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The theory of spin-wave resonance (SWR) in gradient films for two profiles of smooth variation of
the magnetic moment through the film thickness was developed in the 60s of the last century. The
development of the theory was stimulated by experimentally detected deviations of the dependence
of the resonant frequencies ωn (or resonant fields Hn) on the mode number n, from the quadratic law
predicted by Kittel’s theory [1]. It was supposed [2] that these deviations are due to the smooth inho-
mogeneity of the static magnetization across the film thickness caused by various technological fac-
tors. The theory of SWR was developed for models with a parabolic decrease of M(z) from the center
of the film to its surfaces [3] and the linear variation of the magnetization along the z axis [4]. The
parabolic increase of the effective magnetic field to the film surfaces (potential well) corresponds to
the first model. For the first model the law ωn ∼ n and for the second one ωn ∼ (1/4 + n)2/3 were
obtained. In subsequent years, the authors of experimental investigations of the SWR described their
results within the framework of these models. In the paper [5], the authors developed a technology for
creating layered films in which the magnetic parameters of the layers smoothly vary over the thickness
of the film, simulating a predetermined dependence of the magnetization M(z), and investigated the
SWR in such gradient films. The creation of artificial gradient films poses the problem of developing the
theory of SWR for a wider range of profiles of the dependences of magnetic parameters on z. The aim
of our work is to investigate the spectrum of SWR in gradient ferromagnets with a parabolic potential
barrier of the magnetic parameters.

We consider the case of SWR in a field H directed along the z axis perpendicular to the surface of the
film. In a gradient film, when the magnetization or the uniaxial anisotropy along the film thickness is a
function of the coordinate z, we introduce the effective magnetic field Heff(z) = H − [4π − β(z)]M(z)
and represent it in the form Heff(z) = Heff

0 − ΔHeff(2z/d)2, where Heff
0 is a value of the effective field

in the middle of the film, and ΔHeff is a barrier height. The wave equation for the resonance circular
projection of the magnetization m(z,ω) has the form
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where α is the exchange parameter, β is the constant of uniaxial anisotropy, whose axis is directed
along z axis,ω is the frequency, g is the gyromagnetic ratio, and d is thickness of the film. It should be
noted that equation (1) for the case of the gradient of the uniaxial anisotropy constant β(z) is exact,
but for the magnetization gradient M(z) is approximate. The authors of [6] obtained the solution of
the Schrödinger equation for the parabolic potential barrier, which we used in our work. Symmetric
ms(ζ) and antisymmetric ma(ζ) solutions of equation (1) are expressed in terms of Kummer’s functions
(confluent hypergeometric functions), respectively
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Here the dimensionless frequency Ω and coordinate ζ are entered
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where q = 1/d. The cases of pinned and unpinned boundary conditions are considered. The dis-
crete frequency spectrumωn (Fig. 1b and c) is obtained from the numerical solution of transcendental
dispersion equations corresponding to these boundary conditions.

Figure 1. The normalized spin oscillations m′′(z) for pinned (z < 0) and unpinned (z > 0) boundary conditions (a).
The energy potential barrier (a, dotted green curve). Spin-wave resonance frequencies ωn vs the mode
number n (b) and the value (n − 1/2)1/2 (c) for pinned (blue circles) and unpinned (red dots) boundary
conditions. Asymptote for n << nc (c, dashed straight line, and ωn vs n for a homogeneous film (b and
c, black dotted curves)

The form of eigenmodes mn(z) corresponding to these frequencies is calculated (Fig.1a). The rel-
ative high-frequency susceptibility χn was also calculated. Spin-wave oscillations at energy levels
n ≤ nc, where nc is the energy level nearest the top of the barrier, occur in two potential wells be-
tween the boundaries of the barrier and the film surfaces. We obtained the law of the dependence of
the frequencies of the first resonance peaks on n at n ≤ nc for the parabolic potential barrier as

ωn ∼ (n − 1/2)1/2. (4)

Indeed, the frequencies of the first peaksωn are located along a straight line in the corresponding coor-
dinates (Fig.1c ). When n >> nc, the discrete frequency spectrum tends toωn ∼ n2, corresponding to
the spectrum of a homogeneous film. Changing the shape of the functionωn(n)when n = nc, as well as
a sharp decrease in χn at the same point, makes it possible to experimentally determine the frequency
of the height of the potential barrier.
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