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Abstract
Arabinogalactan (AG) and sulphated arabinogalactans which are products of chemical modification of arabinogalactan poly-
saccharide with anticoagulant properties were studied by experimental infrared (IR) spectroscopy combined with density 
functional theory simulations. Mutual analysis of experimental and theoretical IR frequencies indicates that the discrepancies 
between experiment and theory is caused by the influence of –OH groups, which led to the energy shift and broadening of 
the absorption IR bands. It was found that theoretical and experimental spectra correspond well within the 3000–4000 cm−1 
spectral region. Addition of sulphur group in AG structure causes hydroxyl group to become accessible for further sulpha-
tion. The difference between experimental and theoretical IR frequencies of sulphated AG derivatives is greater than that of 
the parent arabinogalactan due to the increase in the number of possible isomers and conformers.
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Introduction

The polysaccharide availability in animals, plants, microor-
ganisms and fungi tissues, their low toxicity, bioavailability 
and biodegradability make these biopolymers hold promise 
for drug development. The sulphate group availability in 

polysaccharides may increase their specific and non-specific 
binding with a wide range of biologically important proteins. 
An important role in these interactions is played by both pol-
ysaccharide macromolecule structure (Nader et al. 2004) and 
possibly its conformation in solution (Becker et al. 2007), 
as well as the biopolymer molecular weight and the density 
distribution of the negative charge along its chain.

Sulphated polysaccharides are also widespread in nature, 
such as in the tissues of animals, plants, fungi and micro-
organisms. The largest number of plant polysaccharide sul-
phates is contained in algae (fucans, fucoidans, carrageen-
ans, etc.). There are also numerous plant polysaccharides 
in marine invertebrates. Besides the functional properties, 
individual sulphated polysaccharides demonstrate a variety 
of pharmacological activity (Alban et al. 2002; Desai 2004). 
These biopolymers exhibit antiviral, antiparasitic, antipro-
liferative, anticoagulant, antithrombotic anti-atherosclerotic, 
anti-ulcer, radioprotective activities. Chronologically hepa-
rin discovered at the beginning of the last century became 
the first known anticoagulant (Mestechkina and Shcher-
bukhin 2010). This natural sulphated linear glucosamino-
glycan is produced by the mast cells of some animal tis-
sues. Widespread medical use of the anticoagulant revealed 
a number of negative side effects and disadvantages like 
high cost and labour-intensive production. Various sulphated 
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polysaccharides are known as heparinoids of both natural 
(chondroitin sulphates, other sulphated glycosaminogly-
cans), and synthetic (dextran sulphates, chitosan sulphates, 
etc.) origins have distinctive anticoagulant properties    (Ma 
et al. 2010; Huang et al. 2008a, b; Huang et al. 2008a, b; 
Pereira et al. 2002; Drozd et al. 2006). The anticoagulant 
activity of sulphated polysaccharides directly depends on 
the sulphation method, which affects the sulphation degree, 
the nature of the sulphate group arrangement, molecular 
weight, etc. (Nader et al. 2004; Desai 2004; Drozd et al. 
2006; Chaidedgumjorn et al. 2002; Jiao et al. 2011; Zhang 
et al. 2010,2011; Kostiro and Kovalskaja 2008).

In particular, the anticoagulant heparinoid class includes 
sulphated arabinogalactan (SAG), a product of chemi-
cal modification of arabinogalactan (AG) polysaccharide 
(Fig. 1) synthesized as a result of complex waste-free pro-
cessing of Siberian larch wood (Larix sibirica Ledeb.). The 
AG content in wood reaches 15%, which directly indicates 

huge reserves of raw materials for mass production of prom-
ising biologically active substances.

Arabinogalactan is a water-soluble polysaccharide with 
low molecular weight, light coniferous smell and sweet taste 
(Babkin et al. 2016). It is characterized by a wide range 
of biological properties like immunobiological, hepatopro-
tective, antimutagenic, mitogenic, gastroprotective, mem-
branotropic, probiotic, myogenic, lipid-lowering, immu-
nomodulating; it can be used a source of dietary fibre as 
well (Ermakova et al. 2010).

The main chain of arabinogalactan consists of galactose 
units linked by β-(1 → 3) glycosidic bonds. The side chains 
are formed by β-(1 → 6) bonds between galactose and arab-
inose units, single arabinose units, and of uronic acids, mainly 
glucuronic acid. It is also acknowledged that AG main chain 
includes arabinose units as well (Willför and Holmbom 
2004). The ratio of galactose to arabinose units approximately 
is equal to 6:1, with 1/3 of the arabinose units in pyranose 

Fig. 1  Fragment of the arabinogalactan molecule with marked 
hydroxyl groups responsible for the occurrence of predominant sul-
phation. The main chain consists of galactose units linked by glyco-

sidic bonds, and the side chains consist of galactose and arabinose 
units and separate arabinose units. The blue dotted lines represent 
intramolecular hydrogen bonds
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form, and 2/3 in furanose one (Babkin et al. 2016; Ermakova 
et al. 2010). It is expected that AG macromolecules probably 
exist in a very compact and spherical form (Goellner et al. 
2011). For carbohydrates, which include the arabinogalactan 
and its sulphate class, there is a correlation of biological 
activity with molecular structure (Becker et al. 2007; Willför 
and Holmbom 2004; Goellner et al. 2011; Karacsonyi et al. 
1984; Antonova and Usov 1984). It was found (Kostiro and 
Kovalskaja 2008) that the hydroxyl AG groups, located at 
C2 and C4 positions in the main galactan chain, and the pri-
mary hydroxyl group, located at C6 position of the galactose 
end units in the main and side chains, are predominantly sul-
phated. Based on these structural data, the simplest molecular 
models were developed.

Irregular structure and the coexistence of various func-
tional groups in different substituents positions coupled 
with tautomeric forms make accurate interpretation of 
arabinogalactan and its sulphated derivative IR spectra 
very difficult or almost impossible without clear insight 
into macromolecule structure and to establish spectral-
structural correlations. Combination of the state-of-the-
art density functional theory (DFT) and calculations of 
model molecules with experimental AG and its sulphated 
derivatives IR spectra makes it possible to overcome these 
difficulties, to identify spectral band structure, interpret 
molecular structure like exact positions of sulphate groups 
and to determine basic biological properties of the mac-
romolecules (Akman 2017; Barsberg 2010; Shanura Fer-
nando et al. 2017; Tran et al. 2018).

Recently, interest in the study of polysaccharides by 
theoretical methods was increasing (Profant et al. 2019; 
Akman et al. 2020). These methods are based on calcula-
tions of spectroscopic characteristics of electron circular 
dichroism (ECD) (Rudd et al. 2009; Matsuo et al., 2009), 
infrared absorption with Fourier transform (FTIR) (Main-
reck et al. 2011; Akman et al. 2020; Garnjanagoonchorn 
et al. 2007), Raman spectroscopy (Profant et al. 2019; 
Rüther et al. 2017; Yaffe et al. 2010; Ellis et al. 2009), 
spectroscopy nuclear magnetic resonance (Duus et  al. 
2000; Canales et al. 2017; Klepach et al. 2015; Gerbst et al. 
2017; Shklyaev et al. 2014; Akman 2016). The methods 
allow one to obtain the key properties of a number of poly-
mers (Profant et al. 2019).

In contrast to artificial polymers, natural polysaccharides 
have a complex and irregular molecular structure determined 
by uncontrollable conditions of plant growth, which makes 
advanced interpretation of IR spectra impossible without 
implementation of DFT theory. The goal of this work is to 
achieve a detailed interpretation of experimental IR spectra 
of arabinogalactan and sulphated arabinogalactan by means 
of state-of-the-art density functional theory (DFT) electronic 
structure calculations and vibration spectra simulations.

Materials and methods

Arabinogalactan of Siberian larch wood (Larix sibirica 
Ledeb.) produced by “Khimia drevesiny” (Irkutsk, Russia) 
under the name of “FibrolarS” was taken as a raw mate-
rial. The samples with different sulphur contents (3.2; 5.1, 
9.4 wt%) were obtained by sulphating of arabinogalactan 
using sulphamic acid-urea complex method (Vasil’eva et al. 
2015), which is based on the reaction of sulphamic acid and 
urea in 1,4-dioxane. IR spectra of arabinogalactan and its 
sulphation products were phased out using a Tensor-27 
FT-IR spectrometer (Bruker, Germany) in the wavelength 
range of 400–4000 cm−1. The spectral information was pro-
cessed by OPUS code (version 5.0). The solid samples for 
analysis were prepared as the tablets in a KBr matrix (2 mg 
of sample/1000 mg of KBr). The absorption band assign-
ment was carried out following the procedure described in 
(Pereira et al. 2009).

In contrast to parent AG (Fig. 2a), all SAG samples reveal 
high-intensity IR bands at 1250–1260 cm−1, assigned to 
asymmetric stretching vibrations υas(O = S = O) (Fig. 2b, 
c, d, e). The absorption IR bands in all SAG samples at 
810–815 and 860–870 cm−1 are assigned to primary and 
secondary sulphate groups. The intensities of SAG IR bands 
at 3420–3440 cm−1 and 1370–1380 cm−1 spectral regions, 
which are assigned to the stretching and planar deforma-
tion vibrations of OH groups, respectively, were observed 
to decrease due to substitution of hydroxyls by  SO3 groups. 
The higher the sulphur content (wt %), the higher the SAG 
peak intensities in spectral regions of 1250–1260 cm−1 and 
810–815 cm−1, which correspond to sulphate group vibra-
tions. In the case of sulphur content of 9.4 wt.% (Fig. 2e), 
the sulphated arabinogalactan IR spectrum exhibits a more 
distinct peak at 1463 cm−1, which corresponds to vibrations 
of -CH2- bonds, which may relate to the polysaccharide deg-
radation processes under sulphation.

Calculation methods

The electronic structure calculations of AG and SAG mol-
ecules as well as corresponding Hessians were performed 
using DFT theory at B3LYP level of theory and 6–31 + G(d) 
basis set (Lee et al. 1988; Shmidt et al. 1993). All electronic 
structure calculations were performed using GAMESS pack-
age (Stewart 2004). It is well known that B3LYP functional 
combined with Gaussian basis sets yields a good agreement 
between calculated parameters of organic compounds and 
experiment (Curtiss et al. 1997,2005; Tirado-Rives and 
Jorgensen 2008; Fredj et al. 2017). To calculate molecular 
and electronic structure and theoretical IR spectra, several 
conformers of arabinogalactan with different hydroxo group 
arrangement regarding the pyranose cycle of galactose were 
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Fig. 2  Experimental and theoretical IR spectra of arabinogalactan 
and its sulphated derivatives. Theoretical IR spectra at the B3LYP/6–
31 + G(d) level of theory are presented as vertical lines, while experi-
mental IR counters are presented as black solid and dashed lines. a 
Experimental and theoretical IR spectra of arabinogalactan. b SAG-2 
experimental and theoretical IR spectra. The solid line corresponds 
to 3.2% and the dashed line corresponds to 5.1% of sulphur content, 

respectively. c SAG-4 experimental and theoretical IR spectra. The 
solid line corresponds to 3.2% and the dashed line corresponds to 
5.1% of sulphur content, respectively. d SAG-6 experimental and the-
oretical IR spectra. The solid line corresponds to 3.2% and the dashed 
line corresponds to 5.1% of sulphur content, respectively. e SAG-2, 4 
(9.4% of sulphur content, solid line) experimental and theoretical IR 
spectral
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considered. All electronic structure calculations were per-
formed for closed electronic shells in the singlet state and 
neutral charge for gas phase since AG and SAG molecules 
have no regular crystal structure and do not interact with any 
solvents. KBr powder matrix provides low concentration of 
AG and SAG molecules which prevents interactions between 
the organic phases. Composition of arabinogalactan poly-
saccharide is mostly (by 90%) is determined by galactose 
structural units, so the molecular models of AG and SAG 
were developed based on two galactose groups. Following 
structural data of Ref. 17, structural models of sulphated 
arabinogalactan with sulphate groups in 2 (SAG-2), 4 (SAG-
4), 6 (SAG-6,) and 2, 4 (SAG-2,4) positions were developed. 
To consider possible intermolecular hydrogen bonds and 
dimerization of the molecules during sample preparation 
in KBr matrix, structural models of arabinogalactan and 
sulphated arabinogalactan (SAG-2,4) with chains consist of 
two galactose units of main arabinogalactan chain and two 
sulphated units in 2,4 AG positions were calculated. Theo-
retical AG and SAG IR spectra were calculated by multipli-
cation of Hessian matrix elements by 0.945 factor, which 
was obtained by renormalization of theoretical spectrum 
of pure arabinogalactan in comparison with experimental 
one. This is a standard procedure since it is known that the 
standard error in the determination of theoretical intensities 
of IR spectra is approximately 5–10%, depending on the 
calculation method. Often 2-params scaling (Palivec et al. 
2020) is performed to present IR spectra, but due to the fact 
that mainly the long-wavelength range was required in this 
particular study, the uniform scaling was applied. The IR 
spectra band assignment was carried out based on shape 
vibration analysis corresponding to the definite frequency 
and calculated atomic vibration amplitudes.

Results and discussion

Theoretical and experimental absorption frequencies of 
chemical bonds in functional groups of arabinogalactan 
and sulphated arabinogalactan molecules are presented 
in Tables 1 and 2. The relative errors (RE) of IR frequen-
cies were calculated following the formula RE = (OFexp-
OFtheor)·100%/OFexp, where  OFexp and  OFtheor are experi-
mental and theoretical oscillator frequencies, respectively. 
The discrepancy between theoretical and experimental 
IR frequencies for arabinogalactan is equal to 7.9% of 
3425  cm−1 as presented in Table  1. In high-frequency 
spectral region (2900–3700 cm–1), the frequency absolute 
errors reach 64–270 cm–1. For middle-range frequencies 
(600–1700 cm–1) the error magnitude becomes smaller 
than 33 cm–1. It is shown that the largest relative errors 
are observed for the oscillation frequencies correspond-
ing to OH-groups, which is probably caused by the great 

contribution of hydrogen bonds between multiple hydrox-
yls in arabinogalactan, thereby leading to energy shifts and 
broadening of absorption IR bands.

As it is shown in Fig.  2, the SAG-2, SAG-4, SAG-
6, SAG-2,4, spectra have similar absorption bands in the 
0–1700 cm−1 region. A significant shift of SAG-2,4 high-
intensity OH band (corresponding to the group of smaller 
values in the area of 2800–3700 cm−1) and sulphate peak 
shift in 1610–620 cm−1 spectral region towards larger values 
(corresponding to the sulphate group fluctuations) is also 
observed. Comparing IR spectra of all SAGs, a similar pat-
tern is observed for SAG-2, SAG-4 and SAG-6, while in 
the area of 1240–1260 cm−1 the greater intensity bands are 
observed for SAG-2,4 in comparison with the SAG-2, SAG-
4, and SAG-6.

Experimental (with mass sulphur content of 3.2 and 
5.1%) and theoretical IR spectra of arabinogalactan and its 
sulphated derivatives (SAG-2, SAG-4, SAG-6, and SAG-
2, 4) are presented in Fig. 2. It is observed that the theo-
retical and experimental spectra correspond well within 
3000–4000 cm−1 spectral region.

According to Table  2, SAG-2,4 showed visible dis-
crepancy up to 10% between theoretical and experimental 
results, which is probably due to the fact that the experi-
mental samples contain sulphated polysaccharide galactose 
units with a different hydroxyl group sulphation degree in 
various polysaccharide monomeric structures in C2, C4, and 
C6 positions (Fig. 1). It leads to widening and energy shift of 

Table 1  Theoretical (B3LYP/6–31 + G(d)) and experimental absorp-
tion frequencies of parent arabinogalactan

*The following notations are used: ν corresponds to stretching vibra-
tion; δ, ρ, ω, τ correspond to bending vibration (scissoring, rocking, 
wagging, twisting). Corresponding chemical bonds are indicated as 
subscript indexes in the brackets. Determination of spectral bands 
according to reference (Babkin et al. 2016)

Absorption 
frequency

Oscillation frequency, 
 cm−1

Band assignment*

Theory Experiment

1 650 617 δ(R–OH)

2 741 773 �(C−C), �(R−OH),�(CH2)

3 1070 1077 �(OH), �(C−O), �(CH2)

4 1124 1156 �(CH2)
, �(OH), �(C−O), �(C−O−C)

5 1285 1258 �(CH2),
�(C−O), �(OH)

6 1338 1339 �(−CH−),�(CH2)
, �(CH2)

7 1386 1376 �(OH), �(C−O),�(CH2)

8 1410 1418 �(CH2)
, �(OH), �(C−O),�(C−C)

9 1446 1456 �(−CH2−)

10 1597 1629 δ(OH), υ(C–O)

11 2921 2985 �(CH2)

12 3695 3425 υ(OH)
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experimental IR peaks which correspond to OH- and -CH2- 
bonds in polysaccharide molecule.

Molecular structures of arabinogalactan and sulphated 
arabinogalactan (SAG-2,4) are presented in Fig. 3, left and 
right, respectively, with chains consisting of two galactose, 
arabinogalactan and sulphated units in 2,4 AG positions.

AG and SAG-2,4 IR spectra are presented in Fig. 4. A 
band of 1690 cm−1 refers to the H-bond between two adja-
cent galactose units, which constitute AG and SAG mol-
ecules. It can be assumed that the intensity of intermolecular 
IR bands linearly increases with increasing of chain length, 
which may bring the theoretical spectrum closer to the 
experimental one with rather intense absorption bands in 

Table 2  Theoretical (B3LYP/6–31 + G(d) level of theory) and experimental absorption frequencies of -OH, -CH2, -SO2 functional groups of 
SAG-2, SAG-4, SAG-6, and SAG-2,4

*The following notations are used: ν is stretching vibration; δ, ρ, ω, τ are bending scissoring, rocking, wagging, and twisting vibrations
**AF is absorption frequency, and RE is relative error (RE = (AFexp-AFtheor)·100%/  AFexp). Determination of spectral bands according to refer-
ence (Babkin et al. 2016)

No Ex. data Calculated values Band assignment*

SAG-2 SAG-4 SAG-2,4 SAG-6

AF**,  cm−1 AF,  cm−1 RE, % AF,  cm−1 RE, % AF,  cm−1 RE, % AF,  cm−1 RE, %

1 2 3 4 5 6 7 8 9 10 11
2 581 540 7.59 550 5.34 504 13.25 580 0.17 δ (O=S=O), δ(R–OH)

3 617 633 2.53 640 3.59 682 9.53 674 9.24 δ(R–OH)

4 710 782 9.21 778 8.74 774 8.27 760 7.04 �(R−OH), �−CH2−

5 934 927 0.75 933 0.11 950 1.68 991 6.10 �(OH), �(C−O),�(CH2)

6 1019 1013 0.59 995 2.36 1006 1.28 1074 5.40 �(OH), �(C−O),�(CH2)
, �

s(O=S=O)

7 1131 1096 3.09 1095 3.18 1082 4.33 1206 6.63 �(CH2)
, �(OH), �(C−O), �C−O−C)

8 1258 1264 0.47 1233 1.99 1274 1.26 1223 2.78 �(CH2),
�C−O, �(OH), �as(O=S=O)

9 1446 1435 0.76 1427 1.31 1452 0.41 1413 2.28 �(−CH2−)

10 2923 3038 3.79 3048 4.10 3051 4.20 3006 2.84 �(CH2)

11 3440 3656 5.91 3531 2.58 3705 7.70 3497 1.66 υ(OH)

Average value 3.47 3.33 5.19 4.42
SAG-2 refers to sulphated arabinogalactan with sulphate group located in C2 position;
SAG-4 refers to sulphated arabinogalactan with sulphate group located in C4 position;
SAG-2,4 refers to sulphated arabinogalactan with sulphate groups located in C2 and C4 positions;
SAG-6 refers to sulphated arabinogalactan with sulphate group located in C6 position

Fig. 3  Molecular structure of galactose units of arabinogalactan and sulphated arabinogalactan in 2,4 position calculated at B3LYP/6–31 + G(d) 
level of theory
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the of 1650–1750 cm−1 energy region (see for comparison 
Fig. 2).

Table 3 presents theoretical vibration frequency assign-
ments for functional groups in parent arabinogalactan and 
SAG-2,4, consisting of two galactose units.

Comparison of the bond lengths and angles 
in arabinogalactan monomer and its sulphated 
derivatives

Theoretical bond lengths and bond angles of arabinogalactan 
monomer and its derivatives sulphated to different positions 
are presented in Fig. 5 and Table 4.

Following decreasing of absorption energy Eabs 
(Table S1), it can be concluded that substitution of hydroxyl 
group of parent arabinogalactan by sulphate group should 
lead to the increase in reactivity of its sulphated derivatives. 
With the addition of a sulphate group into the arabinoga-
lactan structure, the hydroxyl groups become more acces-
sible for further sulphation. The structural transformations 
can be caused by both structural breakdown during arabi-
nogalactan sulphation (Vasilyeva et al. 2013) and differences 
in the conformation of the sulphated and parent polysac-
charides. Obviously, sulphated arabinogalactan, unlike ara-
binogalactan, does not exist in spherical form.

The decrease in the dipole moment (Table S1) of SAG-4 
may be explained by molecular conformation in which 
the total dipole moment is less than the dipole moment of 
C–O–SO3Na functional group.

Fig. 4  Theoretical B3LYP/6–
31 + G(d) IR spectra of arabi-
nogalactan and sulphated AG in 
the 2,4 position, consisting of 
two galactose units. The red line 
represents IR spectrum of SAG-
2,4, and blue one represents IR 
spectrum of arabinogalactan 
constituted of two monosaccha-
ride units

Table 3  Theoretical vibration frequency assignment for the func-
tional groups in arabinogalactan and SAG-2,4, both consisting of two 
galactose units

AG oscillation frequencies SAG-2,4 oscillation frequencies

Oscillation 
frequency

Band assignment Oscillation 
frequency

Band assignment

2993.31 –CH 2977.77 –CH
3009.84 3003.83
3035.94 3036.94
3044.91 3044.11
3051.1 –CH, –CH2 3084.91 –CH2

3053.07
3061.97
3063.31
3066.17
3067.86
3106.71 –CH 3104.27 –CH
3109.68 3109.96
3134.9 –CH, –CH2 3110.42 –CH, –CH2

3144.93 3117.71
3132.01
3139.68
3170.1
3192.49

– – 3334.64 –CH
3533.57 –OH 3667.22 –OH
3664.77 3693.84
3678.15 3727.1
3701.51 3896.84
3724.01
3726.96
3739.82
3761.4
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Conclusions

In summary, the molecular and electronic structure and 
infrared spectra of arabinogalactan and its biological 
active sulphated derivatives were interpreted using DFT 
B3LYP/6–31 + G(d) level of theory. The main experimen-
tal spectral features were assigned to specific chemical 
bond vibrations. It was found that molecular models based 
on isolated galactose and arabinose monomer units of ara-
binogalactan and its sulphated derivatives can be used for 
correct simulations of IR spectra in the entire spectral region 

of 4000–500 cm−1. The difference between the frequencies 
of experimental and theoretical IR spectra of sulphated AG 
derivatives is greater than that of the parent arabinogalactan 
due to the increase in the number of possible isomers and 
conformers. The discrepancy between theoretical and exper-
imental IR spectra may be caused by the shortcomings of 
simple molecular models based on 1–2 galactose and arab-
inose structural units in comparison with real macromolecu-
lar structure, which is characterized by absence of regular 
composition and crystal.

Fig. 5  Molecular structure of AG and SAGs calculated at the B3LYP/6–31 + G(d) level of theory. a Parent arabinogalactan, b SAG-2, c SAG-4, 
d SAG-2,4, e SAG-6. The blue dotted lines represent intramolecular hydrogen bonds. Atoms are numbered following Table 4 notations
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