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We derived simple rules for the sign of 180◦ superexchange interaction based on the multielectron
calculations of the superexchange interaction in the transition metal oxides that are valid both below
and above spin crossover under high pressure. The superexchange interaction between two cations
in dn configurations is given by a sum of partial contributions related to the electron-hole virtual
excitations to the different states of the dn+1 and dn−1 configurations. Using these rules, we have
analyzed the sign of the 180◦ superexchange interaction of a number of oxides with magnetic cations
in electron configurations from d2 till d8: the iron, cobalt, chromium, nickel, copper and manganese
oxides with increasing pressure. The most interesting result concerns the magnetic state of cobalt
and nickel oxides CoO, Ni2O3 and also La2CoO4, LaNiO3 isostructural to well-known high-TC and
colossal magnetoresistance materials. These oxides have a spin 1

2
at the high pressure. Change of

the interaction from antiferromagnetic below spin crossover to ferromagnetic above spin crossover
is predicted for oxide materials with cations in d5(FeBO3) and d7(CoO) configurations, while for
materials with the other dn configurations spin crossover under high pressure does not change the
sign of the 180◦ superexchange interaction.

I. INTRODUCTION

The mechanism of superexhcange interaction is well
known for a long time1. The effective Heisenberg Hamil-
tonian describes the exchange interaction J of the mag-
netic cations in the ground state. It is well known that
there are many excited states for multielectron cations.2

However these states are not involved by the superex-
change interaction, and Heisenberg model is a based the-
ory because typically excited states lies well above the
magnetic scale J and Curie/Neel temperatures (TC/TN).
A low energy description of magnetic insulators may be
violated in two situations. The first one is related with
intensive optical pumping when one of magnetic cations
is excited into some high energy state and its exchange
interaction with the neighbor cation in the ground state
changes3 resulting in many interesting effects of the fem-
tosecond magnetism.4,5 The other situation occurs at the
high pressure when the cation spin crossover in magnetic
insulators from the high spin (HS) to the low spin (LS)
state takes place.2,6 The spin crossover occurs due to
competition between the energy of the crystalline field
10Dq and the parameter of intratomic Hund exchange
JH . Typically, the applied pressure increases the crys-
tal field, but does not significantly change the exchange
parameter JH . The spin crossovers are known for many
transition metal oxides with d4÷d7 cations, and for tran-
sition metal complexes, like metalorganic molecules or
molecular assemblies.7–18 Near crossover the energies of
two states εHS and εLS are close to each other and con-
ventional scheme of the superexhcange interaction calcu-
lation should be modified.

The spin crossovers have been experimentally detected
and investigated in a number of transition metal ox-
ides.7 Calculations also confirm a possibility of the spin
crossovers in these materials and their role in the metal-
insulator transition.5,19 In real, a situation is complicated

by the observed structural and chemical instabilities of
some oxide materials at the high pressures,7,20 which de-
stroy the possibility of a comparison between the cal-
culation of superexchange interaction and experimental
data. The results of the experimental studies contain
both the examples of stable FeBO3 with isostructural
spin crossover6 at ∼ 60GPa, and chemically unstable
Fe2O3 hematite.20 Further we will restrict ourselves to
the stable oxide materials and assume that there are
isostructural areas on the phase P/T diagram of the ox-
ides, where the magnetic ordering is governed mainly by
strong superexchange AFM interactions in Me−O−Me
with a bond angle of about 180◦.
The aim of our work is to answer the question of how

the 180◦ superexchange interaction depends on the cation
spin in transition metal oxides at the high pressure, and
can simple changes in the crystal field without a spin
crossover lead to a change in its nature from AFM to
FM? In terms of the realistic p-d model that include
d-electrons of cation and p-electrons of oxygen the su-
perexchange interaction arises via cation-anion p-d hop-
ping tpd in the fourth order perturbation theory over the
tpd (see for example21–24). Eliminating the oxygen states
one can obtain the effective Hubbard model with cation-

cation hopping t ∼ t2pd

/

(εp − εd) and then the effective

Heisenberg model may be obtained by the unitary trans-
formation of the Hubbard model25,26 with the superex-
change interaction of the kinematic origin J ∼ t2

/

U .
The superexchange interaction appears in a second order
perturbation theory over interband hopping t from the
occupied low Hubbard band into the empty upper Hub-
bard band and back. It may be considered as result of
the virtual excitation of the electron-hole pair.
We start discussing the properties of the transition

metal oxides with a model of the periodic lattice of
cations in dn configuration in a center of oxygen octa-
hedra with a set of states |n〉 with energy εn. The elec-
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tron addition (extra electron) results in the dn+1 states
|e〉 with energies εe (n+ 1). Similar electron removal (or
hole creation) involves the dn−1 states |h〉 with energies
εh (n− 1). Thus, a partial contribution to the superex-
change interaction involves 4 states: at site 1 creation
of the electron excite the initial state |n〉 ( we call this
states neutral) into some |e〉 state (we call these excita-
tion by electronic) and at site 2 the hole creation excites
the neutral state into the one of the states |h〉 (we call
them hole). These electon-hole excitations are virtual,
after their annihilation back the final state is again two
cations in initial dn configurations. This approach allows
us to consider all partial contributions to the superex-
change interaction including both the ground states as
well as excited states in all three sectors of the Hilbert
space: neutral N0 (d

n), electronic N+

(

dn+1
)

and hole

N−

(

dn−1
)

. Here we show that the sign of the parti-

tial contributions JFM
ij and JAFM

ij to the total superex-

change interaction Jij = JAFM
ij + JFM

ij is directly inde-
pendent on the cation spin S (dn), but is controlled by
the spin ratio S

(

dn−1
)

= S
(

dn+1
)

(AFM interaction)

or S
(

dn−1
)

= S
(

dn+1
)

± 1 (FM interaction). The crys-
tal field perturbations, without a reversal of the electron
spin, does not change the nature (sign) of partial con-
tributions JFM

ij and JAFM
ij , however they can lead to

a change in their relative magnitudes, as a result, to a
change in the sign of superexchange parameter Jij . A
main factor for the comparison between the AFM and
FM interactions is the type σ or π overlapping orbitals
involved by the partial contributions. These character-
istics is comparable in simplicity with the well known
Goodenough-Kanamori-Anderson rules, which are used
many years by scientists in the analysis of the magnetic
states of dielectric materials.27,28 In the paper we also
generalize the previous results for the superexchange in-
teraction in iron borate under high pressure and opti-
cal pumping 5,19 to the different transition metals oxides
with magnetic ions in the d2 - d8 configurations.
For the readers convenience the theoretical details are

placed in the Appendix below and in the main text will
discuss the physical ideas.

II. ADDITIVITY PROPERTIES OF
SUPEREXCHANGE INTERACTION

We will work within a framework of the cell perturba-
tion approach5 to calculate a magnitude of the superex-
change, that logically fits into the LDA + GTB method
to study both the electronic structure,29,30 and the 180◦

superexchange interaction in oxide materials under the
pressure and optical pumping. The conclusion of our
study will be some simple rules which can help to es-
timate the sign of the superexchange in the oxide ma-
terials at high pressure without complicate calculations.
At this point we will take the superexchange Hamilto-
nian (1) (see Appendix) as a working tool, in structure
which there is a summation over the independent con-
tributions involving the ground |n0〉 =

∣

∣(N0,MS)n0

〉

,

excited electronic |e (h)〉 =
∣

∣

∣
(N±,MS)e(h)

〉

(e) and hole

(h) states at energies εe(h) of the configuration space sec-
tors N± = n ± 1 for couple of the interacting magnetic
cations (see. Fig.1):

Ĥs =
∑

i6=j

Jij

(

Ŝin0
Ŝjn0

−
1

4
n̂
(e)
in0

n̂
(h)
jn0

)

,

Jij =
∑

he

Jij (h, n0, e)

(2Sh + 1) (2Sn0
+ 1)

(1)

where Jij (h, n0, e) = 2
(

tn0h,n0e
ij

)2
/

∆n0he and ∆n0he =

εe + εh − 2εn0
. All definitions of the multielectron spin

Ŝin0
and number of quasiparticles n̂

(e)
in0

operators are in
the Appendix. The second contribution in Eq.(1) dif-
fers from the generally accepted method of writing the
superexchange interaction and coincides with the usual
form 1

4 n̂in̂j for half-filled shells, where there is electron-
hole symmetry. The superexchange interaction parame-
ter Jij in Eq.(1) is additive for all electronic |e〉 and hole
|h〉 states in sectors N± in Fig.1 and one is obtained in
second order of cell perturbation theory over the inter-
band contribution δĤ1 to the total Hamiltonian Ĥ1 of
electron interatomic hopping:

δĤ1 =
∑

ij

ĥout
ij =

∑

ij

∑

nhe

[

tel,hnij

∑

σ

α+
iσ (en)βjσ (hn) + tnh,leij

∑

σ

β+
iσ (nh)αjσ (ne)

]

, (2)

that describes the creation and annihilation of the vir-
tual electron (denoted by the operator α+

iσ ) and hole
(operator β+

iσ ) pairs. Exactly the virtual excitations
through the dielectric gap ∆nhe to the conduction band
and vice versa in Eq.(2) contribute to the superexchange

interaction. The total multielectron Hamiltonian in the
representation of the Hubbard operators31 looks like
Ĥ = Ĥ0+ Ĥ1, where Ĥ0 contains all multielectron states
of the involved dn and dn±1 configurations, and Ĥ1 de-
scribed all interatomic single electron hoppings (kinetic
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FIG. 1. The scheme of the superexchange interaction illus-
trating property of its additivity over virtual electron excita-
tions involving all ground states Jh0e0 (dotted line, we call
this contribution the main exchange loop) and the excited
electronic d

n+1 contribution Jh0e (solid line, called the ex-
cited exchange loop).

energy):

Ĥ0 =
∑

i

{

∑

h

(εh −N−µ)X
hh
i +

∑

n

(εn −N0µ)X
nn
i +

+
∑

e

(εe −N+µ)X
ee
i

}

(3)

Ĥ1 =
∑

ij

∑

rr′

trr
′

ij Xr
i
+Xr′

j (4)

for the material with magnetic cations in arbitrary dn

electron configuration. Any Hubbard operator Xr
i =

|p〉 〈q| constructed in the full and orthogonal set of eigen-
states |p〉 is numerated by a pair of indexes which de-
notes the initial state |q〉 and the final state |p〉 of the
excitation.31,32 It is more convenient to numerate each
excitation by single vector index r = (p, q) (so called
root vector33 that plays a role of the quasiparticle band
index). Here, electronic creation operators for vector in-
dexes r = (n, h) or r = (e, n) excitations in Eq.(2) are
denoted by β+

iσ (N− → N0) and α+
iσ (N0 → N+) respec-

tively. The hopping matrix element in Eq.(4) is

trr
′

fg =
∑

λλ′

tλλ
′

fg

∑

σ

[γ∗
λσ (r) γλ′σ (r

′) + γ∗
λ′σ (r) γλσ (r

′)]

(5)
and

γλσ (r) = 〈e| c+iλσ |n〉 × δSie,Sin±|σ| × δMe,Mn+σ (6)

where a root vectors r and r′ run over on all possible
quasiparticle excitations (e, n) and (n, h) between many-
electron states |n〉 and |e (h)〉 with the energies εn and
εe(h) in the sectors N0 and N± of configuration space
(Fig.1). These quasiparticle excitations are described

by nondiagonal elements trr
′

fg = tnh,neij . In the conven-
tional Hubbard model there is only one such element

corresponding to the excitations between lower and up-
per Hubbard bands. Using the results of Appendix(see
Eq.(A.12)), we can represent the exchange parameter for
a pair of interacting spins Sin0

= Sjn0
in the form of

Eq.(7):

Jij = JAFM
ij + JFM

ij . (7)

This equality and its relationship with the spin Sh(e)

at the states |h (e)〉 was obtained in the works5,19 for
iron borate and also was firstly briefly mentioned in the
works.34,35 The virtual electron interband (n0, e) and
(n0, h) hoppings correspond to only one of contributions
in the sum Jij =

∑

he

Jij (h, n0, e), and any contribution

Jhe =
∑

ij

Jij (h, n0, e) can be represented by a double loop

or the so-called exchange loop, marked by the same line
(solid or dashed). In Fig.1 the contributions Jhe is illus-
trated by double exchange loops with the arrows which
connect the ground state of the magnetic ions |n0〉 with
all ground |h0 (e0)〉 and excited |h (e)〉 states.

III. RULES FOR A SIGN OF DIFFERENT
CONTRIBUTIONS TO THE

SUPEREXCHANGE

The new result of this paper is the classification of
different contrubutions by the relation between spins
Sh and Se. If in exchange loop Sh = Se ± 1 it will
be FM contribution, in the other case Sh = Se it is
AFM contribution. These two relations exhaust all
possible interrelations between spins for all nonzero
contributions, i.e. in any other case, the contribution
to superexchange from this pair of states |h〉 and |e〉 is
simply not available. The sign of the total exchange
interaction (FM or AFM) depends on a relationship
between relative magnitudes of the contributions. The
main difficulty is a great number of excited states in N±

sectors of the configuration space. Due to the smallest
denominator ∆n0h0e0 in the superexchange (1), the
main exchange loop involving ground |h0 (e0)〉 states
can form a dominant Jh0e0 contribution. However, the
contributions Jhe from the excited states |h (e)〉 in N±

sectors can compete with the main exchange loop due
to the dominant nominator, if the excited exchange
loop occurs by overlapping of states with eg symmetry,
and the main exchange loop is formed by π bonding
despite not the smallest denominator ∆n0he in Eq.(1).
The problem is that without complicated numeric
calculation taking into account all hopping integrals
(4), it is difficult to obtain the final answer about the
magnitude and sign of the superexchange interaction.
For example, such numerical calculations have been
carried out for La2CuO4 with a configuration d9, where
a number of the contributions exceeds ten ones.36,37 We
will give a qualitative criterion that takes into account
both factors in the case both σ or π overlapping in the
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Hamiltonian (2) (where tel,hnij hopping is obtained by
the mapping of the multiband p-d model, which includes
integral for σ or π overlapping), and the energy gap
∆nhe in the arbitrary exchange loop Jhe. The minimal
gap ∆n0h0e0 just coincide with a dielectric gap Eg in
the oxide materials. After comparing calculated sign
of the superexchange constant for magnetic ions in the
electron configurations d2 - d8 with experimental data,
we found that in most cases there is no need to sum over
all possible virtual hoppings (or exchange loops), it is
enough to establish the criterion in form:
1. For the σ overlapping eg states corresponding to con-
tribution Jh0e0 , the sign of superexchange is controlled
by the virtual electron excitations with participate of the
ground |h0 (e0)〉 states and minimal magnitude of the
energy gap ∆n0h0e0 ∼ Eg . These excitations involved to
the main exchange loop is pictured in Fig.1 by a dashed
line.
2. In the case of π overlapping t2g states for the virtual
electron excitations involving only the ground |h0 (e0)〉
states the sign of superexchange is controlled by not the
main exchange loop, but the virtual electron excitations
(exchange loop) involving the excited states with the
σ overlapping eg states. These virtual excitations are
pictured in Fig.1 by solid line. If such exchange loops is
absent, the sign of superexchange is controlled still by
the main loop with the π overlapping.
Here, the σ overlapping have the priority. Indeed, the
superexchange interaction is proportional to the fourth
degree of the overlapping integral Iσ(π) = ρ (|∆R|)χσ(π)

between the electron states of the anion and the magnetic
cation, where the radial part ρ (|∆R|) depends only on
the anion-cation distance ∆R, and the angular part χσ(π)

depends on the angular distribution of the anions. The
squared ratio (Iπ/Iσ)

2
of the overlapping integrals for

eg and t2g states involved in the superexchange through

σ and π coupling in the same octahedral complexes
is the following relation: (Iπ/Iσ)

2 = (χτ/χσ)
2 = 1/3.

Thus the fourth degree gives ratio of matrix elements
∼ 0.1, i.e., competition between the contributions with a
participation of virtual t2g electron hopping and the one
through σ coupling is possible, when the denominator
energy ∆nhe for excited loop Jhe is no more than 9 times
higher in energy than the main loop energy ∆n0h0e0 .
Otherwise the σ type contribution from exchange loop
is dominant. In case of several competing contributions
simple calculations of the multielectron energies below
and above the spin crossover at the high pressure38 can
be used to compare energy denominators of the AFM
and FM contributions given by Eq.(7). Some examples
will be given in the next section for oxide materials with
d7 and d5 cations.

IV. SUPEREXCHANGE IN OXIDES WITH
CATIONS IN d

7 AND d
5 CONFIGURATIONS

Let us show, using the example of oxide materials CoO
and Ni2O3 with Ni3+, Co2+ cations in the d7 electron
configuration under high pressure, how our rules work.
The energy of the neutral |n〉 (d7) states and electronic
|e〉 (d8) and hole |h〉 (d6) states at the ambient pressure
are shown in Fig.2(a). From the main exchange loop
with π overlapping our rules results in the FM sign of the
contribution J5T,3A . Competing AFM contribution is the

exchange loop J3T,3T with the excited states
∣

∣

3T1,2

〉

and
σ overlapping. Below we will check our rules by direct
calculation for the main exchange loop. To derive the FM
contribution J5T,3A using angular momentum addition

rules, we introduce the creation operators β+
iσ (n0, h0) for

N− ↔ N0 hole quasiparticles by Eq.(7) and α+
iσ (e0, n0)

for N0 ↔ N+ electron quasiparticles by Eq.(8).5

−β+
i↑ =

√

1

5
X

3

2
,1

i +

√

2

5
X

1

2
,0

i +

√

3

5
X

− 1

2
,−1

i +

√

4

5
X

− 3

2
,−2

i , β+
i↓ =

√

4

5
X

3

2
,2

i +

√

3

5
X

1

2
,1

i +

√

2

5
X

− 1

2
,0

i +

√

1

5
X

− 3

2
,−1

i

−α+
i↑

(

3A2,
4T
)

=

√

1

4
X

1, 1
2

i +

√

1

2
X

0,− 1

2

i +

√

3

4
X

−1,− 3

2

i , α+
i↓

(

3A2,
4T
)

=

√

3

4
X

1, 3
2

i +

√

1

2
X

0, 1
2

i +

√

1

4
X

−1,− 1

2

i

(8)

Working further in framework of the cell perturbation
theory, we obtain in the second order the FM contribu-
tion J5T,3A from the main exchange loop in Fig.2 with
the π overlapping:

J5T,3A = −
∑

i6=j

Jij
(

5T, 3A
)

(5) (3/2)

(

Ŝin0
Ŝjn0

+
1

4
n̂
(e)
in0

n̂
(h)
jn0

)

(9)

where Sin0
= 3

2 , Ŝ
+
in0

= −5β+
i↑βi↓ = −4αi↓α

+
i↑, Ŝ

z
in0

=

−5
∑

σ

η (σ)β+
iσβiσ = −4

∑

σ

η (σ)αiσα
+
iσ, and also n̂

(e)
in0

=

5
∑

σ

β+
iσβiσ and n̂

(h)
jn0

= 4
∑

σ

αjσα
+
jσ are the number of

electron and hole quasiparticles involved in the superex-
change interaction. According to a second point of the
criterion the FM contribution competes with the AFM
J3T,3T contribution:

J3T,3T =
∑

i6=j

Jij
(

3T, 3T
)

(3) (3/2)

(

Ŝin0
Ŝjn0

−
1

4
n̂
(e)
in0

n̂
(h)
jn0

)

(10)
from the virtual hoppings of eg electrons with participa-



5

tion of the states
∣

∣

3T1,2

〉

and σ overlapping (see Fig.2(a)).

Similarly to Eqs.(7) and (8), new α′+
iσ and β′+

iσ quasipar-

ticles involved in this superexchange are given by the
expression:

β′+
i↑

(

4T, 3T
)

= X
3

2
,1

i +

√

2

3
X

1

2
,0

i +

√

1

3
X

− 1

2
,−1

i , β′+
i↓

(

4T, 3T
)

=

√

1

3
X

1

2
,1

i +

√

2

3
X

− 1

2
,0

i +X
− 3

2
,−1

i ;

−α′+
i↑

(

3T, 4T
)

=

√

1

4
X

1, 1
2

i +

√

2

4
X

0,− 1

2

i +

√

3

4
X

−1,− 3

2

i , α′+
i↓

(

3T, 4T
)

=

√

3

4
X

1, 3
2

i +

√

1

2
X

0, 1
2

i +X
−1,−1

2

i

(11)
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FIG. 2. Scheme of the 180◦ superexchange interaction in CoO:
(a) at the ambient pressure, where AFM interaction is con-
trolled by the contribution from the exchange loop J3T,3T

with the excited states
∣

∣

3
T1,2

〉

and σ overlapping. The con-
tribution J5T,3A from the main exchange loop J1A,3A with π

overlapping is showed by a dotted line; (b) under high pres-
sure, where FM character is controlled by the main exchange
loop J1A,3A with the σ overlapping. The AFM contribution
from the exchange loop J1A,1E with participation of excited

states
∣

∣

1
E
〉

has a large denominator.

Here: Ŝ+
in0

= 3β′+
i↑β

′
i↓ = −4α′

i↓α
′+
i↑, Ŝz

in0
=

3
∑

σ

η (σ) β′+
iσβ

′
iσ = −4

∑

σ

η (σ)α′
iσα

′+
iσ and n̂

(e)
in0

=

3
∑

σ

β′+
iσβ

′
iσ, n̂

(h)
in0

= 4
∑

σ

α′
iσα

′+
iσ Calculation of energies

of the different states below and above spin crossover
allows us to obtain the energy denominators for the dif-
ferent contributions to superexchange interaction. For
the main exchange loop J5T,3A in Fig.2(a) the value
∆n0he = U − JH , where U is the intra-atomic Coulomb
matrix element (Hubbard parameter) and JH is the Hund
exchange coupling, both U and JH are positive. For
the contribution from exchange loop J3T,3T , ∆n0he =
εe + εh − 2εn0

= U + JH . At the typical magnitudes
U = 6eV and JH = 1eV the ration of denominators
is 5/8, and the ratio of numerators is 9/1. It proves
the dominant AFM contribution below spin crossover.
With increasing pressure there is the spin crossover in
configuration d7. The pressure enter in the crystal field
parameter 10Dq that linearly increases with the pres-
sure: below spin crossover at the ambient pressure when
10Dq < 2JH the cation Co3+ is at the HS state, and
|n0〉 =

∣

∣

4T1

〉

, |h0〉 =
∣

∣

5T2

〉

, |e0〉 =
∣

∣

3A1

〉

(see Fig.2(a)).

Above spin crossover at 10Dq > 2JH the cation Co3+

is at the LS state |n0〉 =
∣

∣

2E
〉

, and |h0〉 =
∣

∣

1A
〉

(see

Fig.2(b)).38 Thus, the ground |n0〉 and hole |h0〉 states
the superexchange interactions in the cobalt monoxide
under high pressure is changed. The main exchange loop
J1A,3A with the σ overlapping should be FM according
our rules.

J1A,3A = −
∑

i6=j

Jij
(

1A, 3A
)

2

(

Ŝin0
Ŝjn0

+
1

4
n̂
(e)
in0

n̂
(h)
jn0

)

(12)
The AFM contribution from the exchange loop with the
excited states has the large denominator than the FM
one (Fig.2b).

J1A,1E =
∑

i6=j

Jij
(

1A, 1E
)

2

(

Ŝin0
Ŝjn0

−
1

4
n̂
(e)
in0

n̂
(h)
jn0

)

(13)
These conclusions can be obtained analogously to the
previous Eq.(9) and Eq.(10), starting from building oper-

ators β+
iσ, α

+
iσ and β′+

iσ, α
′+
iσ of the quasiparticles and fin-

ishing with derivation of the Eqs.(12) and (13). We have
to compare the energy denominators. For FM contribu-
tion J1A,3A , the energy ∆1A3A = ε

(

1A, d6
)

+ε
(

3A, d8
)

−

ε
(

2E, d7
)

= U − JH and ∆1A1E = U . Taking into ac-
count that all contributions have the same σ bonding, we
came to conclusion that resulting interaction in the LS
state for materials with the cations in d7 configuration
will be FM.
Let’s compare our conclusions with the results for iron

borate FeBO3 at the high pressure. Under pressure
P ∼ 60GPa in the iron borate with cations Fe3+ in the
configuration d5 the spin crossover

∣

∣

6A1

〉

→
∣

∣

2T2

〉

occurs
at 10Dq = 3JH . Given above criterion tells us that the
sign of the exchange interaction in iron borate is changed
from AFM to FM with increasing pressure in agreement
with direct calculations.19. This conclusion is also valid
for another oxide materials with cations in the configu-
ration d5 and octahedral environment.
At the ambient pressure FM contributions from the ex-

change loops are missing (Fig.3(a)). The AFM superex-
change interaction is caused by the contribution J5E,5E

from the σ bonding exchange loop with the excited |e〉
states. The calculation of the energy denominator is
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TABLE I. The examples of transition metals oxides with calculated sign of 180◦ superexchange interactions (in 3 and 5 columns),
and also the magnetic ordering below and above the spin crossover (in 4 and 6 columns). The notations (ex) and (gr) indicates
the nature of the main contribution to the superexchange: (ex) is the exchange loop involving excited states, (gr) is the main
exchange loop.

Cation and electron Oxides Superexchange Ambient pressure Superexchange High pressure

configuration below spin crossover (experiment) above spin crossover (experiment)

d2, Cr4+, CrO2 JFM
2T,4A

(gr) FM, TC = 90K no crossover, FM up to

Sn0
= 1 JFM

2T,4A
(gr), P=56GPa,39

Sn0
= 1

d3, Cr3+, LaCrO3 JAFM
3T,3T

(ex) AFM, TN = 298K40 no crossover AFM, TN increases

Sn0
= 3

2
JAFM
3T,3T

(gr), with a pressure up to

Sn0
= 3

2
380K at P=6.5 GPa40

d4, Fe4+, Mn3+, LaMnO3 JFM
4A,6A

(gr) AFM, with FM planes crossover is expected AFM, TN = 152K

Sn0
= 2 TN = 140K, 41 to the LS state, at the pressure

JFM
4A,2T

(gr), P=2 GPa. FM above

Sn0
= 1 the spin crossover

is predicted.

d5, Fe3+, Mn2+ FeBO3, JAFM
5E,5E

(ex) AFM, TN = 348K42 spin crossover, TN(C) = 50K∗,

Sn0
= 5

2
(Fe2O3, MnO JFM

3T,1A
(gr) at P=49 GPa,

Sn0
= 1

2
FM above the

spin crossover is

predicted.

d6, Fe2+, Co3+ Mg1−xFexO, JAFM
4T,4T

(ex) AFM, TN = 37K43 spin crossover to non magnetic

Sn0
= 2 (LaCoO3) nonmagnetic state above P=55 GPa43,44

with Sn0
= 0

d7, Co2+, Ni3+, CoO, JAFM
3T,3T

(ex) AFM, TN = 290K45 spin crossover spin crossover

Sn0
= 3

2
(La2CoO4, LaNiO3) is expected, observed at

JFM
1A,3A

(gr), P=80-90 GPa46,47

Sn0
= 1

2

d8, Ni2+, Cu3+ NiO JAFM
2E,2E

(ex) AFM, TN = 525K no spin crossover, no spin crossover

Sn0
= 1 JAFM

2E,2E
, observed up to

Sn0
= 1 P=220 GPa7,48

*The critical temperature TN(C) of magnetic ordering in iron borate FeBO3 at the higher pressure was measured by Mossbauer

spectroscopy,7,42 however, this method cannot distinguish the nature (FM or AFM) of the magnetic ordering. Up to now
there is no experimental data on the magnetic ordering in the LS state of FeBO3 or any other materials with d5 cations.

∆5E5T = U − 10Dq + 4JH . Thus, the AFM exchange
interaction at the ambient pressure may be estimated
as J5E5T ≈ t2σ

/

(U + JH). Crystal field increases with
pressure, and at the critical pressure 10Dq (Pc) = 3JH

there is spin crossover
∣

∣

6A1

〉

→
∣

∣

2T2

〉

. Above the spin
crossover, the nature of the FM superexchange interac-
tion is obtained from the competition of FM(J3T,1A) and
AFM (J1T,1A) loops with the same type of π overlapping,
where the FM contribution prevails (see Fig.3(b) due to
the smaller magnitude of the energy gap ∆n0he. We can
estimate the competing FM and AFM by calculation of
their energy denominators. For the main FM exchange
loop (dotted lines in Fig.3(b) the energy ∆5T 1A ≈ U−JH,

and for the excited AFM loop (solid lines in Fig.3(b) the
energy ∆1T 1A ≈ U . That is why the FM contribution
dominates. Nevertheless the AFM one strongly reduced
the total FM superexchange interaction, that can be es-
timated as

JFM = J5E5T + J5E5T ≈
t2π

U − JH
−

t2π
U

=
t2π

U − JH

JH
U
(14)

Thus, spin crossover in oxide materials with d5 cations
not only changes the sign of exchange interaction, but
also reduces its amplitude by the factor JH/U << 1 .
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FIG. 3. Scheme of the 180◦ superexchange interaction in
FeBO3: (a) at the ambient pressure, where the main exchange
loop J5E,5T2

has a zero contribution because of zero over-
lapping, and the σ overlapping exchange loops J5E,5E result
in AFM contribution only; (b) under high pressure, where
both contributions J3T,1A (FM) and J1T,1A (AFM) are pro-
portional to π overlaping. The FM contribution J3T,1A dom-
inates.

V. SUPEREXCHANGE IN OXIDES WITH
CATIONS IN OTHER ELECTRON

CONFIGURATIONS

Now, we can obtain the nature(FM or AFM) of the
superexchange interaction for oxide materials with d2

- d8 cations under pressure, below and above the spin
crossover in Tab.1, and also compare one with experi-
mental data, where it is possible. In the oxide materials
with another dn ions, where n = 2, 3, spin crossover is
not possible, and ground states

∣

∣

3T1

〉

and
∣

∣

4A2

〉

is stable
under high pressure.
d2. Chromium dioxide CrO2, where chrome cation

Cr4+ has configuration d2 with spin Sn0
= 1, is the ex-

ample of FM contribution J2T,4A
from the main exchange

loop involving the ground states of t2g cation with the π
overlapping at an arbitrarily pressure. FM ordering in
chromium dioxide is known experimentally and persists
in orthorhombic phase of the chromium dioxide up to
P=56Gpa.39

d3. For chromium oxide LaCrO3 with cations Cr3+

at the ground state
∣

∣

4A2

〉

is stable under pressure, and
the dominant AFM contribution is given by the ex-
change loop with the ground state |h0〉 =

∣

∣

3T
〉

in the

hole configuration d2 and the excited state |n〉 =
∣

∣

3T
〉

in the electron d4 configuration. Under high pressure
when 10Dq(P ) > 3JH the crossover stabilizes the triplet
|n0〉 =

∣

∣

3T
〉

. The AFM sign of the exchange interaction
does not change, but the same interaction J3T,3T is de-
scribed by the main exchange loop and its value becomes
larger.
d4. In manganite LaMnO3 at the ambient pressure

with cations Mn3+ at the ground HS state |n0〉 =
∣

∣

5E
〉

,
the σ overlapping main loop J4A,6A

results in the FM in-

teraction. Under high pressure 10Dq(P ) > 3JH when
the cations Mn3+ are in the intermediate spin state
|n0〉 =

∣

∣

3T
〉

, and all superexchange interactions results
from the π bonding. The main exchange loop provides

the FM interaction J4A,2T , with the energy denominator
∆4A2T = U −JH , while exchange via excited states gives
the AFM contribution J2T,2T with ∆2T 2T = U+JH , and
the total superexchange interaction has the FM sign. It
should be emphasized that in this study we consider the
crystals with cations in the octahedral oxygen environ-
ment. When we compare our conclusions about the FM
interaction with the magnetic state of manganite, we find
the disagreement with its AFM ordering at the ambient
pressure. Nevertheless this AFM ordering consists of the
FM ab planes that are AFM coupled. This disagreement
is probably related to the dependence of the magnetic
ordering on the type of orbital ordering in the oxide ma-
terial with Jahn - Teller cations Mn3+.49,50 With increas-
ing pressure, the spin crossover in is accompanied by the
transition of the cation Mn3+ from the HS Jahn - Teller
state

∣

∣

5E
〉

to the state
∣

∣

3T
〉

. Therefore, the orbital or-
dering with increasing pressure should disappear, and the
FM nature of the superexchange will manifest itself (see
Tab. 1).
d6. At the ambient pressure, in the wustite

MgxFe1−xO with cations Fe2+ in the configuration d6

there is a competition of two different contributions
JAFM

4T,4T with σ overlapping and JFM
6A,4T with π overlapping,

and the AFM contribution dominates. At high pressures
(P = 55 GPa), the magnetic moment in the wustite is
absent as well as in all other compounds with cations in
configuration d6. The large class of such materials with
Sn0

= 0 in the ground state is given by the perovskite
based rare earth cobaltite LaCoO3, where La3+ is the 4f
ion.
d8. For nickel monoxide NiO with cations Ni2+ in the

configuration d8 situation is similar to the configuration
d3. There is no spin crossover in the neutral configu-
ration d8 and at the ambient pressure the AFM inter-
action JAFM

2E,2E involves the excited state |h〉 =
∣

∣

2E
〉

in

the hole configuration d7. Above the spin crossover in
the hole configuration this state becomes the ground one
|h0〉 =

∣

∣

2E
〉

, and the same AFM interaction JAFM
2E,2E

is
given now by the main exchange loop. Thus, its value
increases due to the spin crossover in the hole configu-
ration d7. Summarizing our analysis we get together all
our conclusions in Tab.1, and also compare them with
experimental data, where it is possible.

VI. CONCLUSIONS

The sign of the partial contributions Jhe to the to-
tal superexchange interaction is directly independent on
the cation spin S (dn), but is controlled by the spin
relation S

(

dn−1
)

= S
(

dn+1
)

(AFM interaction) or

S
(

dn−1
)

= S
(

dn+1
)

± 1 (FM interaction) provided that

S (dn) = S
(

dn±1
)

± 1/2 (see Eqs.(A.12) and (A.14)).
Indeed the chromium dioxide CrO2 and nickel monox-
ide NiO (Sn0

= 1), or manganites LaMnO3 and wustite
Mg1−xFexO (Sn0

= 2), can have FM and AFM interac-
tions respectively. The main factor for the comparison
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between the AFM and FM interactions is the type over-
lapping states involved by the contributions.
The nature of the superexchange interaction with in-
creasing pressure changes (AFM→FM) only in oxide ma-
terials with cations in d5 (e.g. FeBO3) and d7 (e.g.
CoO) configurations. Indeed spin crossover

∣

∣

4T1

〉

→
∣

∣

2E
〉

with generating Jahn-Teller cations Co2+
(

2E
)

in cobalt monoxide at P > 43 Gpa is accompanied
by: (i) transformation of the cubic rock salt-type
structure to mixed rhombohedrally distorted rock salt-
type structure without significant volume change struc-
ture; (ii) a resistance drop by eight orders of mag-
nitude at the room temperature (43Gpa<P<63Gpa)
while maintaining its semiconductor nature; (iii) Mott-
Hubbard transition into the metal rock salt structure at
more high pressure P >120Gpa.46,47 We did not find
any studies related to high pressure effects in oxides
La2CoO4(Sn0

= 3/2, TN = 275K at the ambient pres-
sure51) and LaNiO3−x(paramagnetic metal52 and ultra-
thin film AFM insulator53 at the ambient pressure).
Unlike the cobalt oxides LaSrCoO4 and LaCoO3, with
Co3+,54 the layered oxide La2CoO4 has not been studied
under the high pressure. However, these oxide materi-
als55 isostructural to well-known high-TC and colossal
magnetoresistance materials could have interesting phys-
ical properties at the high pressure (>43Gpa) and mag-
netic field. On the one hand, the high-TC supercon-
ductors: doped and nonstoichiometric cuprates56 with
the multimode Jahn-Teller

(

2a1 +
2b1
)

⊗ (b1g + a1g) ef-

fect57 and iron based superconductors,58 have also the
spin Sn0

= 1/2 and on the other hand, pseudogap ef-
fects and colossal magnetoresistance are observed in the
doped manganite La(Sr,Ba)MnO3 also with the Jahn-
Teller Mn3+(5E) cations.59 However, the cobalt oxide
La2CoO4 at the high pressure is very likely different from

cuprate La2CuO4 at the ambient pressure in a sign of
the superexchange interaction, despite the same cation
spin 1/2. Indeed the interaction in nickel monoxide does
not undergo any critical changes with increasing pres-
sure, either in theory or experiment, up to 220 GPa.7

Note, in the oxide materials: CrO2, NiO, La2CuO4 with
the cations in the electron configurations d3, d8, d9 the
spin crossover under high pressure is impossible.

The results partially disagree with experimental data
at the ambient pressure only for oxide materials with
Jahn-Teller d4 cations like LaMnO3, where the FM ab
planes have AFM ordering. With increasing pressure,
the spin crossover in manganite LaMnO3 is accompa-
nied by the transition of the magnetic Jahn-Teller Mn3+

cation to the state
∣

∣

3T
〉

. In according to our conclusions,
the effects of orbital ordering should disappear, and the
FM nature of the superexchange will manifest itself (see
Tab.1). Indeed, below pressure 29 GPa the manganite
is not metallic and consists of a dynamic mixture of dis-
torted and undistorted MnO6 octahedral.60 Above pres-
sure 32 Gpa, undoped manganite already shows metallic
properties.
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Appendix: AFM and FM contributions to
superexchange interaction

To derive Eqs.(1) and (6), we start from the Hamilto-
nian of the p-d model, where

Ĥ = Ĥd + Ĥp + Ĥpd + Ĥpp

Ĥd =
∑

iλσ



(ελ − µ) d+λiσdλiσ +
Ud

2
n̂σ
λin̂

−σ
λi +

1

2

∑

λ′ 6=λ

(

∑

σ′

Vλλ′ n̂σ
λin̂

σ′

λ′i − JHd+λiσdλiσ̄d
+
λ′iσ̄dλ′iσ

)



,

Ĥp =
∑

mασ



(εα − µ) p+αmσpαmσ +
Up

2
n̂σ
αmn̂−σ

αm +
1

2

∑

α′ 6=α,σ′

Vαα′ n̂σ
αmn̂σ′

α′m



,

Ĥpd =
∑

mi

∑

αλσ

[

tλαim
(

p+αmσdλiσ + h.c.
)

+
V pd
im

2

∑

σ′

n̂σ
αmn̂σ′

λi

]

, Ĥpp =
∑

mn

∑

αβσ

tαβmn

(

p+αmσpβnσ + h.c.
)

. (A.1)

Here, nσ
λi = d+λiσdλiσ , nσ

αm = p+αmσpαmσ, where the
indices i (j) and m(n) run over all positions dλ =
dx2−y2 , d3r2−z2 , dxy, dxz, dyz and pα = px, py, pz localized

one electron states with energies ελ and εα; t
λα
im and tαβmn

the hopping matrix elements; Ud, Up and JH are one
site Coulomb interactions and the Hund exchange inter-

action, V pd
im is the energy of repulsion of cation and an-

ion electrons. A correct transition from the Hamiltonian
(A.1) of the p-d model to the Hamiltonian (3) in the mul-
tielectron representation of the Hubbard operators is pos-
sible when constructing well localized Wannier cell oxy-
gen states

∣

∣p+λiσ
〉

. Although, there is no general deriva-

tion of the canonical transformation
∣

∣p+λiσ
〉

↔ |p+αmσ〉 for
arbitrary lattice symmetry, we assume that the canoni-
cal representation does exist and that the Wannier cell
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oxygen functions are sufficiently localized.61–63 In the
multielectron representation the one-electron p+λiσ and

d+λiσ operators can be written as a superposition of the
Hubbard operators that describe one electron excitations
from the LS and HS partner states |h (e)〉 with spin
Se(h) = Sn ± 1/2 to the neutral state |n〉:

c+λiσ =
∑

n

[

∑

e

γλ (ne)α
+
iσ (ne) +

∑

h

γλ (nh)β
+
iσ (nh)

]

,

(A.2)
where the new operators α+

iσ (en) and β+
iσ (nh) are no-

tations for the electron addition to the ground state
N0 → N+, and to the hole state N− → N0, respectively.
Calculation of the matrix elements in Eq.(5) in agree-
ment with the rules of addition of angular momentums
results in the following relations:

α+
iσ (en) =



















η (σ)
Mν
∑

−Mν

√

Sn−η(σ)Me+
1
2

2Sn+1 XMe,Mn=Me−σ
i

Me
∑

−Me

√

Sn+η(σ)Me+
1
2

2Sn+1 XMe,Mn=Me−σ
i

(A.3)
and

β+
iσ (nh) =



















η (σ)
Mn
∑

−Mn

√

Sh−η(σ)Mn+
1
2

2Sh+1 XMn,Mh=Mn−σ
i

Mn
∑

−Mn

√

Sh+η(σ)Mn+
1
2

2Sh+1 XMn,Mh=Mn−σ
i

(A.4)
where top and below lines are for Se = Sn − |σ| and
Se = Sn + |σ| respectively. The superexchange interac-
tion appears in the second order of the cell perturba-
tion theory with respect to the hopping processes Ĥ1 in
Eq.(3), which corresponds to virtual excitations through
the dielectric gap into the conduction band and back

to valence band. These quasiparticle excitations corre-
spond to the electron-hole excitations and are described
by off-diagonal elements with root vectors r = (h, n)
and (n, e). To highlight these contributions, we use a
set of projection operators Ph and Pe , that generalized
the Hubbard model analysis26 to the Mott-Hubbard ap-
proach with an arbitrary quasiparticle spectrum, where

Ph =

(

Xhh
i +

∑

n

Xnn
i

)(

Xhh
j +

∑

n′

Xn′n′

j

)

and Pe =

Xee
i +Xe′e′

j −Xee
i

∑

e′
Xe′e′

j with 1 6 h 6 Nh, 1 6 n 6 Nn

and 1 6 e (e′) 6 Ne. These operators satisfies the re-

lations

(

Nh
∑

h=1

Ph +
Ne
∑

e=1
Pe

)

= 1 and PhPe = 0, PhPh′ =

δhh′Ph, PePe′ = δee′Pe. We introduce the Hamiltonian

of the exchange coupled (i, j) -pairs: ĥij =
(

ĥ0 + ĥin
1

)

+

ĥout
1 , where

(

ĥ0 + ĥin
1

)

=
∑

hh′

PhĥijPh′ +
∑

ee′
PeĥijPe′

and ĥout
1 =

(

∑

h

Ph

)

ĥij

(

∑

e

Pe

)

+

(

∑

e

Pe

)

ĥij

(

∑

h

Ph

)

is the intra- and interband contributions for Hamilto-
nian Ĥ1 =

∑

ij

ĥij respectively. In the unitary trans-

formation the Hamiltonian for (i, j) -pairs is equal to

h̃ij = eĜĥije
−Ĝ , where Ĝ satisfies the equation

(

∑

h

Ph

)

ĥij

(

∑

e

Pe

)

+

(

∑

e

Pe

)

ĥij

(

∑

h

Ph

)

+

+

[

Ĝ,

(

∑

hh′

PhĥijPh′ +
∑

ee′

PeĥijPe′

)]

= 0, (A.5)

and the transformed Hamiltonian h̃ij in the second order

of cell perturbation theory over interband hopping ĥout
1

can be represented as

h̃ij ≈

(

∑

hh′

PhĥijPh′ +
∑

ee′

PeĥijPe′

)

+
1

2

[

Ĝ,

{(

∑

h

Ph

)

ĥij

(

∑

e

Pe

)

+

(

∑

e

Pe

)

ĥij

(

∑

h

Ph

)}]

(A.6)

where

(

∑

h

Ph

)

ĥij

(

∑

e

Pe

)

=
∑

nσ

∑

he

ten,hnij α+
iσ (en)βjσ (hn) ,

(

∑

e

Pe

)

ĥij

(

∑

h

Ph

)

=
∑

nσ

∑

he

tne,nhij β+
iσ (nh)αjσ (ne)

(A.7)

and

Ĝ =
∑

nhe

[

ten,hnij

∆nhe

∑

σ

α+
iσ (en)βjσ (hn)−

−
tnh,neij

∆n0he

∑

σ

β+
iσ (nh)αjσ (ne)

]

(A.8)

with the energy denominator is ∆nhe = (εe + εh)− 2εn.
The effects of the ligand environment of magnetic ions
are taken into account, due to the Wannier oxygen cell
functions, as well as the exact diagonalization procedure
when constructing the configuration space of the cell |n〉
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and |h (e)〉 states with energies εn and εe(h) respectively. In agreement with the relations:

n̂
(e)
inσ = (2Sh + 1)β

(t)+
iσ (nh)β

(t)
iσ (hn) ,

n
(h)
inσ = (2Sn + 1)α

(s)
iσ (ne)α

(s)+
iσ (en) (A.9)

S+
in =

{

(2Sh + 1)β+
i↑ (nh)βi↓ (hn) = (2Sn + 1)α↓ (ne)α

+
↓ (en) , Sn = Sh + |σ| ;Se = Sn + |σ|

− (2Sh + 1)β+
i↑ (nh)βi↓ (hn) = − (2Sn + 1)αi↓ (ne)α

+
i↓ (en) , Sn = Sh − |σ| ;Se = Sn − |σ|

(A.10)

Ŝz
in =







(2Sh + 1)
∑

σ

η (σ) β+
iσβiσ = (2Sn + 1)

∑

σ

η (σ)αiσα
+
iσ , Sn = Sh + |σ| ;Se = Sn + |σ|

− (2Sh + 1)
∑

σ

η (σ) β+
iσβiσ = − (2Sn + 1)

∑

σ

η (σ)αiσα
+
iσ , Sn = Sh − |σ| ;Se = Sn − |σ|

and assuming that the ground state |n〉 = |n0〉 is occupied
at T = 0K, and the superexchange Hamiltonian takes the
form:

Ĥs =
∑

i6=j

h̃ij =
∑

i6=j

{

J−
ij Ŝin0

Ŝjn0
−

1

4
J+
ij n̂

(e)
in0

n̂
(h)
jn0

}

(A.11)

where

J−
ij =

∑

he

′ Jij (h, n0, e)

(2Sh + 1) (2Sn0
+ 1)

−
∑

he

′′ Jij (h, n0, e)

(2Sh + 1) (2Sn0
+ 1)

, (A.12)

and

J+
ij =

∑

he

′ Jij (h, n0, e)

(2Sh + 1) (2Sn0
+ 1)

+

+
∑

he

′′ Jij (h, n0, e)

(2Sh + 1) (2Sn0
+ 1)

(A.13)

and n̂
(e)
in0

=
∑

σ

n̂
(e)
in0σ

, n̂
(h)
in0

=
∑

σ

n̂
(h)
in0σ

. Since in the first

contribution (
∑

he

′...) the exchange loops are summed with

Sh = Se, and in the second one (
∑

he

′′...), the exchange

loops are with Sh = Se ± 1, so the superexchange Ĥs

contains all possible nonzero contributions, and the ex-
change constant J−

ij in Eq.(A.11) is the sum of two AFM

and FM contributions. Note, to obtain Eq.(A.12) for the
same spins Sin0

= Sjn0
at the different i and j cell of

lattice we could use equality:

Jij =
∑

he

Jij (h, n0, e) =JAFM
ij + JFM

ij =

=2
∑

he

(

tn0h,n0e
ij

)2

(δSh,Se
+ δSh,Se±1)

∆n0he

δSn0
,Sh+σ

(A.14)

This is a simple but nonobvious conclusion, since the sign
of the exchange parameter JAFM

ij (JFM
ij ) becomes clear

only after the spin correlators are derived from the op-
erator structure of the Hamiltonian (2). Eqs.(A.12) and
(A.13) extends the results of work5 to the oxide materials
with arbitrary transition elements.
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