MAGNETOELECTRIC PROPERTIES OF NdSc₃(BO₃)₄

Gudim I.A.¹, Eremin E.V.^{1,2,3}, Temerov V.L.¹, <u>Titova V.R.</u> *.¹ ¹Kirensky institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia ²Siberian Federal University, Krasnoyarsk 660041, Russia ³Siberian State University of Science and Technologies, Krasnoyarsk 660037 Russia

irinagudim@mail.ru

The great interest shown in recent decades to the crystals of trigonal rare-earth borates $RM_3(BO_3)_4$ was determined by their interesting multiferroic properties. These crystals have a noncentrosymmetric trigonal structure isometric to the huntite natural material $CaMg_3(CO_3)_4$ that crystallizes in the space group *R*32 of the trigonal system [1]. At first, some of the ferroborates below the antiferromagnetic ordering temperature $T_N \approx (30-40)$ K is observed spontaneous and/or induced by external magnetic field electric polarization, up to 300 μ C/m² [2].

Recently, in the paramagnetic trigonal rare-earth aluminoborates (Ho,Tm,Er)Al₃(BO₃)₄ [3], induced magnetoelectric polarization has also been observed. It can reach values exceeding those previously measured in ferroborates, for example, the magnetoelectric polarization of HoAl₃(BO₃)₄ achieves 4500 μ K/m² [4]. A sufficiently large induced magnetoelectric polarization was also observed in the holmium galloborate HoGa₃(BO₃)₄, up to 1000 μ C/m² [5].

In this work, we report the data on the magnetoelectric properties of the $NdSc_3(BO_3)_4$ single crystal. In this compound, the system of small cations is presented by Sc^{3+} ions with a larger ionic radius as compared with Al^{3+} and different electronic structure. $NdSc_3(BO_3)_4$ single crystals were grown from bismuth trimolybdate-based fluxes. The crystal growth techniques used were described in detail in [**5**].

The magnetic and magnetoelectric properties were investigated on a PPMS-9 facility in the temperature range 3–300 K and magnetic fields up to 90 kOe.

The value of the magnetoelectric effect in $NdSc_3(BO_3)_4$ depends not only on the size an electronic structure of Sc^{3+} ions, but also on the conditions of heat treatment of the grown crystals.

The study was supported by the Russian Foundation for Basic Research, project no. 17-02-00826, 17-52-45091 and 18-02-00696.

[1] J. C. Joubert, W. B. White, and R. Roy, J. Appl. Cryst. 1, 318 (1968)

- [2] K. S. Bartwal, R. Bhatt, S. Kar, V. K. Wadhawan, Mater. Sci. Eng., B 2001, 85, 76.
- [3] K.-C. Liang, R. P. Chaudhury, B. Lorenz, et al., J. Phys.: Conf. Ser. 2012. 400. 032046.
- [4] Kadomtseva A.M., Popov Yu.F., Vorob'ev G.P., et al., Low Temp. Phys. 36, (2010) 511.
- [5] I.A. Gudim, E.V. Eremin, and V.L. Temerov, J. Crystal Growth 312 (2010) 2427.