

УДК 541.49:548.73

СТРУКТУРА И ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ 2-ТИОБАРБИТУРАТОВ Nd(III), Gd(III) И Tb(III)[#]

© 2019 г. Н. Н. Головнев^{1, *}, М. С. Молокеев^{1, 2, 3}, И. В. Стерхова⁴

¹Сибирский федеральный университет, пр-т Свободный, 79, Красноярск, 660041 Россия ²Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Академгородок, 50, стр. 38, Красноярск, 660036 Россия

³Дальневосточный государственный университет путей сообщения, ул. Серышева, 47, Хабаровск, 680021 Россия

⁴Институт химии им. А.Е. Фаворского СО РАН, ул. Фаворского, 1, Иркутск, 664033 Россия

**E-mail: ngolovnev@sfu-kras.ru* Поступила в редакцию 28.12.2018 г. После доработки 15.02.2019 г. Принята к публикации 15.03.2019 г.

Получены комплексы $[Ln_2(H_2O)_6(\mu_2-Htba-O,O')_4(Htba-O)_2]_n$ (Ln = Tb (I), Gd (II), Nd (III); H₂tba – 2-тиобарбитуровая кислота). По данным монокристального PCA, моноклинные кристаллы I– III изоструктурны. Они содержат три независимых лиганда Htba⁻ (один концевой и два мостиковых) и два независимых иона Ln^{3+} . Один ион Ln^{3+} координирует шесть ионов Htba⁻ (два концевых и четыре O,O'-мостиковых) и две молекулы воды, другой – четыре O,O'-мостиковых иона Htba⁻ и четыре молекулы воды с образованием квадратных антипризм. Антипризмы связаны мостиковыми ионами Htba⁻ в слои. Многочисленные водородные связи и π – π -взаимодействия стабилизируют структуру соединений. При термическом разложении на воздухе III переходит в Nd₂O₂SO₄, а I и II превращаются в смеси, содержащие оксиды и оксисульфаты.

Ключевые слова: 2-тиобарбитураты лантанидов(III), строение, термическая устойчивость **DOI:** 10.1134/S0044457X19090137

введение

Металлоорганические координационные полимеры лантанидов(III) обладают высокой монохроматичностью люминесцентного излучения и используются в клинической диагностике и биотехнологии. органических светодиодах. дисплеях, оптических усилителях, лазерах [1-4]. Одним из многофункциональных лигандов, способных образовывать с ионами металлов координационные полимеры различного строения, является 2-тиобарбитуровая кислота (рис. 1) [5], производные которой – тиобарбитураты – используются в качестве лекарственных средств [6]. В настоящей работе в рамках систематического изучения структуры и свойств 2-тиобарбитуратных и 1,3-диэтил-2-тиобарбитуратных комплексов лантанидов [7-10] получены и структурно охарактеризованы три изоструктурных комплекса $[Ln_2(H_2O)_6(H_2tba)_6]$ (Ln = Tb (I), Gd (II), Nd (III)) с потенциально полезными люминесцентными и магнитными свойствами [3, 4]. Исследовано их термическое разложение в воздушной атмосфере.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали без дополнительной очистки TbCl₃ \cdot 6H₂O, GdCl₃ \cdot 6H₂O, Nd(NO₃)₃ \cdot 6H₂O, H₂tba и NaOH (все марки "х. ч.").

Синтез $[Ln_2(H_2O)_6(Htba)_6]_n$ (Ln = Tb (I), Gd (II) и Nd (III)). Гидраты солей лантанидов (0.463 ммоль) растворяли в 10 мл воды и добавляли 0.200 г (1.39 ммоль) твердой H₂tba, затем смесь нейтрализовали 1 М раствором NaOH до pH 4. Образовались мелкокристаллические осадки I (желтый), II (красный) и III (фиолетовый), которые отфильтровывали через 8 ч. Выход соединений 60–70%.

	С	Н	Ν	S		
Найдено, %:	22.1;	2.47;	12.8;	14.8.		
Для C ₂₄ H ₃₀ N ₁₂ O ₁₈ S ₆ Tb ₂ (I)						
вычислено, %:	22.4;	2.35;	13.1;	15.0.		
	C		NT	C		
	C	н	IN	3		
Найдено, %:	22.1;	2.55;	12.9;	14.7.		
Для C ₂₄ H ₃₀ Gd ₂ N ₁₂ O ₁₈ S ₀	5 (II)					
вычислено, %:	22.5:	2.36:	13.1:	15.0.		
	,	,	,			

[#] Дополнительная информация для этой статьи доступна по doi 10.1134/S0044457X19090137

Рис. 1. Графическая формула молекулы 2-тиобарбитуровой кислоты (H₂tba).

	С	Н	Ν	S
Найдено, %:	22.7;	2.66;	13.0;	15.0.
Для C ₂₄ H ₃₀ N ₁₂ Nd ₂ O ₁₈ S ₆	5 (III)			
вычислено, %:	23.0;	2.41;	13.4;	15.3.

При медленном испарении фильтратов в течение 2-4 нед. образовывались соответствующие монокристаллы, которые отделяли фильтрованием и сушили на воздухе между листами фильтровальной бумаги. Интенсивность рентгеновских отражений от призматических кристаллов I–III с размерами 0.2 × 0.3 × 0.4 мм измерена при 100 К с помошью монокристального дифрактометра D8 VENTURE (Bruker AXS, MoK_{α} -излучение). Экспериментальные поправки на поглощение введены с помощью программы SADABS [11] методом мультисканирования. Модель структуры установлена прямыми методами и уточнена с помощью комплекса программ SHELXTL [12]. Из разностных синтезов электронной плотности определены положения атомов водорода, которые затем идеализировали и уточняли в связанной с основными атомами форме. В табл. 1 приведены параметры экспериментов и результаты уточнения структур.

Экспериментальные рентгенограммы мелкокристаллических порошков I–III совпадают с теоретически рассчитанными из данных РСА для соответствующих монокристаллов, что подтверждает их фазовую идентичность. Сравнение этих рентгенограмм приведено на рис. S1.

Структуры I–III депонированы в Кембриджском банке структурных данных (№ 1576288, 1576438 и 1576287 соответственно); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif.

Термическое разложение соединений изучено на термическом анализаторе SDT-Q600, совмещенном с FT-IR спектрометром Nicolet380 для качественного определения выделяющихся газов (скорость воздушного потока 50 мл/мин, скорость нагревания 10 град/мин, температурный интервал 24–850°С).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Комплексы I–III вместе с $[Eu_2(H_2O)_6(Htba)_6]_n$ [7] и $[Sm_2(H_2O)_6(Htba)_6]_n$ [10] составляют ряд изоструктурных соединений $[Ln_2(H_2O)_6(Htba)_6]_n$. В независимой части ячеек содержатся два иона Ln^{3+} в частных позициях, три иона $Htba^-$ и три молекулы воды в общих позициях. Ионы $Htba^$ связаны с катионами Ln^{3+} только через атомы O. Два независимых иона Ln^{3+} имеют разное координационное окружение (рис. 2). Полиэдры $Ln(1)O_8$ и $Ln(2)O_8$ – квадратные антипризмы, связанные друг с другом мостиковыми $Htba^-$ с формированием бесконечного слоя в плоскости, перпендикулярной направлению a + c (рис. 3). В результате мостиковой O,O'-координации ионов Htba⁻ к Ln^{3+} образуются 24-членные циклы. Строе-

Рис. 2. Строение комплексов [Ln₂(H₂O)₆(Htba-O,O')₄(Htba-O)₂]_n.

Кристалл	Ι	II	III			
Цвет	Желтый	Красный	Фиолетовый			
Брутто-формула	$C_{24}H_{30}N_{12}O_{18}S_6Tb_2$	$C_{24}H_{30}Gd_2N_{12}O_{18}S_6$	$C_{24}H_{30}N_{12}Nd_2O_{18}S_6$			
M_r	1284.80	1281.46	1255.44			
Пр. гр., Z	<i>P</i> 2/ <i>n</i> , 2	<i>P</i> 2/ <i>n</i> , 2	<i>P</i> 2/ <i>n</i> , 2			
<i>a</i> , Å	13.9922 (4)	14.026 (1)	14.1330 (8)			
<i>b</i> , Å	10.0297 (3)	10.0613 (8)	10.1339 (6)			
c, Å	15.3486 (5)	15.325 (1)	15.3565 (8)			
β, град	109.981 (1)	110.017 (2)	110.750 (2)			
<i>V</i> , Å ³	2024.3 (1)	2032.0 (3)	2056.7 (2)			
$ ho_{\rm выч},$ г/см ³	2.108	2.094	2.027			
μ, мм ⁻¹	3.864	3.633	2.889			
Всего отражений	59004	62552	62764			
2θ _{max} , град	60.158	60.42	60.822			
Независимых отражений N ₁ (<i>R</i> _{int})	5935 (0.0445)	5994 (0.0457)	6082 (0.0410)			
Число отражений с <i>F</i> > 4σ(<i>F</i>), <i>N</i> ₂	5566	5602	5562			
Диапазон индексов h, k, l	$-19 \le h \le 15, -14 \le k \le 14, \\ -21 \le l \le 21$	$-19 \le h \le 19, -14 \le k \le 14, \\ -19 \le l \le 21$	$-19 \le h \le 19, -14 \le k \le 14, \\ -21 \le l \le 21$			
Весовая схема по F ²	$w = 1/[\sigma^2(F_o^2) + (0.0202P)^2 + 4.4974P]$	$w = 1/[\sigma^2(F_o^2) + (0.0301P)^2 + 4.401P]$	$w = 1/[\sigma^2(F_o^2) + (0.0238P)^2 + 3.9105P]$			
	$P = \max(F_{\rm o}^2 + 2F_{\rm c}^2)/3$					
Число уточняемых параметров	299	299	299			
<i>R</i> (по <i>N</i> ₁ рефлексам)	0.0223	0.0242	0.0255			
<i>R</i> (по <i>N</i> ₂ рефлексам)	0.0199	0.0213	0.0217			
<i>wR</i> (<i>F</i> ²) (по <i>N</i> ₁ рефлексам)	0.0513	0.0581	0.0570			
<i>wR</i> (<i>F</i> ²) (по <i>N</i> ₂ рефлексам)	0.0502	0.0565	0.0565 0.0554			
GOOF	1.055	1.012	1.121			
Коэффициент экстинкции	Не уточнялся	Не уточнялся	Не уточнялся			
$(\Delta/\sigma)_{max}$	<0.001	<0.001	<0.001			
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / \text{Å}^3$	0.529/-1.785	0.708/-2.043	0.707/-1.680			

Таблица 1. Параметры эксперимента и результаты уточнения структур

ние рассматриваемых комплексов соответствует общей формуле $[Ln_2(H_2O)_6(Htba=O,O')_4(Htba=O)_2]_n$.

Основные геометрические характеристики соединений I–III даны в Приложении (табл. S1). Длины связей Ln–O лежат в интервале 2.3–2.5 Å и имеют обычные значения [13]. Они, как и объемы элементарных ячеек V(табл. 1), закономерно увеличиваются при переходе от соединения I к III, что объясняется монотонным увеличением кристаллографического радиуса (r) иона Ln³⁺ [14]. Структуры $[Sm_2(H_2O)_6(Htba)_6]_n$ [10] и $[Eu_2(H_2O)_6(Htba)_6]_n$ [7] определены при других температурах (соответственно 296 и 300 K), поэтому зависимость *V* от *r* для комплексов $[Ln_2(H_2O)_6(Htba)_6]_n$ (Ln = Tb, Gd, Eu, Sm, Nd) оказалась немонотонной.

Геометрические параметры независимых ионов Htba⁻ (одного концевого и двух мостиковых) во всех трех соединениях практически совпадают (табл. S1), например, длины связей С-О (1.257(2)–1.273(2) Å), С(4)–С(5) и С(5)–С(6)

Ln = Tb, Gd, Nd

Рис. 3. Строение слоя, перпендикулярного направлению *a* + *c*. Циклический фрагмент структуры выделен полосой.

(1.389(3)–1.398(3) Å), C–S (1.678(2)–1.684(2) Å) и валентный угол С(6А)–С(5А)–С(4А) (119.8°–119.9°).

В І–ІІІ образуются двенадцать водородных связей (**BC**) N–H···O, N–H···S, O–H···O и O–H···S (табл. S2), в которых участвуют все ионы Htba⁻ и все молекулы воды. ВС образуют трехмерный каркас, в котором можно выделить супрамолекулярные мотивы $R_2^2(8)$, S(6), $R_2^2(28)$ и $R_4^4(26)$ [15]. При помощи программы PLATON [16] определены параметры π – π -взаимодействия между ионами Htba⁻ (табл. S3) типа "голова–к хвосту".

Термическое разложение I–III протекает в несколько стадий (рис. 4). На первой стадии происходит дегидратация комплексов с образованием не идентифицированных РФА кристаллических фаз. Экспериментальные потери массы веществ ($\Delta m_{\rm эксп}$) оказались близки к вычисленным ($\Delta m_{\rm выч}$) в предположении удаления всех шести молекул H₂O (для І $\Delta m_{_{3KC\Pi}} = 8.71\%$, $\Delta m_{_{BbY}} = 8.41\%$; для II $\Delta m_{_{3KC\Pi}} = 9.03\%$, $\Delta m_{_{BbY}} = 8.50\%$; для III $\Delta m_{_{3KC\Pi}} =$ = 8.60%, $\Delta m_{\rm выч}$ = 8.61%). Дегидратация сопровождается эндоэффектами на кривых ДСК (255°, 311° для I; 247° – II и 246° – III). Окисление органического лиганда в I–III начинается при ~300°С. В диапазоне 400-800°С этот процесс сопровождается двумя-тремя экзоэффектами и выделением газов H₂O, CO₂, COS, NO и SO₂. По данным РФА, при 800°С конечным продуктом разложения III. как и в случае термолиза [Nd(H₂O)₂(Htba)₂(CH₃COO)] · 2H₂O [8], является чистый $Nd_2O_2SO_4$ ($\Delta m_{_{ЭКСП}} = 33.0\%$, $\Delta m_{_{BЫY}} = 33.2\%$). Оксисульфаты Ln₂O₂SO₄ обладают большой емкостью по атомам кислорода [17] и перспективны в качестве устойчивых к отравлению серой катализаторов реакции получения водорода из СО и H₂O [18]. Термическое разложение III можно рассматривать как альтернативный способ получения оксисульфата Nd(III), который, в свою оче-

Рис. 4. Кривые ТГ и ДСК для комплексов I–III при разложении на воздухе.

t, °C

редь, может служить прекурсором для получения перспективного лазерного материала Nd_2O_2S [19]. Конечные продукты разложения I и II представляют смеси соответствующих оксидов и оксисульфатов. Состав промежуточных продуктов разложения соединений не изучали.

ЗАКЛЮЧЕНИЕ

При 800°С одни тиобарбитуратные комплексы переходят в оксисульфаты $Ln_2O_2SO_4$ (Ln = Nd (комплекс III), Sm [10], Eu [7]), а другие (I и II) превращаются в смеси, содержащие преимущественно оксиды TbO₂, Tb₂O₃ и Gd₂O₃ соответственно и относительно небольшие количества $Ln_2O_2SO_4$ (Ln = Gd, Tb). Различный состав продуктов термического разложения $[Ln_2(H_2O)_6(Htba)_6]_n$ можно объяснить уменьшением энтальпий образования оксидов Ln_2O_3 с увеличением порядкового номера лантанида [20].

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках государственного задания Минобрнауки РФ Сибирскому федеральному университету в 2017—2019 гг. (4.7666.2017/БЧ). Рентгенографические данные получены с использованием оборудования Байкальского и Красноярского центров коллективного пользования СО РАН.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Рис. S1. Экспериментальная, теоретическая и разностная рентгенограммы кристаллов: a) I; б) II; в) III после уточнения методом Ритвельда.

Рис. S2. Рентгенограмма продукта термолиза III при 800°С.

Таблица S1. Основные длины связей (Å) и углы (град) в $[Ln_2(H_2O)_6(H_2tba)_6]_n$.

Таблица S2. Геометрические параметры водородных связей в структурах.

Таблица S3. Параметры **π**–**π**-взаимодействия Htba⁻ в кристаллах.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Heffern M.C, Matosziuk L.M., Meade T.J.* // Chem. Rev. 2014. V. 114. № 8. P. 4496. https://doi.org/10.1021/cr400477t
- Yang Y., Zhao Q., Feng W., Li F. // Chem. Rev. 2013. V. 113. № 1. P. 192. https://doi.org/10.1021/cr2004103
- 3. *Cotton S.* Lanthanide and Actinide Chemistry. UK, Uppingham, Rutland: Wiley, 2006. 263 p.
- 4. *Binnemans K.* // Chem. Rev. 2009. V. 109. P. 4283. https://doi.org/10.1021/cr8003983
- Головнев Н.Н., Молокеев М.С. 2-Тиобарбитуровая кислота и ее комплексы с металлами: синтез, структура и свойства. Красноярск: Сиб. федер. ун-т, 2014. 252 с. [Golovnev N.N., Molokeev M.S. 2-Thiobarbituric Acid and its Complexes with Metals: Synthesis, Structure, and Properties [in Russian], Sib. Feder. Univ, Krasnoyarsk (2014).]
- Машковский М.Д. Лекарственные средства: пособие для врачей. М.: РИА "Новая волна": Издатель Умеренков, 2008. 1206 с.

- 7. Golovnev N.N., Molokeev M.S. // Russ. J. Coord. Chem. 2014. V. 40. № 9. Р. 648. [Головнев Н.Н., Молокеев М.С. // Коорд. химия. 2014. Т. 40. № 9. C. 564. https://doi.org/10.7868/S0132344X14090035] https://doi.org/10.1134/S1070328414090036
- Golovnev N.N., Molokeev M.S., Vereshchagin S.N., Atuchin V.V. // J. Coord. Chem. 2015. V. 68. № 11. P. 1865. https://doi.org/10.1080/00958972.2015.1031119
- Golovnev N.N., Molokeev M.S., Vereshchagin S.N. // J. Struct. Chem. 2016. V. 57. № 1. Р. 167. [Головнев Н.Н., Молокеев М.С., Верещагин С.Н. // Журн. структур. химин. 2016. Т. 57. № 1. С. 193. https://doi.org/10.15372/JSC20160122] https://doi.org/10.1134/S0022476616010200
- Golovnev N.N., Molokeev M.S., Sterkhova I.V. et al. // J. Struct. Chem. 2017. V. 58. № 3. Р. 539. [Головнев Н.Н., Молокеев М.С., Стерхова И.В. и др. // Журн. структур. химии. 2017. Т. 58. № 3. С. 584. https://doi.org/10.15372/JSC20170316] https://doi.org/10.1134/S0022476617030155
- 11. *Sheldrick G.M.* SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004.
- 12. *Sheldrick G.M.* SHELXTL. Version 6.10. Madison (WI, USA): Bruker AXS Inc., 2004.
- 13. Cambridge Structural Database, Version 5.37. Cambridge, UK: Univ. of Cambridge, 2015.

- Shannon R.D., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25. № 5. P. 925. https://doi.org/10.1107/S0567740869003220
- Стид Дж.В., Этвуд Дж.Л. Супрамолекулярная химия. Ч. 1–2. / Пер. с англ. под ред. Цивадзе А.Ю., Арсланова В.В., Гарновского А.Д. М.: ИКЦ "Академкнига", 2007. 895 с.
- 16. PLATON A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands. 2008.
- 17. *Machida M., Kawamura K., Ito K., Ikeue K. //* Chem. Mater. 2005. V. 17. № 6. P. 1487. https://doi.org/10.1021/cm0479640
- Valsamakis I., Flytzani-Stephanopoulos M. // Appl. Catal. 2011. B. 106. P. 255. https://doi.org/10.1016/j.apcatb.2011.05.037
- Lessard J.D., Valsamakis I., Flytzani-Stephanopoulos M. // Chem. Commun. 2012. V. 48. №. 40. P. 4857. https://doi.org/10.1039/C2CC31105D
- Andreev P.O., Sal'nikova E.I., Kislitsyn A.A. // Russ. J. Phys. Chem. A. 2013. V. 87. № 9. Р. 1482. [Андреев Р.О., Сальникова Е.И., Кислицын А.А. // Журн. физ. химии. A. 2013. Т. 87. № 9. С. 1499.] https://doi.org/10.1134/S0036024413080050
- 21. Хамидов Ф.А., Мирсаидов И.У., Бадалов А. // Докл. АН Республики Таджикистан. 2014. Т. 57. № 8. С. 676.