hole hoppings between nearest oxygen ions (find τ and t near the thin blue line

with arrows).
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3. The London penetration depth

Calculation of the penetration depth of the magnetic field λ in superconductors

is based on the London equation: ~j = −c/(4πλ2) ~A, where c is the speed of

light. In the local approximation this equation establishes a relation between the

superconducting current density ~j and the vector potential of the magnetic field ~A,

and the proportionality coefficient between them is determined by the value of λ.

To calculate the superconducting current density ~j in an ensemble of spin-polaron

quasiparticles we should include into Hamiltonian (2) terms accounting for coupling to

the magnetic field. This can be done via Peierls substitution [39, 40]. Considering vector

potential ~Aq in the long-wavelength limit: q = 0 [41, 42] we find [25] that Hamiltonian

(2) acquires an additional phase

αx =
egx
2c~

Ax
q=0 (9)

in the argument of the trigonometric function sk,x (8). Here gx is the lattice constant

and for simplicity, we directed the vector potential along the x-axis.

Thus, a new definition of the function sk,x, which takes into account the magnetic

field, has the form:

sk,x = sin(kx/2− αx).

It is this definition for sk,x which will be used further. The function uk which is linearly

related to sk,x also apparently changes (see (8)). The function sk,y remains unchanged

since in this case Ay
q=0 = 0. The Zeeman energy determined by the spin moments of the

holes is not taken into account because in the long wavelength limit (q → 0) this energy

tends to zero.

The resulting expression for the average value of the superconducting current

density, obtained in [25] within SFM, is as follows:

jx(q = 0) =
egx
~

∑

kα

cos
(kx
2

− αx

)[

2τsk,x〈a
†
kαakα〉

+(2τ − 4t)sk,y〈a
†
kαbkα〉+ J〈a†kαLkα〉

]

, (10)

where expressions for thermodynamic averages in square brackets are given in the

Appendix by (A.7). Expression (10), in particular, gives the correct behavior of

the current density at T ≥ Tc. Indeed, in the normal phase the dependence of

all thermodynamic averages (A.7) on the quasi-momentum kx is determined only as

the difference kx − αx. Therefore, a simple substitution of the integration variable

kx → kx + αx in the integral in the right part of the expression (10) allows one to

eliminate the phase αx. Since for αx = 0 the integrand in (10) is antisymmetric to ~k,

the right part of (10), as required, vanishes.

In the superconducting phase (for T < Tc), the dependence of the thermodynamic

averages on kx is determined both by the difference kx − αx and by the sum of kx + αx.

In this case, the integral in (10) is nonzero.
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The inverse square of penetration depth λ−2 was determined numerically according

to the London equation at T < Tc as

1

λ2
= −

4π

c
·
jx(q = 0)

Ax
q=0

,

where supercurrent density jx(q = 0) is defined by (10).

The described approach for calculating λ is a sufficiently effective one, especially for

multi-band systems, for which the analytical dependence of the quasiparticle spectrum

on the quasi-momentum is unknown and can only be obtained numerically. The

proposed approach is also convenient since there is no need to carry out cumbersome

calculations connected with extracting paramagnetic and diamagnetic parts of the

supercurrent density.

4. Equations for Green’s Functions

A significant feature of the Hamiltonian of the SFM (2) is a large value of the p−d-

exchange interaction constant J , which greatly exceeds the values of all the other

parameters of the model. This means that in calculating the energy structure of

spin-polaron excitations and analyzing the conditions for superconducting pairing,

one has to take into account this interaction exactly. An approach taking into

consideration this strong p−d-exchange coupling and within which the corresponding

spin-polaron quasiparticle appears is called the spin-polaron approach. For the

particular implementation of this approach the Zwanzig-Mori projection technique has

proved to be rather convenient [43, 44, 45, 46, 47, 48, 49, 50].

According to the projection technique, first of all, it is necessary to introduce a

minimal set of basis operators that allow one to correctly describe the quasiparticle

excitations in the system. For the correct account of the strong spin-charge coupling in

the SFM of interest, it is important to introduce into the specified basis, along with the

bare hole operators akα and bkα, the operator

Lkα =
1

N

∑

fqβ

eif(q−k)(~Sf~σαβ)uqβ,

arising in the right part of the equations of motion for akα and bkα. As was shown in

[14, 15, 16, 19] the three operators akα, bkα and Lkα are sufficient to describe spectral

properties of Fermi excitations of the cuprate HTSCs in the normal phase. To analyze

the conditions for Cooper instability the mentioned set of three operators, is necessary

to be enlarged by three extra operators: a†−kᾱ, b
†
−kᾱ, L

†
−kᾱ (ᾱ = −α) [22, 23, 24], giving

an opportunity to introduce anomalous thermodynamic averages.

The next step of the projection technique is to project the equations of motion for

the basis operators (or for the corresponding Green’s functions) on the original set of

basis operators. The application of this method to the SFM (2) with the above basis

of six operators is described in [19, 22, 32]. Omitting the details of the calculations, we



Effect of Coulomb repulsion on the London penetration depth in cuprate 8

give the answer for a closed system of equations for the Green’s functions (j = 1, 2, 3):

(ω − ξx)G1j = δ1j + tkG2j + JxG3j +∆1kF1j +∆2kF2j ,

(ω − ξy)G2j = δ2j + tkG1j + JyG3j +∆3kF1j +∆4kF1j ,

(ω − ξL)G3j = δ3jKk + (JxG1j + JyG2j)Kk +
∆5k

Kk

F3j ,

(ω + ξx)F1j = ∆∗
1kG1j +∆∗

3kG2j − tkF2j + JxF3j ,

(ω + ξy)F2j = ∆∗
2kG1j +∆∗

4kG2j − tkF1j + JyF3j ,

(ω + ξL)F3j =
∆∗

5k

Kk

G3j + (JxF1j + JyF2j)Kk. (11)

Here, for the normal and anomalous Green’s functions, we use the short notations Gij

and Fij, respectively. The meaning of these designations is revealed by the equalities:

G11 = 〈〈ak↑|a
†
k↑〉〉ω, F11 = 〈〈a†−k↓|a

†
k↑〉〉ω,

G21 = 〈〈bk↑|a
†
k↑〉〉ω, F21 = 〈〈b†−k↓|a

†
k↑〉〉ω,

G31 = 〈〈Lk↑|a
†
k↑〉〉ω, F31 = 〈〈L†

−k↓|a
†
k↑〉〉ω.

The functions Gi2(Fi2) and Gi3(Fi3) (i = 1, 2, 3) are defined in a similar way except

for the operator a†k↑ being substituted for b†k↑ and L†
k↑, respectively. When writing the

system (11) we use the functions:

ξx(y) = ξkx(y), Jx(y) = Jsk,x(y),

ξL(k) = ε̃p − µ− 2t+ 5τ/2− J − τC1γ1k/2

+ [(τ − 2t)(−C1γ1k + C2γ2k) + τC3γ3k/2

+ JC1(1 + 4γ1k)/4− IC1(γ1k + 4)]/Kk, (12)

where

Kk = 〈{Lk↑, L
†
k↑}〉 = 3/4− C1γ1k, (13)

and γjk (j = 1, 2, 3) denote the square lattice invariants:

γ1k = (cos(kx − 2αx) + cos ky)/2,

γ2k = cos(kx − 2αx) cos ky,

γ3k = (cos(2kx − 4αx) + cos 2ky)/2, (14)

taking into account the magnetic field through the phase αx.

The components of the superconducting order parameter ∆jk are defined as

anomalous thermodynamic averages:

∆1k = 〈{[ak↑, Ĥsp-f ], a−k↓}〉,

∆2k = 〈{[ak↑, Ĥsp-f ], b−k↓}〉,

∆3k = 〈{[bk↑, Ĥsp-f ], a−k↓}〉,

∆4k = 〈{[bk↑, Ĥsp-f ], b−k↓}〉,

∆5k = 〈{[Lk↑, Ĥsp-f ], L−k↓}〉. (15)
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5. Equations for the superconducting order parameters and spin-polaron

spectrum

The equations for the components of the superconducting order parameter ∆jk (j =

1, . . . , 5) are obtained after calculating the commutators (and anticommutators) in the

right hand part of formulas (15) and projecting the result of the calculations on the

introduced basis of six operators. Since, according to the results of [32], the s-wave

superconductivity in the SFM does not occur, when writing equations for ∆jk, we keep

only those terms which correspond to the d-wave pairing. The result is given in the

appendix by (A.1). The components ∆2k and ∆3k for the d-wave pairing turn out to

be zero. It is important to note that in the expressions (A.1) for ∆jk the Coulomb

repulsion parameter between the holes located on the nearest-neighbor oxygen ions V1

is missing, since according to [51, 52] it should not contribute to the d-wave pairing.

Anomalous thermodynamic averages in the system of equations (A.1) are calculated

using the spectral theorem [53] and corresponding Green’s functions of the system

(11). To analyze the conditions for Cooper instability, it is sufficient to calculate the

anomalous averages in the linear approximation with respect to the components ∆jk.

As a result, a closed set of homogeneous integral equations for the components of the

superconducting order parameter ∆∗
lk (l = 1, 4, 5) is obtained as follows

∆∗
1k = − (cos kx − cos ky)

2V2

N

∑

lq

cos qxM
(l)
11 (q)∆

∗
lq,

∆∗
4k = − (cos kx − cos ky)

2V2

N

∑

lq

cos qxM
(l)
22 (q)∆

∗
lq,

∆∗
5k = + (cos kx − cos ky)

I

N

∑

lq

(cos qx − cos qy)

×
(

M
(l)
33 (q)− C1M

(l)
uu(q)

)

∆∗
lq

+
Up

N

∑

lq

C1

(

cos(kx − 2αx)M
(l)
11 (q)

+ cos kyM
(l)
22 (q)

)

∆∗
lq

− (cos kx − cos ky)
2V2

N

∑

lq

C1 cos qx

×
(

M
(l)
11 (q) +M

(l)
22 (q)

)

∆∗
lq. (16)

When writing (16) we introduced the following functions

M (l)
uu(q) = − s2q,xM

(l)
11 (q)− s2q,yM

(l)
22 (q)

− sq,xsq,y(M
(l)
12 (q) +M

(l)
21 (q)), (17)

M (l)
nm(q) =

∑

j=1,4

f(−Ejq)

2(−1)j+1Eq(Ejq − ǫ2q)(Ejq − ǫ3q)
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×
S
(l)
nm(q, Ejq)

(Ejq + ǫ2,−q)(Ejq + ǫ2,−q)
, (18)

where f(E) = 1/(exp{E/T}+ 1) is the Fermi-Dirac distribution function, ǫjk and Ejk

are the energies of quasiparticles in the normal and superconducting states, respectively

and S
(l)
ij (k, ω) are functions defined in the Appendix (A.3).

The spectrum of Fermi excitations in the normal phase consists of three branches ǫjk
(j = 1, 2, 3) and is determined from the solution of the third order dispersion equation

detk(ω) = + (ω − ξx)(ω − ξy)(ω − ξL)

− 2JxJytkKk − (ω − ξy)J
2
xKk

− (ω − ξx)J
2
yKk − (ω − ξL)t

2
k = 0, (19)

following from condition of existence of nontrivial solution of the system (11) at ∆jk = 0.

With the doping levels x typical for cuprates, the dynamics of the holes on oxygen ions is

determined solely by the lower band with the dispersion ǫ1k. This branch of the spectrum

is characterized by a minimum in the vicinity of (π/2, π/2) point of the Brillouin zone

and is significantly separated from the two upper branches ǫ2k and ǫ3k. The appearance

of the lower branch is due to the strong spin-charge coupling, which induces an exchange

interaction between the holes and localized spins at the nearest copper ions, as well as

spin-correlated hoppings. The features of the spectrum ǫ1k without magnetic field were

discussed in [22]. In our case, taking into account the magnetic field is of fundamental

importance.

Since the chemical potential µ in the systems under consideration lies in the lower

band with the dispersion ǫ1k, and the upper bands, as was mentioned above, are

separated by a large energy gap, the spectra ǫ2k and ǫ3k are almost unchanged with

transition to the superconducting phase: i.e. Ejk = ǫjk for j = 2, 3. Obtaining an

expression for the spectrum E1k for the lower spin-polaron band in the superconducting

phase and in the weak magnetic field is described in detail in [54]. The expression for

the spectrum E1k has the form

E1k = δǫ1k +
√

ǫ21k +∆2
k, (20)

where δǫ1k is a correction to the polaron spectrum in the normal phase ǫ1k, which is

antisymmetric in k and linear in αx, and the gap function ∆2
k is expressed as a sum of

squares of the components of the superconducting order parameter

∆2
k = |∆1k|

2 + |∆4k|
2 + |∆5k|

2/K2
k . (21)

Note that formally, in the sum over j in the right hand side of expression (18) it

is necessary to take into account all the bands. However, since the upper bands (with

j = 2, 3) are empty, their contributions can be ignored. The value of the index j = 4 in

the sum over j in (18) corresponds to the spectrum E4k = −E1,−k.

One can see from the system of equations (16) that the kernels of the integral

equations are split, and the solutions of this system are to be found in the following
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form

∆1k = B11(cos kx − cos ky),

∆4k = B41(cos kx − cos ky),

∆5k = B51 cos kx +B52 cos ky +B53(cos kx − cos ky)

+B54(cos kx − cos ky), (22)

where the six amplitudes Bij determine the contribution of the corresponding basis

functions to the expansion of the order parameter components.

Substituting expansion (22) into equations (16) and equating the factors of the

corresponding trigonometric functions, we obtain a system of six algebraic equations for

determining the amplitudes Bij . It is also necessary to add to this system an equation

for self-consistently finding the chemical potential µ:

x =
2

N

∑

k

∑

j=1,4

f(Ejk)

(−1)j+12Ek(Ejk − ε2k)(Ejk − ε3k)

×
Rx(k, Ejk)

(Ejk + ε2,−k)(Ejk + ε3,−k)
, (23)

where the function Rx(k, ω) is given in (A.5).

Numerical calculations show that the following relations between the amplitudes

hold: B11 = B41 ≈ −B51 = B52, B54/B51 ≈ −10, B54/B53 ≈ −102. Thus, it is seen that

the largest contribution to the order parameter component ∆5k gives the amplitude B54,

proportional to the exchange integral I. Regarding this exchange integral, it should be

noted that its value depends on the doping x. In [19], when calculating the exchange

integral in the framework of the Heisenberg model, the effect of doping was simulated by

the frustration of the exchange couplings. In accordance with [19], we used the product

I(1−p) as the exchange integral, where p is the frustration parameter varying from 0.15

to 0.275 with x increasing from 0.03 to 0.22.

6. Results and discussion

Calculations of the temperature dependence of the magnetic penetration depth λ taking

into account the one-site Hubbard repulsion of holes and the Coulomb interaction

between holes on the next-nearest-neighbor oxygen ions were carried out numerically

based on expression (10) and self-consistent solution of the system of algebraic equations

for the amplitudes Bij together with chemical potential equation (23). It is important

to note that, except for t, the rest of the Emery model parameters were chosen to be

equal to those that are generally accepted for hole-doped cuprate HTSCs.

The calculation results are presented in figure 2. Curve 1 in this figure is given for

comparison. It shows the dependence λ−2(T ) in the absence of Coulomb interactions

(Up = V1 = V2 = 0). The remaining curves demonstrate modification of the temperature

dependence of λ−2 with successive switching on the interactions. Note that the

parameter V1, as was said above, does not enter the set of equations for order parameter
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Figure 2. The effect of Coulomb repulsion on the temperature dependence of inverse

square of the London penetration depth in the SFM of cuprate HTSCs. Curve 1 is

calculated with the value of the Coulomb interaction parameters Up = V2 = 0; curve

2 — for Up = 0, V2 = 0.1 eV; curve 3 — for Up = 3 eV, V2 = 0; curve 4 — for Up = 3

eV, V2 = 0.1 eV.The value of V1 is not specified since according to (16) it does not

contribute to the d-wave pairing in the SFM. The other model parameter are (in eV):

τ = 0.225, t = 0.12, J = 1.76, I = 0.12 and αx = 0.002, x = 0.17.

(16) [52] and, therefore, does not affect the function λ−2(T ). Curve 2 is obtained by

take into account the interactions between the second neighbors; curve 3 — only the

Hubbard repulsion; and curve 4 — both types of interaction. It is seen that the effect of

the Coulomb interaction, in full agreement with the results of [32, 55], is manifested in a

significant decrease in the critical temperature of the transition to the superconducting

phase. The resulting decrease in Tc allows us to achieve a much better agreement of the

calculated temperature dependencies of λ−2 with the experimental data.

Figure 3 compares the temperature dependencies of λ−2 obtained at different

doping within the SFM model (solid lines) with that taken from the experiment on

La2−xSrxCuO4 [31] (symbolic curves). The Tc−x phase diagram, shown in the insert, is

obtained within the spin-polaron approach and correlates well to the experimental phase

diagram for LSCO superconductors in both the left boundary of the superconducting

dome at x ∼= 0.05 and the maximum critical temperature Tmax=39 K. At the same

time, the right boundary of the theoretical dome exceeds that of experimental dome by

the value of about 0.1. The reason for this is that in the present study, we adopted

the low-density approximation, and hence in the strongly overdoped regime our theory

seems to be insufficient. As a result a theoretical curve λ−2(T ) for large doping x = 0.24

significantly differs from the experimental one since in real LSCO at x = 0.24 the critical

temperature Tc = 20 K, but according to the phase diagram shown in the insert Tc = 30

K.

A comparison of the temperature curves of λ−2 for the same doping x in the figure

3 shows that the values of Tc and λ−2(T = 0) are on the whole well reproduced for

x = 0.15−0.22. It can be seen from the figure that all the theoretical temperature

dependencies λ−2(T ), except for x = 0.10, are slightly convex, as in most experiments

on cuprate superconductors [28, 31, 26]. For the doping level x = 0.10 (the lowest
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Figure 3. (Color online) Temperature dependence of the inverse square of the London

penetration depth at five doping levels. The solid curves are calculated theoretically.

The symbolic curves are taken from experimental work on La2−xSrxCuO4 [31].

Matching to one level of doping for solid and symbolic curves is indicated by the same

color. The magnitudes of doping x are indicated next to corresponding symbols. The

insert shows doping dependence of the critical temperature. The model parameters (in

eV): τ = 0.225, t = 0.12, J = 1.76, I = 0.118, Up = 3.3, V2 = 0.1. V1 is not specified

since it does not contribute to d-wave pairing in the SFM. The phase: αx = 0.002.

solid curve in the figure 3) the form of λ−2(T ) is concave over the entire temperature

range what seems to be incompatible with corresponding experimental curve measured

in [31]. This discrepancy is most likely due to the strong spin-charge fluctuations which

are well developed in the strongly underdoped regime and which, in particular, result

in pseudogap (PG) behavior in cuprates. The present theory is, however, a mean field

theory, it does not take into account these spin-charge fluctuations and therefore PG

behavior. Since, however, the PG is weak at optimal and higher doping x > 0.15, we

are confident that our results for x = 0.15−0.22 will be unaffected by the PG behavior.

The comparison of the calculated temperature dependencies λ−2(T ) on Figure 3

with the corresponding curves from our previous paper [25] leads to the conclusion that

the main effect of taking into account the Coulomb interaction is the decrease of Tc. It is

important that the main result of [25], the inflection point associated with the change of

curvature of the function λ−2(T ) and found experimentally in a number of compounds

[26, 27, 28, 29, 30, 56] remained unaffected. This inflection point was considered as a

confirmation of the spin-polaron concept of quasiparticles in cuprate HTSCs.

7. Conclusion

Within the spin polaron concept, the effect of Coulomb repulsion on modification of the

temperature dependence of the London penetration depth λ in cuprate high-temperature

superconductors was studied.

When obtaining expressions for calculating λ two types of Coulomb interactions
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were taken into account: 1) Hubbard repulsion of two holes on one site and 2) Coulomb

repulsion of two holes located on the next-nearest-neighbor oxygen ions. The interaction

of the holes on the nearest-neighbor sites was not taken into account because, according

to the results of [52], it does not contribute to the d-wave superconductivity within

spin-fermion model.

The calculation of the London penetration depth λ was carried out on the basis

of the method developed by the authors in [25] in the framework of the spin-polaron

approach, which takes into account the strong coupling between the charge and spin

degrees of freedom, as well as the real structure of the CuO2-planes with two oxygen

ions per unit cell.

On the basis of numerical calculations of the temperature dependence of inverse

square of the London penetration depth, carried out with the generally accepted values

of the Emery model parameters, it was shown that taking into account the Coulomb

interaction results in, as expected from [32, 55], a significant decrease in the critical

temperature corresponding to zeros of the function λ−2(T ). This circumstance enabled

one to achieve substantially better agreement of the theoretical curves with experimental

results [31], in rather broad range for x around optimal doping (x = 0.15, 0.20 and

0.22). At the same time for strongly overdoped and underdoped compounds our results

for λ−2(T ) reveal discrepancy with experimental data. We argue that for large doping

(x = 0.24) this discrepancy is because in our theory the low-density approximation

was adopted and hence for doping as large as x = 0.24 this approximation may be

insufficient. On the other hand, the strong spin-charge fluctuations, which in the low

doping regime are well developed due to proximity to antiferromagnetic region, are

not taken into account properly in our theory. We suggest this to be the main reason

for discrepancy of our results for λ−2(T ) with experimental one at doping as small as

x = 0.10.

However, for cuprates with moderate doping x = 0.15, 0.20, and 0.22 the proposed

theory describes the experimental dependencies λ−2(T ) quite well and clearly shows

that accounting for the Coulomb interaction leads to an almost three-fold decrease in

the value of Tc, but does not change the functional form of the temperature dependence

of λ−2, which was obtained earlier. In particular, the inflection point of the function

λ−2(T ), whose existence is considered by us as a confirmation of the spin-polaron nature

of the quasiparticles in cuprates, remained intact.
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Appendix A.

The equations for the components of the superconducting order parameter, which are

discussed at the beginning of the Section 5, have the form

∆1k = − (cos kx − cos ky)
2V2

N

∑

q

cos qx〈aq↑a−q↓〉,

∆4k = − (cos kx − cos ky)
2V2

N

∑

q

cos qx〈bq↑b−q↓〉,

∆5k = + (cos kx − cos ky)
I

N

∑

q

(cos qx − cos qy)

× (〈Lq↑L−q↓〉 − C1〈uq↑u−q↓〉)

+
Up

N

∑

q

C1

2
(cos(kx − 2αx)〈aq↑a−q↓〉

+ cos ky〈bq↑b−q↓〉)

− (cos kx − cos ky)
V2

N

∑

q

C1 cos qx

× (〈aq↑a−q↓〉+ 〈bq↑b−q↓〉), (A.1)

where

〈uq↑u−q↓〉 = − s2q,x〈aq↑a−q↓〉 − s2q,y〈bq↑b−q↓〉

− sq,xsq,y(〈aq↑b−q↓〉+ 〈bq↑a−q↓〉). (A.2)

Functions S
(l)
ij (k, ω) used when writing expressions (18) are defined as

S
(1)
11 (k, ω) = +Q3y(k,−ω)Q3y(k, ω),

S
(1)
21 (k, ω) = +S

(1)
12 (k,−ω) = Q3(k,−ω)Q3y(k, ω),

S
(4)
11 (k, ω) = +S

(1)
22 (k, ω) = Q3(k,−ω)Q3(k, ω),

S
(5)
11 (k, ω) = −Qy(k,−ω)Qy(k, ω),

S
(4)
12 (k, ω) = +Q3(k,−ω)Q3x(k, ω),

S
(4)
21 (k, ω) = +S

(4)
12 (k,−ω),

S
(5)
12 (k, ω) = −Qy(k,−ω)Qx(k, ω),

S
(5)
21 (k, ω) = +S

(5)
12 (k,−ω),

S
(4)
22 (k, ω) = +Q3x(k,−ω)Q3x(k, ω),

S
(5)
22 (k, ω) = −Qx(k,−ω)Qx(k, ω),

S
(1)
33 (k, ω) = −K2

kS
(5)
11 (k, ω),
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S
(4)
33 (k, ω) = +K2

kS
(5)
22 (k, ω),

S
(5)
33 (k, ω) = +Qxy(k,−ω)Qxy(k, ω), (A.3)

where

Qx(y)(k, ω) = (ω − ξx(y))Jy(x) + tkJx(y),

Q3(k, ω) = (ω − ξL)tk + JxJyKk,

Q3x(3y)(k, ω) = (ω − ξL)(ω − ξx(y))− J2
x(y)Kk,

Qxy(k, ω) = (ω − ξx)(ω − ξy)− t2k. (A.4)

The function Rx(k, ω), which is included in the equation for the chemical potential

(23), is defined as follows

Rx(k, ω) = (Q3y(k, ω) +Q3x(k, ω))Ψ(k, ω)

− 2(JxQy(k,−ω)∆∗
1k + JyQx(k,−ω)∆∗

4k)∆
∗
5k

− (ω − ξL)(Q3y(k,−ω)∆∗
1k

2 +Q3x(k,−ω)∆∗
4k

2)

− (2ω − ξx − ξy)Qxy(k,−ω)∆∗
5k

2/K2
k , (A.5)

Ψ(k, ω) = (ω + Ek)(ω + ǫ2,−k)(ω + ǫ1,−k). (A.6)

Thermodynamic averages of equation (10) are defined by the expressions

〈a†kαakα〉 = Q3y(k, ω)Ψ(k, ω)− 2JyQx(k,−ω)∆∗
4k∆

∗
5k

− (ω − ξL)Q3x(k,−ω)∆∗
4k

2

− (ω − ξy)Qxy(k,−ω)∆∗
5k

2/K2
k ,

〈a†kαbkα〉 = Q3(k, ω)Ψ(k, ω) + JxQx(k,−ω)∆∗
4k∆

∗
5k

+ JyQy(k,−ω)∆∗
1k∆

∗
5k − tkQxy(k,−ω)∆∗

5k
2/K2

k

+ (ω − ξL)Q3(k,−ω)∆∗
1k∆

∗
4k,

〈a†kαLkα〉 = Qy(k, ω)KkΨ(k, ω) + tkQx(k,−ω)∆∗
4k∆

∗
5k

+ JyQ3(k,−ω)Kk∆
∗
1k∆

∗
4k − JxQ3x(k,−ω)Kk∆

∗
4k

2

+ (ω − ξy)Qy(k,−ω)∆∗
1k∆

∗
5k, (A.7)

where Ψ(k, ω) is defined in (A.6).
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