Hot Topics of Soli

«Hot Topics of Solid
State Chemistry:
From New Ideas
to New Materials»

III Всероссийская конференция

(с международным участием)

«Горячие точки химии твердого тела: от новых идей к новым материалам»

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ХИМИИ ТВЕРДОГО ТЕЛА И МЕХАНОХИМИИ СО РАН

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ГОРЯЧИЕ ТОЧКИ ХИМИИ ТВЕРДОГО ТЕЛА: ОТ НОВЫХ ИДЕЙ К НОВЫМ МАТЕРИАЛАМ

III Всероссийская конференция с международным участием, посвященная 75-летию Института химии твердого тела и механохимии СО РАН

1-5 октября 2019

ТЕЗИСЫ ДОКЛАДОВ

Новосибирск 2019

Ответственный редактор д-р хим. наук *Т. П. Шахтшнейдер*

Г 718 Горячие точки химии твердого тела: от новых идей к новым материалам: III Всеросс. конф. с междунар. участием, посв. 75-летию Института химии твердого тела и механохимии СО РАН: Тез. докл. / Ин-т химии тв. тела и механохимии СО РАН; Новосиб. гос. ун-т. – Новосибирск: ИПЦ НГУ, 2019. – 300 с.

ISBN 978-5-4437-0950-5

В сборнике представлены тезисы докладов конференции «Горячие точки химии твердого тела: от новых идей к новым материалам».

Для широкого круга специалистов, работающих в области физики, химии, химического материаловедения и химической технологии.

При поддержке:

Российского фонда фундаментальных исследований (проект № 19-03-20026) Министерства науки и высшего образования Российской Федерации

[©] Новосибирский государственный университет, 2019

[©] Институт химии твердого тела и механохимии СО РАН, 2019

МАГНИТНЫЕ СВОЙСТВА СОЕДИНЕНИЙ EuLnCuS₃ (Ln = La, Ce, Nd, Sm, Ho)

А.В. Русейкина¹, Д.А. Великанов², А.А. Гармонов¹, <u>М.В. Григорьев</u>¹, А.Е. Пинигина¹, В.В. Балашов¹

¹ФГАОУ ВО Тюменский государственный университет, Институт химии, ул. Семакова, 10, Тюмень, 625003, e-mail: maxgrigmvv@ya.ru

²Институт физики им. Л.В. Киренского СО РАН,
Академгородок, 50/38, Красноярск, 660036, e-mail: dpona1@gmail.com

Магнитополевая зависимость $EuLnCuS_3$ при комнатной температуре исследована на вибрационном магнитометре с электромагнитом конструкции Пузея. Низкотемпературное изучение магнитной восприимчивости проводилось на SQUID-магнитометре в магнитном поле напряжённостью 10 Э. В ряду соединений $EuLnCuS_3$ переход в магнитноупорядоченное состояние происходит в узком интервале низких температур (рис. 1, табл. 1).

Таблица 1. Константы Кюри (С), параметры Кюри-Вейсса (Θ_W), температура максимума магнитной восприимчивости (T_{max}) для соединений EuLnCuS₃.

Параметры	EuLaCuS ₃	EuCeCuS ₃	EuNdCuS ₃	EuSmCuS ₃	EuHoCuS ₃
$C_{\text{теор.}}$, см ³ ·К/моль	7.88	8.68	9.52	7.97	21.33
$C_{\text{эксп.}}$, см ³ ·К/моль	7.5	8.3	9.9	7.6	17.6
θ _w , K	4.1	4.8	2.4	5.7	2.0
T _{max} , K	2.4	2.7	3.1	3.1	4.7

Температурная зависимость обратной магнитной восприимчивости соединений $EuLnCuS_3$ (Ln=La, Ce, Nd, Sm) соответствует закону Кюри-Вейсса, что позволяет отнести соединения к ферромагнетикам, а у соединения $EuHoCuS_3$ данная зависимость аппроксимируется формулой Нееля для ферримагнетиков.

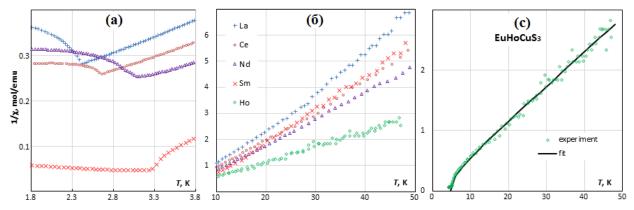


Рис. 1. Температурная зависимость обратной магнитной восприимчивости EuLnCuS₃.