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1. Introduction

Localized surface plasmons (LSPs) have attracted remarkable
attention in recent years due to their ability to enhance the local
electromagnetic field in different optical processes that can be
widely utilized in several applications. LSPs represent the

oscillations of free electrons and corre-
sponding electromagnetic fields created
by the charge motion inside the metal
nanoparticles (NPs).[1,2] Plasmonic materi-
als are widely used in applications such as
water splitting,[3] photovoltaic cells,[1,4–7]

plasmon lasers,[8] chemical synthesis,[9]

high-resolution imaging,[10] and biomedi-
cal and telecom applications.[11–14] LSP
resonance is also actively utilized for
nanoscale chemical and biological
sensing.[15–18] The sensor properties are
conditioned here by the high sensitivity
of the surface resonant frequency (SRF)
to the permittivity of the surrounding
chemical environment, which leads to the
frequency shifting, for example, due to
chemical adsorption.[15–17,19]

The SRF strongly depends on the size
and shape of NPs and the type of material
between NPs.[1,2,15–19] The reason for that
is the strong dependence of the electromag-
netic field strength, generated by LSPs, on
distance and interaction between NPs.
Therefore, there are a variety of different
forms of plasmonic materials, such as

individual NPs of different shapes and materials[20] and 2D
lattices.[11–13,21]

A presence of conductive material between two NPs leads
to the emergence of a new mode, called the charge transfer
plasmon (CTP), where the charge periodically moves between
two NPs along a conductive bridge. For example, CTP was exper-
imentally observed in a system consisting of two Au NPs linked
by a thick gold bridge of radius �10 to 20 nm.[16] This type of
CTP can be described by classical Maxwell’s electrodynamics
as the quantum effects are not expected to be significant there
due to large NPs and the bridge sizes. However, quantum
effects of CTP have subsequently been investigated in systems
consisting of two NPs separated by sub-nanometer interparticle
gaps,[22–24] where the coupling of NPs is conditioned by tunnel-
ing between them and by the screening effects. NP structures
with conducting molecules 1,4-benzenedithiolate (BDT) and
biphenyl-4,4 0-dithiol (BPDT) that link cuboidal silver NPs[25]

and gold monolayers,[26] respectively, were considered early. It
was shown in both cases that the shifting of resonance energy
of coupled plasmon and the creation of a screened coupled
plasmon mode occur in the presence of some conducting linker.
In the case of a biphenyl-l-4-thiol molecule, used instead of
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Thermoelectric and plasmonic properties of systems comprising small golden
nanoparticles (NPs) linked by narrow conductive polymer bridges are studied
using the original hybrid quantum-classical model. The bridges are considered
here to be either conjugated polyacetylene, polypyrrole, or polythiophene chain
molecules terminated by thiol groups. The parameters required for the model are
obtained using density functional theory and density functional tight-binding
simulations. Charge-transfer plasmons in the considered dumbbell structures are
found to possess frequency in the infrared region for all considered molecular
linkers. The appearance of plasmon vibrations and the existence of charge flow
through the conductive molecule, with manifestation of quantum properties, are
confirmed using frequency-dependent polarizability calculations implemented in
the coupled perturbed Kohn–Sham method. To study the thermoelectric prop-
erties of the 1D periodical systems, a universal equation for the Seebeck coef-
ficient is derived. The phonon part of the thermal conductivity for the periodical
–NP–S–C8H8– system is calculated by the classical molecular dynamics. The
thermoelectric figure of merit ZT is calculated by considering the electrical
quantum conductivity of the systems in the ballistic regime. It is shown that for
Au309 nanoparticles connected by polyacetylene, polypyrrole, or polythiophene
chains at T¼ 300 K, the ZT value is {0.08;0.45;0.40}, respectively.
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BPDT,[26] which creates a chemical bond through only one sulfur
atom linked to one of two Ag NPs (and, therefore, cannot
be a conductor), and the use of an insulating 1,2-ethanedithiolate
molecule instead of conducting BDT,[25] the effects were not
observed. However, so far, the CTP has not been extensively
investigated for systems consisting of NPs linked by narrow
conductive molecular bridges,[27] where quantum effects are
expected to be quite substantial. Aiming at this, we develop here
a quantum-classical model for accurate description of such sys-
tems taking into account quantum effects and derive a general
analytical expression for the shifted plasmonic frequencies.
Finally, the thermoelectric properties of considered structures
are estimated by the thermoelectric figure of merit ZT.

2. Modeling of CTPs in Dumbbell Structures

In our recent article,[27] we considered a dumbbell structure con-
sisting of two golden NPs linked by a narrow conductive molec-
ular bridge and developed an original hybrid quantum-classical
model to account for the quantum effects in CTP. The molecular
bridge there has beenmodeled by a polyacetylene molecule CnHn

terminated by two sulfur atoms, and the quantum effects in the
bridge conductivity have been described utilizing first-principles
density functional theory (DFT) simulations. As the bridge is thin
and short in the model, it should be assumed that the movement
of free carriers in the bridge has a ballistic character. Though the
electron mobility in conductive polyacetylene, polypyrrole, and
polythiophene chains is low, it could be increased by more than
seven orders of magnitude upon doping with iodine or arsenic
pentafluoride (AsF5).

[28] Considering that in ordered materials,
the average carrier mean free path is usually tens of nanometers
even at room temperature, for conductive polymers, it reaches
330 Å at 1.8 K;[18] it is natural to assume that in our case of a very
short bridge, the carriers would move ballistically, wherein the
gold NPs along the polymer chain edges play the role of dopants
transforming the chain into a metallic state.

The conductivity in such a system and the transmission coef-
ficient of the bridge can be calculated using the Keldysh nonequi-
librium Green function (NEGF), which is widely used.[29]

Assuming that conduction band carriers pass from an NP into
the bridge freely, the transmission coefficient, G, can be set as
G ¼ ð2e2Þ=h ⋅M, where M is several conductive channels in the
bridge. Following the proposed model for dumbbell structures,
one can note that two NPs have opposite electrostatic charges
QðtÞ and opposite potentials. It results in charge transfer during
plasmons’ oscillations with a current IðtÞ ¼ dQðtÞ

dt in the bridge.
These structures can be considered as an LC oscillatory circuit,
where the total capacitance Ctot is formed by the both NPs in the
system having opposite charges, wherein the potential energy of
the LC circuit is equal to

Epot ¼ Q2=ð2CtotÞ (1)

where Q is the NP’s charge. In ref. [27], it was confirmed
with reasonable accuracy that the individual capacitance C of
the considered gold NP is equal to the NP radius C ¼ R, in full
accordance with the classical theory of electrostatics. It also
means that the entire additional charge of the NP is located

on its surface. For closely spaced NPs, the total capacitance is
not equal to the sum of individual capacitance due to NPs’ elec-
trostatic interaction and polarization. It was shown in refs. [30,31]
that the total potential energy of a couple of NPs with radius R
and opposite charge Q is

Epot ¼ FðR, LÞ QðtÞ2
2Rþ L

(2)

where the fraction corresponds to the electrostatic interaction of
the two opposite charges at a distance 2Rþ L between the NPs’
centers. The correction function FðR, LÞ considers the difference
between the interaction of the two polarized spheres. In accor-
dance with the articles cited earlier[30,31] FðR, LÞ decreases rapidly
from 2.0 when two conducted spheres are touching, to 1.0,
when L

2R ! ∞.
We argue that the analog of inductance in the dumbbell

structure is formed by the current in the bridge. To confirm this,
it is necessary to calculate the energy of conduction band carriers
that create a current in the bridge. To calculate this current, we
suppose that properties of the current in the NP–bridge–NP
system are similar to the properties of the current in the periodi-
cal –[NP–bridge]– system under the same electric bias. This
assumption is based on the principle of locality of interactions.
So, for simplicity, to find the current in the dumbbell structure,
we calculate the band structure of a corresponding periodical
system. Due to the periodic geometric structure of the bridge,
we assume that the current in the bridge is formed by carriers
in the conductive band (CB) having the parabolic dependence

EðkÞ ¼ ðℏkÞ2
2m� (3)

where m� ¼ ℏ2½d2Edk2 ��1
k¼kf

is the electron (hole) effective mass in
the bridge, wherein the current total kinetic energy Ekin of the
conduction band electrons in the bridge can be written as a
sum over electrons having different quasi-momentum

Ekin ¼
X
k, n

nk,n
ℏ2k2k,n
2m� (4)

where nk,n is the occupation number of electrons in the band n,
which have quasi-momentum kk,n.

Usually, the total time-dependent current in the bridge IðtÞ
can be calculated using the Landauer approach[32]

IðtÞ ¼ �e
L

X
k, n

nk,nveffk,n ¼
2e2

h
M

ðμ1 � μ2Þ
e

(5)

veffk,n ¼¼ 1
ℏ
∂Eðk,nÞ

∂k
¼ ℏkk,n

m� (6)

where L is the length of the bridge, veffk,n is the effective electron
velocity, M is the number of conductive channels in the bridge,
and μ1, μ2 are the electrochemical potentials of both NPs having
opposite charges. Therein the total current in the bridge is not
zero because nk,n is different for the quasi-momentum of
electrons moving in the bridge in opposite directions due to
the difference of the NPs’ electrochemical potentials. Using
Equation (4) and (6) and supposing that our system forms a
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degenerate metal, one can find the energy of the current in the
bridge: Ekin∼IðtÞ2. This makes the aforementioned analogy
between the NP–bridge–NP system and LC circuit reasonable.

But one should keep in mind that the current energy in the LC
circuit relates to the energy of the magnetic field in space. In con-
trast, in the system considered here, it relates to the kinetic
energy of carriers in the bridge. Unfortunately, the Landauer
approach does not consider the acceleration of conduction band
carriers in the electric field formed in the bridge by oppositely
charged NPs. Subsequently we show a way to resolve this
problem.

Considering the time derivative of the total energy of the
system (potential (2) and kinetic (4) energies), which, neglecting
the damping, should be equal to zero, dividing it by IðtÞ, and
using formulas (1)–(6) of ref. [27], one can get a differential
equation of the harmonic plasmon oscillations having the square
of modified plasmonic frequency ω

�2
pl in the dumbbell structure

d2QðtÞ
dt2

¼ �ω
�2
plQðtÞ (7)

ω
�2
pl ¼

�
1
R
� FðR,LÞ
2Rþ L

�
2ne2

m�L2
(8)

One can note here that ω
�2
pl is similar to the square of conven-

tional plasmonic frequency ω2
pl ¼ 4πne2=ðm�ΩÞ, where n denotes

the number of conduction band electrons in the unit cell of
volume Ω. To have qualitative estimation of the plasmonic
frequency value, we neglect the second term in parentheses of
Equation (8) and get the value

eω2
pl �

2ne2

m�L2R
¼ 4πne2

m� eΩ (9)

where eΩ ¼ 2πRL2—effective volume per n electrons.
Comparing eω2

pl andω
2
pl, we can verify that the modified

plasma frequency resides in the IR region. For example, for
gold NPs having 147 atoms, radius R ≅ 7.41Å, and the bridge
–[–S–C8H8]– with length L ≅ 14.3 Å, the estimation of the modi-
fied plasma frequency gives ω

�
pl � 0.73 eV. One can see that in

the proposed NP–bridge–NP systems, the plasmonic frequencies
are expected to lie in the IR region and are sensitively changed
with a change of the system dimensions.

2.1. Ab Initio Calculations of Dynamic Polarizability of the
Au55–polyacetylene–Au55 Dumbbell Structure

To verify the validity of our model, we performed ab initio calcu-
lations of frequency-dependent complex polarizability for the test
system, consisting of two gold NPs bridged by the conjugated
polyacetylene molecule C8H8, terminated by sulfur atoms; see
Figure 1. The calculations were performed within a combination
of the atomic Gaussian-type orbital approach, as implemented
in the CRYSTAL17 package.[33] The GGA (generalized gradient
approximation)-PBE (Perdew–Becke–Ernzerhof ) approximation
for the exchange-correlation functional[34] was used for all calcu-
lations. The tolerance in the total energy difference between two
subsequent iterations was set to 10�6 au. The gradients concern-
ing atomic coordinates were evaluated analytically. An isolated

gold NP of cuboctahedron shape having 55 atoms was optimized
in Oh symmetry while Au55–C8H8–Au55 structure was optimized
in C2h symmetry (43 unique atoms). For calculations of
frequency-dependent polarizability, the coupled perturbed Kohn–
Sham (CPKS) method[35] was used, wherein the damping factor
(peak broadening) value related to the finite lifetime of excited
states was chosen as 0.003 Hartree (�0.1 eV). The CPKS method
is based on a perturbative treatment of the Schrödinger equation
and its derivatives in the presence of an external electric field. The
method allows us to consider the local field effects, i.e., change of
the electrostatic and exchange-correlation potential under the elec-
tronic density variation in the external electric field. It allows us to
calculate electronic density oscillations that correspond to CTPs in
the NP–bridge–NP dimers. First, the dynamic polarizabilities of
single Au55 NPs and the dimer of these NPs without the bridge
were calculated. One can see that in both cases, the positions of the
peaks are almost the same. The amplitudes of the peaks are dif-
ferent due to the electrostatic interaction of NPs. The imaginary
part of polarizability, which corresponds to the absorption cross-
section of single NP, shows clear narrow resonances at 507, 544,
and 721 nm (see inset in Figure 2). The IR region of the spectra
with λ> 750 nm does not show any features for both cases.

We assume that the peak at 544 nm originates from an LSP,
which agrees with experimental data on absorption of 5–20 nm
monocrystalline gold NPs,[36] where the plasmonic resonance is
found at 520 nm. Therefore, we prove the CPKS method can
reproduce an LSP. Next, the absorption of the polyacetylene
conductive bridge alone (H–S–C8H8–H) was obtained; however,
no clear resonances were found in vis–NIR spectra.

After that, the dynamic polarizability of the Au55–S–C8H8–
Au55 dimer was calculated; the results for visible and IR regions
are shown in Figure 2 and Figure 3, respectively. The X-axis
corresponds to the direction along the conductive bridge.
Comparing the spectra of the dimer with those of a single
particle, it can be seen that new resonant peaks emerge for
the complex structure. In contrast, the heights and positions
of the single-particle LSP peaks are significantly changed. The
original plasmonic peak at 544 nm almost disappears for X
and Y components, and in the Z component, the height is
reduced to approximately four times. The 507 nm resonance
is preserved in the X and Z directions, with a small redshift
for the former, but completely absent for the Y-axis spectrum.

Figure 1. Geometry of Au55–S–C8H8–Au55 system.
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The X component that is along the conductive bridge also shows
a prominent feature at 565 nm.

The IR absorption spectra of the Au55–S–C8H8–Au55 dimer
are characterized by three broad resonances in the X component,
while the polarizability along the Y and Z directions is negligible
(< 0:03 nm3). The magnitudes of the peaks at �2500, �3850,
and �4600 nm are comparable with those in the visible region
of the spectra. While the imaginary part of the polarizabilities
of single Au55 NPs and the polyacetylene conductive bridge do
not exhibit any features at 1000–6000 nm range and their
magnitudes are well below 0:002 nm3, these peaks arise due
to the interaction of the –S–C8H8– bridge with the NPs. The com-
plex structure of the peak at 4000 nm has Fano lineshape and
can be explained by the asymmetric attachment of the NPs
to the polyacetylene chain. It leads to different interactions
between the conduction electrons of the chain and the electrons
of both NPs.

We have also applied Equation (9) of our model to calculate the
plasmon frequency for this system. To do it, we choose the effec-
tive electron mass from ref. [27] as meff ¼ 0.455me, the number
of conductive electrons, which corresponds to the electrons in the
conduction band, as n ¼ 2, and the Au NP average radius as
R ¼ 4.69Å. The calculated frequency ω

�
pl � 0.85 eV, which is

equivalent to 1610 nm, lies on the border of large absorption with
an agreement with Figure 3.

2.2. CTPs in Two NPs Connected by Polypyrrole or
Polythiophene Bridge

It is well known now that, for example, polypyrrole and polythio-
phene are the organic polymer chains that have good electrical
conductivity.[37–39] They are more thermally and chemically
resistant compared to the polyacetylene molecules studied as
the linkers in our previous work,[27] which motivates us to study
them here.

Geometry optimization and calculations of band structures of
two periodical chains, consisting of a Au309 NP and a fragment of
polypyrrole (Figure 4 and 5) or polythiophene (Figure 6 and 7),
were conducted by the self-consistent charge density functional

Figure 2. Imaginary part of dynamic polarizability in visible region of single Au55 NP, Au55–S–C8H8–Au55 dimer (three Cartesian components,
dimer X, dimer Y, and dimer Z ), and dimer of Au55 NPs without the polyacetylene bridge (along the dimer axis, double NP X ).

Figure 3. Imaginary part of dynamic polarizability of Au55–S–C8H8–Au55
dimer in the X direction along the conductive bridge, IR region.

Figure 4. Optimized geometry of Au309–polypyrrole unit cell (the length l
is 62.878 Å).
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tight-binding (SCC DFTB) method[40] with use of the DFTBþ
code (version 19.1)[41] and a parameter set that is appropriate
for the description of the interaction between the atoms in the
series of carbon, nitrogen, oxygen, hydrogen, sulfur, and
gold.[40,42,43] Although the simulations were performed for peri-
odical systems in the 3D space, the periodicity of these chains
was considered along the x-direction. To prevent interaction of

the atoms in the unit cell with their replications along two other
directions, the vacuum gap 50 Å was applied and kept constant.

Both polypyrrole and polythiophene fragments consisted of
ten heterocycles and had a length of 41.48 and 44.64 Å, respec-
tively. They were joined to Au NPs through the sulfur
atoms. During the geometry optimization of both compounds,
the k-point samplings of the first Brillouin zone (1BZ) were cho-
sen as a 10� 1� 1 mesh according to the Monkhorst–Pack
scheme.[44] At this, the relaxation was carried out by the conju-
gate limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) algorithm algorithm until the forces acting on the
atoms became less than 0.0001 au, and Fermi smearing was used
at a finite temperature 600 K to enhance the convergence.

Band structure calculations were performed for optimized
unit cells. The number of k-points was increased to 21 along
the x-direction, while the finite temperature of Fermi smearing
was decreased to 50 K.

Analyzing the band structures in Figure 5 and 7, it can be
noted that in both cases, there are zones with zero dispersion.
Obviously, they are formed by electronic states lying exclusively
inside NPs, and therefore they can be excluded from our consid-
eration of conductivity. Other zones have dispersion, which
includes states inside the bridges. In the system with
polypyrrole bridges, the zones of both types can intersect. It
should be noted that in both cases, the zones are separated by
a very small distance, so the electrons can jump between them
due to thermal fluctuations.

By analyzing the average curvature of zones near Efermi, the
effective electron masses meff were calculated. They were equal
to 0.502, 0.446, and 0.455 me for the systems with polypyrrole,
polythiophene, and polyacetylene bridges, respectively.

After that, using the calculated meff and Equation (8) the ω
�
pl

dependencies on the NP radius were constructed for the systems
with these bridges; see Figure 8. It is shown there that the depen-
dencies of ω

�
pl on R for the systems with polypyrrole and

Figure 5. Band structure of Au309–polypyrrole chain (dashed line is the
Fermi level).

Figure 6. Optimized geometry of Au309–polythiophene unit cell
(the length l is 66.155 Å).

Figure 7. Band structure of Au309–polythiophene chain (dashed line is the
Fermi level).
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Figure 8. Dependence of ω
�
pl on NP radius, R. The solid line corresponds

to the polypyrrole or polythiophene bridge and the dashed line to
the –S–C8H8– bridge.
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polythiophene bridges are almost matched. The reason for that is
both the almost identical lengths of the bridges and the effective
electron mass in these systems. The dependence of ω

�
pl on R

with the �[–S–C8H8–]– bridge is significantly different due to
the much shorter bridge length L ¼ 14.3 Å. One can see in
Equation (9) that the plasmonic frequency depends on the length
L of the molecular bridge as L�2, so the frequency rapidly
decreases with increasing of L. The figure shows that in all cases
the frequencies ω

�
pl lie in the IR region and quickly decrease with

the NP size increasing.

3. Thermoelectric Properties of 1D Periodical
Structures NP–Conductive Bridge

The field of thermoelectrics has made tremendous progress. It is
currently growing steadily due to recent achievements and high
global demand for cost-effective and environmentally friendly
forms of energy conversion. The efficiency of thermoelectric
materials is quantitatively determined by the thermoelectric
figure of merit ZT, which is defined as ZT ¼ S2σT

χ , where σ is
the electrical conductivity, S is the thermoelectric power, χ is
the total thermal conductivity, and T is the absolute temperature.

In the 1950s, alloys of Bi2Te3 were discovered to have ZT � 1
near room temperature, and they have played a dominant role in
the field of thermoelectrics through today. Using simple calcu-
lations, it can be shown that at ZT � 3 ÷ 4 thermoelectric
converters can successfully compete with plants based on heat
engines (thermal power plants, etc.).

Therefore, obtaining materials with such ZT is the holy grail
of researchers in this field. The successes of the last 10–15 years
in this area have occurred mainly due to a new fundamental
focus on nanostructured materials, which are considered very
promising in this field. One of the possible methods here is
the use of nanowires (NWs), since many theoretical studies
predict a significant increase in ZT inside quantum wires due
to additional electron confinement in directions perpendicular
to the NW axis. Analysis of the electric and thermal transfer
in different III–V and II–VI NWs shows that some systems with
small effective electron mass (e.g., InSb) have the potential to
achieve a high power factor and ZT values at acceptable experi-
mentally achievable diameters (D > 5 nm).[45]

In ref. [46], the thermoelectric properties of NWs made of
various lead compounds (PbS, PbSe, and PbTe) are investigated
as a function of the length, diameter, and orientation on the base
of Boltzmann transport equations. ZT values higher than 4 and 6
are predicted for 5 nm diameter PbSe/PbS and PbTe/PbSe
superlattice NWs at 77 K, respectively. These ZT indicate that
superlattice NWs are promising systems for thermoelectric
applications.

In ref. [47], with first-principles calculations based on DFT
theory, a very high thermoelectric figure of merit ZT¼ 5 at
800 K was predicted in an n-type Ba2BiAu Heusler compound.
Such a high efficiency arises from an intrinsically ultralow lattice
thermal conductivity coupled with a very high power factor,
which originates from a light, sixfold degenerate conduction-
band pocket along the Γ�X direction. Weak acoustic phonon
scattering and sixfold multiplicity combine to yield both high
mobility and a high Seebeck coefficient.

Here we estimate ZT for –[NP–bridge]– periodical systems.
The motivation for this is the ballistic transport of electrons in
the conducting molecular bridges of the systems under consid-
eration, affecting ZT. Also, the 1D nature of such systems
and the excessively small width of the bridge can significantly
change ZT.

Here we suppose that in the systems, the conduction band
carriers have parabolic dependence of EðkÞ. Assuming this,
we can suppose that the carriers’ mobility, which is inversely
proportional to the momentum-transfer collision frequency
and effective mass, would not be changed during the movement
inside the conduction band. This is because of the constant
effective mass and mean travel time between collisions defined
by the time of movement between two successive NPs.

So, the electrical current J through the system can be
written as

J ¼ σE � ℵ∇T (10)

where σ is an electrical conductivity and ℵ is a transport coeffi-
cient.[48] The Seebeck coefficient S is defined as the voltage
gradient produced in a sample by a given temperature gradient
when the electrical current is zero: S ¼ ∇ϕ

∇T jJ¼0. It can be found as
S ¼ ℵ

σ .
To calculate it, we assume that there is a small temperature

difference ΔT between two sequential NPs in the periodic
structure. Because of this, the chemical potentials μðTÞ of these
NPs are shifted, which causes a current J to flow through the
bridge. The current stops when the potential difference Δϕ
between the particles balances this temperature change of
chemical potentials ΔμðTÞ. Therefore, to find the potential differ-
ence Δϕ and Seebeck coefficient S, correspondingly, one should
calculate ΔμðTÞ at a given temperature change ΔT .

To calculate μðTÞ, one can use the following equation[49]

μðTÞ ¼ EFermi �
π2

6
ðkbTÞ2

�
∂
∂ϵ

lnðDðϵÞÞ
�
ϵ¼EFermi

(11)

where DðεÞ is the electronic density of states (DOS) that can be
calculated by the well-known equality for 1D systems

DðϵÞ ¼
ffiffiffiffiffiffi
m�pffiffiffi

2
p

πℏ
ffiffiffi
ϵ

p (12)

Here we again suppose that in the periodical –[NP–bridge]–
systems, the conduction band carriers have parabolic
dependence (Equation (3)). To eliminate the ambiguity, we will
further measure the EFermi from the bottom of the conduction
band. Using Equation (11, 12 and 3), one can easily get

μðTÞ ¼ EFermi þ
π2

12
ðkbTÞ2
EFermi

(13)

S ¼ ∇ϕ
∇T

¼ π2

6
k2b
e

T
EFermi

(14)

For the periodical systems of NPs connected by polyacetylene,
polypyrrole, and polythiophene chain molecules (see Figure 4
and 6) and assuming that the temperature is T¼ 300 K,
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one can calculate S ¼ f90; 212; 201g μV K�1 for the three
bridges, respectively.

The knowledge of thermopower S gives the possibility to
calculate the thermoelectric figure of merit

ZT ¼ S2σT
χel þ χvibr

(15)

where χel and χvibr are the electronic and phononic contributions
to the thermal conductivity, respectively. χel can be calculated
using the Wiedemann–Franz law

χel
σ

¼ L0T , where L0 ¼
π2

3

�
kb
e

�
2
¼ 2.47� 10�8 WohmK�2

(16)

In ref. [27] we show that the conductanceG of a similar system
–[NP–S–C16H16–Au55–S]– is

G ≃ ð2e2Þ=h ¼ ð12.9� 103 ohmÞ�1 (17)

so we suppose the our system conductance is similar.
Assuming the ballistic motion of carriers in the 1D systems,

the conductivity of the system has a quantized character. It does
not depend on the properties (effective mass) of carriers. It is
determined only by the number of conductive modes and prop-
erties of the interface region between the NP and the conducting
bridge. For the narrow conductive bridges under consideration,
one can assume that the number of these modes is equal to 1,
except for spin degeneracy. All other modes will be suppressed
due to the narrowness of the conducting channel and the
Coulomb blockade effect, which can be expected for such
systems.[50]

Using σ ¼ G L
S, where L and S are longitudinal size and

transverse sections of the unit cell and applying Equation (16)
one can get χel ¼ 0.25Wm�1 K�1.

Let us note that the calculation of the thermal conductivity
associated with atomic vibrations χvibr is a rather difficult task
that can be solved using molecular dynamics (MD) simulations.
To do it, the LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) software[51,52] was used. The interactions
within the polyacetylene chain were calculated using empirical
potentials of the REBO type,[53] while gold atoms’ interactions
were calculated using the embedded atom model (EAM)
method.[54]

The phonon thermal conductivity χvibr ¼ 0.77Wm�1 K�1 was
calculated by the Kubo–Green method at temperature T¼ 300 K
for a periodical chain of Au309 NPs connected by conjugated
polyacetylene molecule C8H8, terminated by sulfur atoms.

So, one can see the phonon contribution prevails over the
electronic one in the total thermal conductivity.

Assuming the electrical conductivity of the aforementioned
periodical systems including polyacetylene, polypyrrole, and pol-
ythiophene chains is similar to (16) and the thermal conductivity
is akin also, one can find the ZT ≲f0.08; 0.45; 0.40g at tempera-
ture T¼ 300 K for each of the linkers, respectively.

4. Conclusion

CTPs and thermoelectric properties of gold NPs bridged
by conductive polyacetylene, polypyrrole, and polythiophenemol-
ecules were studied. To describe CTPs of the dumbbell systems
consisting of twometal NPs connected by a conductive bridge, an
original quantum-classical model was used. The model utilizes
the analogy with an LC oscillatory circuit and is based on a
description of the time-dependent ballistic current through the
bridge. The model takes into account quantum effects. Based
on this model, we have derived a general analytical expression
for the plasmon frequency for the dumbbell systems and have
shown that its frequency lies in the IR region. It is shown that
the frequencies are highly dependent on the system size and con-
ductivity of the bridge.

Thermoelectric properties of periodic 1D systems consisting
of NPs connected by polyacetylene, polypyrrole, or polythiophene
polymer bridges are considered. In the beginning, we have
derived the universal equation for calculation of the Seebeck
coefficient that, then, has been used for calculation of thermal
conductivity of the NP–polyacetylene system by classical molec-
ular dynamics. Here we assume that the thermal conductivities
of the aforementioned systems are similar and take into account
that the electrical quantum conductivity of the systems in the
ballistic regime is roughly equal to one quantum (2e2=ℏ).
Finally, using the state that thermal conductivity is, in turn, pro-
portional to electrical quantum conductivity, we have calculated
the thermoelectric figure of merit ZT. It is shown that for Au309
NPs connected by polyacetylene, polypyrrole, or polythiophene
chains at T¼ 300 K, exhibit ZT∼f0.08; 0.45; 0.40g, respectively.
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