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A B S T R A C T

The method of searching for the profiles of the gradient dependence of the material parameters of matter on the
coordinates that allow the exact solution of wave equations, developed previously for electromagnetic and
elastic waves, was generalized to spin waves in gradient ferromagnets. Such profiles were found and exact
solutions of the wave equations for a ferromagnet with uniaxial magnetic anisotropy z( ) or exchange z( )
varying in space were obtained. The obtained solutions were used to develop the theory of spin-wave resonance
in gradient thin magnetic films. The dependences of the eigenfunctions m z( )n , the frequencies of the discrete
spectrum n, and the high-frequency susceptibility n on the number of spectral levels n were found. The car-
dinal differences between the spin-wave spectra of films with gradients z( ) and z( ) are shown. The variable
anisotropy z( ) changes the shape of the energy potential of the magnetic film and leads to a change in the
discrete spectrum for frequencies n( )n lower than the frequency of the gradient potential well or potential
barrier c. The variable exchange z( ) does not change the shape of the energy potential. Spin-wave oscillations
occur in a rectangular potential well created by the surfaces of the film, regardless of profile z( ). The discrete
frequency spectrum n( )n is quadratic on n, or has negligible deviations from the quadratic, for all n. An ana-
lytical expression for the effective exchange parameter is obtained. Exact solutions of the Schrödinger equation
with spatially dependent effective mass m z( ) were found for the profile of m z( ) inverse to the function of z( ).

1. Introduction

Inhomogeneous materials with a smoothly aperiodically varying
along the coordinate axes value of some material parameter (or several
parameters) make up the class of gradient metamaterials. Gradient
heterogeneity can be due to both natural causes and specially formed in
the process of creating the material. Electromagnetic and elastic waves
in substances with artificially created gradient inhomogeneities of the
refractive index and elastic constants, respectively, are currently being
intensively studied experimentally and theoretically [1]. The one-di-
mensional wave equations in this case contain a coordinate-dependent
coefficient, the profile of which is described by some functionU z( ). The
development of the theory of waves in gradient material involves the
sequential solution of two problems: (i) finding the exact solution of a
differential equation with a coordinate-dependent coefficient and (ii)
analyzing this exact solution for a specific physical model using ap-
proximate analytical or numerical methods. The first, purely mathe-
matical problem, has different solutions for cases of different locations
of the gradient coefficient U z( ) in the equation: before the spatial de-
rivative(s), the temporal derivative, or the desired function of the wave
equation. Exact solutions of wave equations are known for many U z( )
profiles [2]. The case when the structure of the wave equation

corresponds to the Schrödinger equation for electrons in the external
potential U z( ) (a coordinate-dependent coefficient in front of the de-
sired function) has been studied especially well [3,4].

Various technologies for producing artificial gradient optical and
elastic media with a predetermined lawU z( ) of a change in a material
parameter have been developing since the 1970s [1]. For example, co-
evaporation of two low and high refractive index materials is used. A
predetermined change in the relationship between evaporation in-
tensities over time leads to a predetermined lawU z( ) of a change in the
refractive index along the thickness of the formed film. The develop-
ment of methods for producing films with a given law of variation of the
material parameter U z( ) stimulated the search for exact solutions for
new profiles of potential U z( ) [5–9].

In recent years, a new approach to this problem has been formed,
which is summarized and consistently presented in the book [1]. In the
usual approach, the form of the potentialU z( ) is given, and a search for
changes of variables and functions of the equation of oscillation is made
which would lead to an exact solution of this equation. In the new
method, the functionU z( ) is assumed to be unknown and the standard
replacements of variables and functions found in [1] are carried out,
with the help of which an additional nonlinear differential equation for
the desired function U z( ) is derived from the equation of oscillations.
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Solutions of this additional equation, which can be several, give a
concrete form of coefficientsU z( ) for which the oscillation equation has
an exact solution. Finding each solution to the additional equation is a
separate, not simple mathematical problem. Thus, the form of the po-
tential U z( ) in this method is determined by purely mathematical and
not physical considerations. However, it is well known that almost
every potential for which an exact solution of the oscillation equation is
obtained, sooner or later finds its application in any physical problem.
Equations from different areas of physics (optics, acoustics, magnetism)
for some gradient parameters are similar to each other and the exact
solutions obtained for them are used in all these areas. The developed
approach was applied by the authors [1] to finding exact solutions for a
number of problems of propagation of electromagnetic and elastic
waves in gradient metamaterials. It gives the theory of waves in gra-
dient materials a particular orderliness and generality.

The extension of this approach to the problem of describing spin
waves in gradient ferromagnets is an important task. The application of
the found exact solutions to the problems of each of the physical areas
has its own specifics. In the theory of electromagnetic and elastic
waves, the main sought quantities are transmission, reflection, refrac-
tion, and other characteristics of traveling waves. In some cases, the
calculation of these quantities is also necessary for spin waves. But the
primary problem of the theory of spin waves is the calculation of the
spectrum and amplitudes of standing spin-wave oscillations in thin
magnetic films. These characteristics are both the subject of intensive
theoretical [10–16] and experimental [17–29] studies. Therefore, we
use the exact solutions for spin waves obtained in this work to develop
the theory of spin-wave resonance in gradient thin magnetic films.

The situation with the development of both experimental and the-
oretical studies of spin waves in gradient magnetic metamaterials is
fundamentally different from the situation with the study of electro-
magnetic and elastic waves. Studies of spin waves in gradient ferro-
magnets have until recently dealt only with natural gradient in-
homogeneity, which occurs uncontrollably when producing thin
magnetic films [10–29]. A brief description of this stage of research
development is given below in the next section of work.

Targeted experimental studies of artificially created gradient mag-
netic materials are just beginning. The authors of [30] developed a
technology for creating layered films in which the magnetic parameters
of neighboring layers differ slightly from each other along the film
thickness, simulating a predetermined law of magnetization M z( ) or
exchange z( ). By appropriate selection of the composition of the alloy
for each layer, the authors obtained samples in which only one of the
magnetic parameters changed according to a given law, while the
others remained approximately constant. Thus, a change in the ratio
between the components of the Co Nix y alloy in a certain concentration
range leads to a strong change in the magnetization M of the alloy with
a small change in the exchange parameter . In the Co Px y alloy, small
changes in the addition of phosphorus (from 7 to 9 atomic %) lead to
strong changes in the exchange parameter with an almost unchanged
magnetization M. The dependence of the material parameter on z with
this technology is obtained in steps, but with small thicknesses of layers
it can be approximated by a smooth function. The spin-wave resonance
on the obtained gradient samples was also investigated in [30]. Further
development of the technology proposed in [30] would make it possible
to create gradient magnets with the most exotic laws of the dependence
of magnetic parameters on z, which are necessary for practical appli-
cations. This makes it relevant to expand the class of existing gradient
profiles of magnetic parameters that allow exact solutions of spin-wave
equations.

The objectives of our work are (i) to search for new gradient de-
pendencies of the parameters of magnetic anisotropy (Section 2) and
exchange (Section 3) in addition to the existing ones, which allow one
to obtain exact solutions of the equations of spin-wave oscillations, and
(ii) to develop the theory of spin-wave resonance for these new accurate
solutions. Existing exact solutions for these parameters are briefly

discussed at the beginning of each section.

2. Coordinate-dependent magnetic anisotropy

The potential energy density in a magnetouniaxial crystal is

H = M x Ml HM H M1
2

( ) 1
2

( )( ) 1
2

,2 2 m
(1)

where M is the magnetization vector, is the exchange parameter, is
the parameter of uniaxial magnetic anisotropy with the axis directed
along ort l H, is the external dc magnetic field,Hm is the demagnetizing
field depending on =x x y zM, { , , }i . Oscillations of the magnetization
vector are described by the Landau-Lifshitz equation

+ × =d
dt

gM M H[ ] 0,e (2)

where the effective magnetic field He is determined by the expression

H H= + ( )x
H

M
.e

i
x
M

i (3)

We consider a ferromagnetic layer (thin film), where the axis of ani-
sotropy l and the magnetic field H are perpendicular to the film plane,
along the coordinate axis z. Eq. (1) describes a film with a light ani-
sotropy axis, if > 0, and with a light plane, if < 0. We consider a
model where only the anisotropy parameter depends on the co-
ordinate z. We suppose that the magnitude of the magnetic field H is
sufficient to magnetize the film perpendicular to its plane for any value
of the coordinate z, that is, for any z, the inequality holds

>H z M[4 ( )] 0. (4)

Performing the usual linearization of Eq. (2) (M M M M M, ,x y z ),
we obtain the equation for the resonance circular projection of the
magnetization = +m M iMx y

+ =d m
dz

z m1 ( ) 0,
M

2

2
0

(5)

where is the frequency, = =g H M gM g( 4 ), ,M0 is the gyro-
magnetic ratio. In the case when not the anisotropy, but the magneti-
zationM depends on z, then the linearized equation of oscillations has a
rather complicated form. Therefore, the authors of [10–16], con-
sidering this case, assumed that only variations of the magnetostatic
field =H z M z( ) 4 ( )m has a significant effect on the properties of spin
waves, and in the remaining terms M can be approximately considered
constant. Then the equation takes the form

+ + =d m
dz

M z m1 4 ( ) 0,
M

2

2
0

(6)

where = +g H M( )0 . Both Eqs. (5) and (6) have a form similar to
the Schrödinger equation for electrons in an external potential U z( ).
Therefore, all exact solutions of the Schrödinger equation, known for
different potential profiles U z( ) [3,4], are exact solutions of Eqs. (5)
and (6) with the corresponding profiles z( ) or M z( ).

This circumstance was used in the 60s-70s of the last century to
develop the theory of spin-wave resonance in gradient films for some
profiles of smooth variation of the magnitudes of magnetization M z( )
and uniaxial magnetic anisotropy z( ). The development of the theory
was stimulated by experimentally detected deviations of the depen-
dence of the resonant frequencies n (or resonant fields Hn) on the
mode number n, from the quadratic law nn

2 predicted by Kittel’s
theory [31] for homogeneous magnetic films. In the paper [10], it was
supposed that these deviations are due to the smooth inhomogeneity of
the magnetization M across the film thickness caused by various tech-
nological factors. The real dependences of the magnetization M on z
were unknown, but there were grounds to assume that the function
M z( ) decreases from the middle of the film to its surfaces. Therefore,
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for modeling, a decreasing parabolic function M z( ) was used, which,
due to the minus sign in the expression for H z( )m , leads to a parabolic
potential well in the energy profile of the system. The exact solution of
the Schrödinger equation, and, consequently, of Eqs. (5) and (6) in this
case, can be written in terms of confluent hypergeometric function [2].
In some cases, technological factors led to another dependence of M on
z: an almost linear decrease in this function from one surface of the film
to another. For such cases, the solution to the Schrödinger equation and
Eqs. (5) and (6) can be solved in terms of the Airy functions [2]. Reg-
ularities that take into account the features of the magnetic system and
the boundary conditions on the surfaces of the film were obtained from
these exact solutions by approximate analytical, graphical and numer-
ical methods [11–16]. The main of these laws is the form of the function
of the dependence of discrete frequencies n (or resonance fields Hn) on
the number of energy levels n. For frequencies <n c, where c cor-
responds to the upper boundary of the gradient potential well, a model
with a parabolic dependence of the magnetic parameters on z leads to
the law nn , and a model with a linear dependence of these para-
meters leads to the law n( 3/4)n

2/3, where = …n 1, 2, 3, . For
frequencies >n c, the dependence n on n for both models with in-
creasing n more and more approaches the law nn

2 corresponding to
a homogeneous film.

Theoretical works [11–16] allowed a qualitative explanation of the
results of experimental studies of spin-wave resonance of those years and
stimulated the improvement of the technology for producing films. In-
creasing technological requirements (high vacuum, temperature regimes,
artificial formation of boundary conditions, etc.) led to the creation of
more perfect permalloy films [17], for which Kittel’s law nn

2 was
well implemented for all values n. However, deviations from this law for
frequencies <n c are still observed both on films of various alloys and
on films of granulated materials consisting of small ferromagnetic par-
ticles in a nonmagnetic matrix. These deviations are qualitatively ex-
plained by the authors of experimental works in the framework of
models of either a parabolic [18–24] or a linear [25–29] variations of
magnetic parameters. It is possible that in order to describe such a
naturally occurring gradient of magnetic parameters, it would be useful
to apply the Pöschl-Teller potential [32], which makes it possible to si-
mulate asymmetric potential wells [33]. Having finished the in-
troductory part of this section, let us return to the goal of our work.

Using the method [1], we introduce the designation V z( )2 for the
normalized dependence of the gradient parameter on z

=z V z( ) ( ).0
2 (7)

Equation (5) is coincides in its mathematical structure with Eq. (5.22)
studied in Ref. [1] for electromagnetic waves in plasma with variable
electron density. Therefore, we carry out transformations of Eq. (5),
similar to the transformations of this equation. Representing V z( )2 in
the form

= +V z W z( ) ( ),2 2 (8)

where is an arbitrary dimensionless parameter, we do function re-
placement

=m z W z f z( ) ( ) ( ).1/2 (9)

Making a change to a variable in the function f z( )

= W z dz( ) ,
z

0 1 1 (10)

we leave the function W dependent on z. This leads to the equation

+

=

d f
d
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W W d W
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f
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M
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2

2

2

(11)

Requiring that the coefficient before f ( ) in last term in this equation

was constant, we obtain the additional nonlinear differential equation
for the selection of acceptable forms of function W z( )

=W W d W
dz

dW
dz

C1
2

3
4

.4
2

2

2

(12)

Nonlinear Eq. (12) can have several solutions. One of the simplest
possible solutions to this equation, as shown in [1,6], has the form

=
+

W z
µpz

( ) 1
1

,
(13)

where p is the characteristic wave number of the gradient in-
homogeneity, µ is an arbitrary dimensionless parameter. This solution
corresponds =C µp( /2)2 in Eq. (12). Substituting Eq. (13) into Eq. (10)
and performing integration, we obtain

= +
µp

µpz1 ln(1 ).
(14)

We make a change to a variable in Eq. (11)

= = +µp µpzexp( ) 1 . (15)

As a result, Eq. (11) takes the form of the Bessel equation

+ + =d f
d

df
d

s f1 0,
2

2

2

2 (16)

where the dimensionless frequency and the index of the Bessel
function s are expressed in terms of the parameters of the problem as
follows

=
µ p

1 [ ],
M

M2 2 0 0 (17)

= +s
µ p

1
4

.2 0
2 2 (18)

Solutions of Eq. (16) has the form

=f Z Q( ) ( ),s (19)

where Zs is the Bessel function of the index s Q, is the dimensionless
wavenumber. Substituting Eq. (19) into Eq. (16) leads to the di-
mensionless dispersion law

= Q .2 (20)

Valid values of Q and, respectively, , are determined by the boundary
conditions of the problem.

It is convenient to give Eq. (16) for our problem in a different form.
Without introducing the function f z( ) (9) and the variable (10), we
make the change of variable

= + µpz1 (21)

directly in the original Eq. (5). As a result, we immediately obtain the
Bessel equation in one of its forms for the desired function m ( )

+ =d m
d

s m1/4 0,
2

2

2

2 (22)

whose solutions are of the form [34]

=m z Z Q( ) ( ).s
1/2 (23)

Thus, the representation of the original Eq. (5) in the form of the Bessel
equation for potential (8) and (13) can be done with one simple change
of variable (21). All the other replacements of functions and variables
were needed only to find the kind of potential V z( )2 for which such a
transformation of Eq. (5) is possible. Similar to the equation for spin
waves with variable magnetic anisotropy (5), the Schrödinger equation
for electrons in the potential

= +
+

U z U
µpz

( ) 1
(1 )0 2 (24)
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in space takes the form of the Bessel equation

m+ =d
d µ p

E U s2 ( ) 1/4 0.
2

2
0

2 2 0
2

2 (25)

Here m0 is the mass of the electron and

m= +s U
µ p

1
4

2 .2 0 0
2 2 (26)

The solution of Eq. (25) has the form similar to formula (23). Sub-
stitution of this solution into Eq. (25) leads to the dispersion law

m
= +E U µ p Q

2
,0

2 2

0

2
(27)

where the permissible values of Q are determined by the boundary
conditions of the problem.

The general solution of the original Eq. (5) for the potential in the
form of Eqs. (8) and (13) is

= +m z A J Q B N Q( ) ( ) ( ),s s
1/2 1/2 (28)

where Js and Ns are the Bessel and Neumann functions, respectively, A
and B are arbitrary constants. The index s and argument of these
functions are determined by Eqs. (18) and (21).

We consider below even z( ) functions, therefore the functionW z( )
in the expression for the potential will depend on the modulus z:

= +
+

V z
µp z

( ) 1
(1 | |)

.2
2 (29)

Equation (29) models in this case either a potential well ( <µ 0, func-
tion of the modulus, V z( )2 , decreases from the middle of the film to its
surfaces) or a potential barrier ( >µ 0, function of the module, V z( )2 ,
increases from the middle of the film to its surfaces). Note that the term
”barrier” here has a different meaning than in optics or acoustics
[1,5–9], where it denotes an obstacle to the wave propagation, re-
gardless of the form of its dependence on z. It is convenient to analyze
the spectrum of spin waves for values of the potential well and the
height of the potential barrier close to each other. In this case, the
parameters and µ for the barrier and the well are different. We select
the following values for these parameters:

= =µpotential well, 3
4

and 1
4

, (30)

= =µpotential barrier, 0 and 1. (31)

The value of the gradient wave number for both cases is the same,
=p d2/ . The shape of the potentials V z( )2 for the selected parameter

values is shown in Fig. 1. The parameters of solution Eq. (28) are de-
termined by Eqs. (15), (17) and (18), which have a different form for
various forms of gradient profiles: for the solutionm ( )w w in a potential
well,

=
d

z1 1
2

| |,w (32)

= +d4 3
4

,
M

Mw
2

0 0 (33)

= +s
d1

4
4

,w
2 0

2

(34)

for the solution m ( )b b for a potential barrier,

= +
d

z1 2 | |,b (35)

= d
4

,
M

b
0 2

(36)

= +s
d1

4 4
.b

2 0
2

(37)

The variable in Eq. (28) for the cases of a potential well and a barrier
differs not only in the value, but also in the direction of its change: in
the first case it decreases with growth z| |, in the second case it increases.
The values of the index of the Bessel functions, sb

2 and sw
2 , also differ

significantly. Below we omit the indices w and b for all quantities
where this does not lead to misunderstandings. It is assumed that in the
presence of a potential well, Eqs. (32)–(34) are used, and in the pre-
sence of a potential barrier, Eqs. (35)–(37) are used.

The general solution Eq. (28) with a symmetric potential (29) has
the following form: for symmetric ( =m z m z( ) ( )) oscillations

= +m z A J Q N Q( ) [ ( ) ( )]s s
1/2 (38)

and for antisymmetric ( =m z m z( ) ( ))

= +m z z A J Q N Q( ) sign( ) [ ( ) ( )],s s
1/2 (39)

where = B A/ . Equations (38) and (39) contain two parameters, Q and
, which are determined by the boundary conditions and the symmetry
of the oscillations. The parameter A in the absence of force, exciting
oscillations, remains arbitrary. We consider standing waves in a thin
magnetic film for the conditions of both pinned oscillations on the
surfaces of the film

==±m z( )| 0,z d/2 (40)

and unpinned

=
=±

dm z
dz

( ) 0.
z d/2 (41)

Substituting Eqs. (38) and (39) into Eqs. (40) and (41), we obtain the
condition for both symmetric and antisymmetric pinned oscillations

+ =J Q N Q( ) ( ) 0s s0 0 (42)

and for unpinned

=
+

+
+

+

s J Q QJ Q
s N Q QN Q

(1 2 ) ( ) 2 ( )
(1 2 ) ( ) 2 ( )

,s s

s s

0 1 0

0 1 0 (43)

where

= =±z( )| .z d0 /2 (44)

To find the two unknowns, Q and , the equations must be added for
=z 0, corresponding to the conjugation of solutions in the central plane

of the film. Symmetric oscillations have an extremum in the center of
the film, and this condition has the form

=
=

dm z
dz

( ) 0,
z 0 (45)

and antisymmetric oscillations have a nodal point at =z 0 and

==m z( )| 0.z 0 (46)

Substituting Eq. (38) into Eq. (45) and Eq. (39) into Eq. (46), we obtain

d/2
z

1/4

0

1/2

1

V2 (z
)

-d/2 0

3/2

Fig. 1. Function V z( )2 for the cases of a potential well ( = =µ3/4, 1/4,
solid curve) and barrier ( = =µ0, 1, dashed curve).
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the conjugation equations for symmetric

= +
+

+

+

s J Q QJ Q
s N Q QN Q

(1 2 ) ( ) 2 ( )
(1 2 ) ( ) 2 ( )

,s s

s s

1

1 (47)

and for antisymmetric oscillations

+ =J Q N Q( ) ( ) 0.s s (48)

The results of solving Eqs. (38) and (39) are conveniently presented in
the form of a matrix of the 2nd ordermn

ij, where the rows correspond to
pinned ( =i p) and unpinned ( =i u), and the columns to symmetric
( =j s) and antisymmetric ( =j a) oscillations

=m
m z m z
m z m z

( ) ( )
( ) ( )

.n
ij n

ps
n
pa

n
us

n
ua (49)

The systems of equations for Q and for pinned oscillations mn
ps and

mn
pa is Eqs. (42), (45) and Eqs. (42), (46), respectively, and for un-

pinned oscillations mn
us and mn

ua – Eqs. (43), (45) and (43), (46), re-
spectively.

The results obtained here for gradient films will be compared with
the results of the theory of spin-wave resonance in a film with uniform
magnetic anisotropy, the value of which is equal to the average value of
the anisotropy of a gradient film. In this case, the equation for magnetic
oscillations is

+ =d m
dz

m V z m( ) 0.
M

2

2
0 0 2

(50)

Eigenfunctions of this equation are harmonic oscillations, antisym-
metric and symmetric, respectively

m k z m k zsin , cos ,n
a

n n
s

n (51)

and the discrete spectrum of eigenvalues is determined by the disper-
sion equation

= + +V z k( ) ,n M M n0 0
2 2 (52)

where

=k n
d

,n (53)

where = …n 1, 3, 5, for symmetric and = …n 2, 4, 6, for antisymmetric
oscillations. Here

=V z
d

V z dz( ) 1 ( ) .
d

d2
/2

/2 2
(54)

For a potential of the form (29) we obtain

= +
+

V z
µpd

( ) 1
1 /2

.2
(55)

With the chosen values of the parameters µ, and p we have for the
potential well and the potential barrier, respectively

= =V z V z( ) 7
12

, ( ) 1
2

.2
w

2
b (56)

The calculation was carried out for the following parameters of the
gradient films: =M G1000 , α = 2 × 10−12 cm2, β0 = 6, H = 13 kOe,
d = 200 nm. The index values of the Bessel functions corresponding to
these parameters are =s 69.28 for the potential well and =s 17.33 for
the potential barrier. The shapes of the pinned (a) and unpinned (b)
spin-wave oscillations for the case of a potential well are conventionally
shown at the corresponding levels of the discrete frequency spectrum
(Fig. 2). Black-covered modes correspond to symmetric and green da-
shed curves to antisymmetric oscillations. The amplitudes of oscilla-
tions at all levels n are normalized to the same value. The shape of
potential well V z( )2 is also given in the correspondent units of mea-
surement. Outside the potential well, there are no oscillations, except
for the tails of internal oscillations penetrating through the surface
V z( )2 as a result of tunneling. The critical frequency c corresponds to

the upper edge of the gradient potential well. The properties of oscil-
lations at frequencies <n c differ significantly from the properties of
oscillations at frequencies >n c occurring in a rectangular potential
well formed by the surfaces of the film. At <n c the ends of the
magnetic oscillations are pinned on the ”surface” of the potential well
V z( )2 . This effect was found in Ref. [14] for films with a variable
magnetization M z( ) and was called “dynamic pinning” there. It was
studied also for electromagnetic and elastic waves [1]. Due to this ef-
fect, the shape of the oscillations at frequencies <n c does not de-
pend on the boundary conditions on the film surface (compare Fig. 2a
and b). Due to the same effect, the odd oscillation modes at <n c will
be well excited by an external alternating field h, independent of z, for
films with both pinned, Eq. (40), and unpinned, Eq. (41), oscillations.
For these modes, the high-frequency magnetic susceptibility

=
hd

m z dz1 ( )
d

d

/2

/2

(57)

is not equal to zero.
We will call critical the energy level =n nc, the frequency of which

is closest to c from the side of low frequencies. As can be seen from
Fig. 2, the mode of oscillations at n nc differs significantly from the
harmonic one: the effective ”wavelength” of the oscillations increases
from the center of the film to its surfaces. The form of oscillations at the
levels >n nc with growth n closer to harmonic ones, the excitations of
which by an external alternating field h are possible only for spins
pinned on the film surface (Fig. 2a). The susceptibility of antisymmetric
oscillations is zero for any boundary conditions and any n: for the ex-
citation requires a high-frequency field, the amplitude of which de-
pends on z. Note that the parity of the levels n of unpinned oscillations
for >n nc changes to the opposite. In contrast to oscillations in a uni-
form film, in a gradient film, symmetric and antisymmetric oscillations
are not generally described by different functions ( kzcos and kzsin ), but
by the product of a function z( )1/2 by the sum of the Bessel J and
Neumann N functions. The function n( )n , which is found from the
corresponding system of equations for and Q, characterizes the
mathematical structure of the solution: the ratio between the ampli-
tudes A and B functions J and N at each level n. This function is shown
in Fig. 3 for pinned symmetric (circles) and antisymmetric (crosses)
oscillations. At <n 6, the parameter n is close to zero. In this region,
the same function J (with different phases) describes both symmetric
and antisymmetric oscillations. The amplitude B in front of the function
N increases when approaching the critical level =n 7c . The conditional

-0.5 0 0.5
z/d

(b)

1

3

5

7

8

10

n
(a)

-0.5 0 0.5
z/d

ω
/g

 (k
O

e)

1

3

5

7

9

0

2

4

6

8

10 n

Fig. 2. Discrete spectral levels and normalized shapes of pinned (a) and un-
pinned (b) oscillations m z( )n for the case of a potential well. Black-covered
modes correspond to symmetric and green dotted curves – to antisymmetric
oscillations. The shape of the potential well in units of g/ is also shown (thick
red dashed curve).
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continuous dashed curve connecting the discrete values of the function
n in this figure has the form of oscillations, the amplitude of which
increases with growth n. Sharp rises and falls of a function n( )n with a
change in its sign correspond to drastic changes in the ratio between
functions J and N at neighboring levels n. When the magnitude of the
function n exceeds one, it is convenient to use the reciprocal 1/ n,
which is also shown in Fig. 3. The function n( )n for unpinned oscil-
lations (not shown here) is qualitatively similar to the function in Fig. 3,
differing from it in details: it increases when approaching the critical
level =n 7c in the direction of negative, but not positive values n, and

has smoother fluctuations about the axis = 0n . The basic character-
istics of the oscillations calculated by us, which can be measured ex-
perimentally, are shown in Fig. 4: discrete frequency spectrum n (a)
and relative susceptibility /n 1

0 (b), where 1
0 is the susceptibility of the

first peak of a homogeneous film. For comparison, the same features for
a uniform film are also shown. The function n( )n for a gradient film
has a complex shape. For <n nc, the function n( )n increases more
slowly with n increasing than n in the first degree, has an inflection
point near n = nc, and for >n nc it acquires the dependence nn

2

which is typical for a uniform film. The function n( )n has a different
physical meaning in a gradient and homogeneous medium. A packet of
waves with different k, which is determined by the Fourier transform of
the oscillation shape m z( )n , corresponds to each discrete frequency n
in a gradient medium. One wave number kn corresponds to each value n
of function n in a homogeneous medium, and the function n( )n in this
case reproduces the discrete points of the continuous dispersion law of
spin waves of a homogeneous medium. From Fig. 4 (b), it can be seen
that the susceptibility of the first peak of gradient films is less than the
susceptibility of homogeneous films. However, it decreases with growth
n much slower than the susceptibility of homogeneous films, and ex-
ceeds the latter by several times for peaks in the range from =n 2 to

=n nc.
The shapes of the spin-wave pinned (a) and unpinned (b) spin-wave

oscillations for the case of a potential barrier are conventionally shown
at the corresponding levels of the discrete frequency spectrum (Fig. 5).
It can be seen that at <n nc the oscillations occur in two potential wells
V z( )2 , bounded by the boundaries of the barrier and the corresponding
film surfaces. There are no oscillations inside the barrier, except for the
tails of external oscillations penetrating through the surface of the
barrier as a result of tunneling. In the thin part of the barrier
( =n 5 7), these tails can merge, forming transparency windows in
the barrier. Symmetric oscillations with >n nc have noticeable distor-
tions in the region above the top of the barrier. The numbering of the
levels is chosen so that it corresponds to the number of half-waves of
oscillations in the system of two interacting potential wells. Therefore,
the parity of the number n varies not only for the unpinned oscillations,
as in Fig. 2, but also for pinned ones. The sharp difference in the
spectrum Fig. 5 from the spectrum for the potential well (Fig. 3) lies in
the fact that the degeneracy of the spectral levels of symmetric and
antisymmetric oscillations occurs at levels from =n 1 to =n 5. This
degeneration is lifted for higher levels. Also, as in the case of a potential
well, the oscillations have the form of the product of the function z( )1/2

by the sum of the Bessel J and Neumann N functions, the relationship
between the contributions of which is described by the parameter n.

Fig. 3. Function n (black circles for symmetric and green crosses for anti-
symmetric oscillations) and 1/ n (black squares for symmetric and green
rhombuses for antisymmetric oscillations) vs n for the case of a potential well.
The dotted curve is the conditional continuation of the function n( )n between
the points of its existence.
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Fig. 4. Frequency spectrum n( )n (a) and relative high-frequency susceptibility
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0 (b) of pinned (blue circles) and unpinned (red dots) oscillations for the
case of a potential well. Black dashed curves show the same values for a uni-
form film.
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Fig. 5. Discrete spectral levels n and normalized modes for pinned (a) and
unpinned (b) oscillations m z( )n for the case of a potential barrier. Designations
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V.A. Ignatchenko and D.S. Tsikalov Journal of Magnetism and Magnetic Materials 510 (2020) 166643

6



The dependence of a parameter n on n (not shown here) a qualitatively
similar to Fig. 3. When n nc, the oscillations are described by a
function J, and with increasing n, both functions J and N, alternately
make a primary contribution to the oscillation form. The frequency
spectrum n( )n and relative susceptibility /n 1

0 for the potential bar-
rier are shown in Fig. 6 (a) and (b), respectively. It can be seen that the
function n( )n for the potential barrier, in contrast to the case of the
potential well (Fig. 4a), increases with n for <n nc according to a law
that is close to linear. The susceptibility for pinned oscillations for a
potential barrier differs from the susceptibility of oscillations in a po-
tential well. Sharp dips of the function n( )n occur at levels 4 and 8,
which correspond to an even number of half-waves in each potential
well on both sides of the barrier.

3. Coordinate-dependent exchange parameter

Consider the case when the gradient inhomogeneity in the expres-
sion for energy, Eq. (1), has only the exchange parameter = z( ). The
wave equation according to Eqs. (2) and (3) in this case has the form

+ + =z d m
dz

d z
dz

dm
dz

m( ) ( ) 0,
M

2

2
0

(58)

where = g H M[ (4 ) ]0 is the frequency of the uniform ferro-
magnetic resonance. Eq. (58), in contrast to Eq. (5), also contains the
first derivative of the function m z( ). By its mathematical structure, this
equation is equivalent to the equation for elastic waves in a medium
with a variable shear modulus G z( )

+ + =G z d u
dz

dG z
dz

du
dz

G
v

u( ) ( ) 0,
2

2
0

2

0 (59)

where v0 is the velocity of elastic waves andG0 is the shear modulus in a
homogeneous medium. The profiles of the shear modulus and the cor-
responding exact solutions of Eq. (59) were found in Refs. [5,7]. In Ref.
[5], the following profile model was investigated

= + < <G z G az q( ) (1 ) , 0 1,q
0

2 (60)

and the solution was obtained

= + +u A az J Q az(1 ) [ (1 ) ],q
s

q1/2 1 (61)

where the dimensionless wave number Q and the index of the Bessel
function s, respectively,

= =Q
av q

s q
q(1 )

and 1/2
1

.
0 (62)

In Ref. [7], the authors used the auxiliary barrier method developed by
them to find the profile G z( ) and solve Eq. (59). The solution was ob-
tained by them in the space

= ( )u AF iQ F d( ) ( )exp ( ) ,1/2
0 1 1 (63)

where

= =d dz
W z

W z G z G
( )

, ( ) ( )/ .2
2

0 (64)

In this approach, the auxiliary profile in space has the simple form

= + +F s a s a( ) (1 ) ,2
1 1 2 2

2 2 2 (65)

where a1 and a2 are arbitrary parameters, s1 and s2 can take values ± 1.
The formula for the desired profileW z( )2 after the transition to z space
is cumbersome, so it is not given here. Our purpose is to find the sim-
plest symmetric increasing and decreasing profiles of the function z( )
that allows us to obtain the exact solution of Eq. (58) or (59). Our
approach allows us to obtain a simple expressions for both the profile

z( ) and the exact solution of the wave equation, Eq. (58). This makes it
possible to study spin-wave oscillations with a variable exchange
parameter by analytical methods. We use the standard substitution of
the function [34] to get rid of the first derivative in Eq. (58)),

=z m z
z

dz( ) ( )exp 1
2

1
( )

.
1

1
(66)

Equation for z( ) has the form

+ =d
dz z

d
dz z

d
dz

1
( )

1
2

1
4 ( )

0.
M

2

2
0

2

2

2

(67)

We require that the exchange function z( ) satisfies the equation

=d
dz z

d
dz

C1
2

1
4 ( )

,
2

2

2

(68)

where C is a constant. One of the possible solutions of this equation is

= +z b az( ) ( ) .0
2 (69)

Substituting this solution causes the constant C to vanish, and Eq. (67)
takes the form

+ =d
dz

V z( ) 0,
M

2

2
0

0

2
(70)

where

=
+

V z
b az

( ) 1 .
(71)

It can be seen that the mathematical structure of Eq. (70) corresponds
to the structure of Eq. (2.9) in Ref. [1] for the vector potential com-
ponent of electromagnetic waves in a medium with a gradient refractive
index n. Therefore, we carry out transformations of Eq. (70) similar to
the transformations of Eq. (2.9) in Ref. [1]. We introduce a new func-
tion F and a new variable :
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Fig. 6. Frequency spectrum n( )n (a) and the relative high-frequency sus-
ceptibility /n 1

0 (b) for the case of a potential barrier. Auxiliary lines (b)
connect circles (blue dotted line) and dots (red dash-dotted line). The remaining
designations correspond to Fig. 4.
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= = =V z F V z z V z dz( ) ; ( ) ( ); ( ) .1/2 1
1 1 (72)

In this case, Eq. (70) takes the form

+ =d F
d

F d
dz

d
dz

F1
2

1
4

0,
M

2

2
0

0

2

2

2

(73)

where =F F ( ) and = z( ). Require the function to satisfy the
equation

=d
dz

d
dz

C1
2

1
4

,
2

2

2

1 (74)

where C1 is a constant. The authors of Ref. [1] found a solution to this
equation in the form

= = + +z
V z

b az a z( ) 1
( )

.1
2

(75)

However, in our case, besides Eq. (74), Eq. (68) must be satisfied to
eliminate the first derivative in Eq. (58). Both of these conditions are
satisfied if = =a C a0, ( /2)1 1

2, and the function z( ) is determined by
Eq. (69). Equation (73) in this case takes the form of an equation of
oscillations with constant coefficients

+ + =d F
d

a F
2

0,
M

2

2
0

0

2

(76)

whose solutions are of the form

= ±±F iq( ) exp( ), (77)

= + = +m z b az F z
a

b az( ) ( ) ( ), 1 ln( ).1/2
(78)

The solution of a similar problem for elastic waves in a medium with a
variable shear modulusG z( ) was found [5] for a profile, Eq. (60), in the
interval < <q0 1. That solution diverges at the point =q 1 (see Eq.
(62)). Thus, the solution of the problem for the profile, Eq. (60), is Eq.
(61) with <q 1 and our Eq. (78) with =q 1.

We consider below symmetric and antisymmetric spin-wave oscil-
lations in a film with a gradient inhomogeneity symmetric along the z
axis, therefore the function z( ) will depend on the modulus z:

= = +
a

b a z1 ln , | |. (79)

The general solution of Eq. (56) in this case is conveniently represented
as

= +m z A Q Q( ) [sin( ln ) cos( ln )]1/2 (80)

for symmetric oscillations and

= +m z z A Q Q( ) sign( ) [sin( ln ) cos( ln )]1/2 (81)

for antisymmetric oscillations. Here, as in the case of Eqs. (38) and (39),
= =B A Q q a/ , / is the dimensionless wavenumber. The values Q and
are determined from the Eqs. (40) and (41) for the boundary condi-

tions and the conjugation Eqs. (45) and (46), for symmetric and anti-
symmetric oscillations, respectively. The boundary condition for the
pinned oscillations, the Eq. (38), leads to the equation

= Qtan( ln ),0 (82)

where = +b ad/20 . The boundary condition for unpinned oscillations,
Eq. (39), leads to the equation

=
+

Q
Q

sin 2 cos
cos 2 sin

,
(83)

where = Qln 0. We transform this equation by making a replacement

=Q2 tan . (84)

Then Eq. (83) takes the form

= Qtan( ln ),0 (85)

where

= Qarctan(2 ). (86)

The conjugation condition for symmetric oscillations, Eq. (45), leads to
the equation

= Q btan( ln ), (87)

and Eq. (46) for antisymmetric oscillations leads to the equation

= Q btan( ln ). (88)

Equating the right-hand sides of Eqs. (82) and (85) to the right-hand
sides of each of Eqs. (87) and (88), we obtain, taking into account the
periodicity of the functions, all the elements of the matrix Qn

ij

=
+

Q
k Q k

k k Q
1 ( )

( )
,n

ij n
ps

n
ua (89)

where = + = … =ad b k n kln(1 /2 ), 1, 2, 3, , 2 1 for odd modes, and
=n k2 for even ones. The matrix (89) corresponds to the representation

of oscillations mn
ij in the form of a matrix (49). The elements of the

matrix Qn
pa and Qn

us are equal to each other and are expressed through
the parameters of the problem. The elements of the matrix Qn

ps and Qn
ua

are transcendental equations that require solutions for a specific value
of the parameters.

As a specific model, we consider an even function z( ) that depends
on the module z, and choose the form of constants =a µp and

=b µ1 /2 in which this function takes the form

= +z µ µp z( ) 1 1
2

| | .0
2

(90)

Here =p d2/ is the wave number of the gradient inhomogeneity and µ
is a dimensionless parameter. Equation (90) describes both the in-
creasing ( >µ 0) and decreasing ( <µ 0) functions (Fig. 7) with the
same basic characteristics: the depth of the well µ2| | coincides with the
height of the barrier and the average value of both functions is the
same:

= +z µ( ) 1 1
12

.0
2

(91)

For this model, the components of the matrix Qn
ij are expressed in the

terms of µ:

= = = +Q q d
µ

q d
µ

µ
µ2

, arctan , ln 1 /2
1 /2

.n
ij

n
ij

n
ij

n
ij

(92)

The components of the matrix of discrete frequencies are

= + +µ d q[( / ) ( ) ],n
ij

M n
ij

0 0
2 2 (93)

where qn
ij is determined from the equations for the components of the

matrix Qn
ij. Formulas for qn

pa and qn
us are the same:
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Fig. 7. Exchange parameter for increasing ( =µ 1, solid curve) and decreasing
( =µ 1, dashed curve) from the middle of the film to its surfaces of the
function z( ).
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= =q q µ
d

n ,n
pa

n
us

(94)

where = …n 2, 4, 6, . Transcendental equations for finding qn
ps and qn

ua

have the form

= +q µ
d

n q d µ[( 1) 2arctan( / )],n
ij

n
ij

(95)

where = …n 1, 3, 5, , the sign “−” in the numerator corresponds qn
ps

and the sign “+” corresponds qn
ua. Expanding in this equation xarctan

for large x to the first two terms and solving the resulting equation, we
get in the first approximation

= +
+

q µn
d n n

1 2
( 1)

.n
ps

2 (96)

The shape of symmetric and antisymmetric pinned oscillations is shown
in Fig. 8 for the cases of the increasing (a) and decreasing (b) function

z( ). The square root of the frequency is in Fig. 8 along the ordinate
axis, in contrast to the frequency, which was on similar graphs for the
case of variable anisotropy, Fig. 2 and 5. This allows you to make the
space between the spectral levels n approximately the same and suffi-
cient to demonstrate the shape of the oscillations at each level. It is seen
that the form of oscillations differs sharply from the harmonic. The
effective wavelength decreases towards the middle of the film for in-
creasing z( ) and increases for decreasing z( ). The functions n and
1/ n (not shown here), characterizing the ratios of the contributions of
the sine-like and cosine-like functions to the oscillation form, do not
have a smooth section for small n, as in Fig. 3. These functions ex-
perience more frequent and sharp jumps when changing n than similar
functions that characterize the relationship between the Bessel and
Neumann functions in the case of variable anisotropy. The frequency
spectrum n( )n

ij for mn
pa and mn

us is quadratic, as well as for a homo-
geneous medium. For mn

ps and mn
ua there are deviations from the

quadratic law in the region of small n. However, these deviations are
small. From Eq. (96) it follows that the position of the level =n 1 for qn

ps

differs by 1/ 2 from a quadratic law, and the positions of the subsequent
levels =n 3, 5 differ by less than one hundredth of its magnitude.
Therefore, discrete frequencies for mn

ij in the coordinate system n,n
2

are located along straight lines (Fig. 8a). The effective exchange para-
meter has the form

= = +
µ,

ln
,µ

µ

eff 0
2

1 / 2
1 / 2 (97)

where the coefficient characterizes the ratio of the angle of inclination

of this straight line to the angle of inclination of the dotted curve
(Fig. 9a), corresponding to =µ 0, for which = 1. The coefficient 1
and does not depend on the sign of µ: variations of the exchange
parameter lead to a decrease in eff for both the increasing and de-
creasing functions z( ). The effect of gradient inhomogeneity is more
accurately characterized by the ratio of the angle of inclination of the
straight line corresponding to eff to the angle of inclination of the
dashed curve in Fig. 9a, corresponding to z( ) . The frequency spec-
trum in Fig. 9a is shown for =µ 1.5, which corresponds to the gradient
change in function z( ) in 50 times along the film thickness. The high-
frequency susceptibility of the film with a variable exchange parameter
differs little from the susceptibility of a homogeneous film (Fig. 9b).

At the end of this section, we will briefly deviate from magnetic
topics. The model of the Hamiltonian with z-dependent effective mass is
being intensively studied for the Schrödinger equation at present
[35,36]. This model is closest to the model with a varying interaction
constant considered here, differing from it in that the potential U also
depends on z. We consider here only a simpler version of this model
when U is constant. The Schrödinger equation in this case is

m
+ =d

dz z
d
dz

E U1
( )

2 ( ) 0.
(98)

Replacing the gradient function m z( ) with the inverse function

m
m=z

z
( )

( )
,0

(99)

leads Eq. (98) to form

m+ + =z d
dz

d z
dz

d
dz

E U( ) ( ) 2 ( ) 0.
2

2
0

(100)

The structure of Eq. (100) coincides with the structure of Eq. (58), in
which the function z( ) plays the role of the variable coefficient z( ).
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Fig. 8. Discrete spectral levels n and the normalized forms of the pinned os-
cillations for the case of increasing, =µ 1, (a) and decreasing, =µ 1, (b)
function z( ). Designations correspond to Fig. 2.
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We carry out transformations for Eq. (100), similar to those that were
made for Eq. (58). Using Eq. (69) for the variable coefficient z( ) ob-
tained in this paper, we write the variable coefficient m z( ) in the form

m
m=z

z
( )

( )
,0

2 (101)

where = +b az , and we find the exact solution of Eq. (98) with this
coefficient

= ±± z A
z

iQ z( )
( )

exp[ ln ( )].
(102)

When modeling the effective mass m z( ) of a function even in z, the form
of Eqs. (101) and (102) does not change, but depends on the module z
(see Eq. (90))

= +z µ µ
d

z( ) 1 1
2

2 | |, (103)

where z varies in the interval

d z d/2 /2. (104)

Equation (103) describes an even increasing function m z( ) with <µ 0
and even decreasing function with >µ 0. Substitution of the solution
(102) into Eq. (98) leads in this case to the dispersion equation

m
= + +E U µ

d
Q2 1

4
.

2

0
2

2
(105)

The dimensionless dispersion parameter Q is determined by the
boundary conditions of the problem. According to the same con-
siderations, two more exact solutions of the Schrödinger equation, Eq.
(98), can be written: this is function (61) if m z( ) is a function inverse to
function (60) found in [5], and also function (63) if m z( ) is a function
inverse to function (65) found in [7].

4. Conclusions

The method of searching for the profiles of the gradient dependence
of the material parameters of a substance on the coordinate, allowing
the exact solution of the wave equations, developed earlier for elec-
tromagnetic and elastic waves [1], is generalized to spin waves in
gradient ferromagnets. The derivation and solution of additional non-
linear equations for previously unknown profiles of the gradient coef-
ficients of wave equations is the basis of this method. The equation for
spin waves with variable magnetic anisotropy z( ) is equivalent to the
equation for electromagnetic waves in a plasma with variable density
previously studied by this method [1,6]. A brief repetition of the de-
rivation of the additional equation introduced there is given in our
work for the case z( ) to demonstrate the method. For further devel-
opment of the theory of spin-wave oscillations, we will use a slightly
modified solution of the additional equation found in [1,6], replacing z
with z| |. This made it possible to consider spin-wave oscillations for the
cases of both increasing and decreasing function z( ). The function of
the module z, z( ), increasing from the middle of the film to its sur-
faces, describes a potential well in the energy (frequency) spectrum of
oscillations, the decreasing function z( ) describes a potential barrier
with a top in the central plane of the film. The discrete frequency
spectrum n in both cases contains the critical level =n nc, the fre-
quency of which n c is most closely located to the frequency c of
the upper edge of the gradient potential well (or the top of the potential
barrier) from the low frequencies. Oscillations at levels <n nc with an
increasing function z( ) occur inside a gradient potential well, at levels

>n nc – in a rectangular potential well bounded by the film surfaces.
This case differs from the previously investigated case of spin-wave
resonance in a ferromagnet with a parabolic well [10–16] only in the
shape of this well. Therefore, the main qualitative characteristics for it
are known, there are only quantitative differences. In both cases, dy-
namic pinning of oscillations [14] takes place on the ”surface” of the

gradient potential and their damping tunnelling through this surface.
Due to the effect of dynamic pinning, the shape of the oscillations and
the possibility of their excitation by an external alternating field at

<n nc does not depend on the boundary conditions on the film surface.
The function ωn(n) for oscillations in the potential well for n < nc in-
creases with increasing n more slowly than n in the first degree and has
an inflection point near n = nc (Fig. 4a). The theory of spin-wave re-
sonance in a ferromagnet with a decreasing function z( ) (potential
barrier) was developed for the first time in this work. Oscillations at
levels <n nc in this case occur in two potential wells bounded by the
boundaries of the barrier and the surfaces of the film. There are no
oscillations inside the barrier, with the exception of external oscillation
tails penetrating the barrier surface as a result of tunneling. In the thin
upper part of the barrier, these tails may merge, forming transparency
windows in the barrier. The function n( )n for oscillations in the po-
tential barrier, in contrast to the case of the potential well, increases
with n for <n nc according to a law close to linear (Fig. 6a). The sus-
ceptibility of gradient films in the interval < <n n1 c exceeds the sus-
ceptibility of homogeneous films by several times. This may be of in-
terest to practical application of gradient films. For >n nc, the
functions ωn and χn, with increasing n, approach the functions char-
acteristic of homogeneous films: nn

2 and n1/n
2. Changing the

shape of the function n( )n when =n nc, as well as a sharp decrease in
n at the same point, makes it possible to experimentally determine the
frequency c of the upper edge of the gradient potential well (height of
the potential barrier).

The equation for spin waves with a variable exchange parameter
z( ) is in its mathematical structure equivalent to the equation for

elastic waves in a medium with a variable shear modulus G z( ). The
additional equation and the following solution forG z( ) obtained earlier
[1,7] were rather cumbersome. Therefore, we found another additional
equation that allowed us to obtain a simple expression for the profile of
the gradient z( ) and to carry out an analytical study of the exact so-
lution of the wave equation. The theory of spin-wave resonance in a
ferromagnet with a gradient (both concave and convex) of exchange

z( ) is developed for the first time in this work. The coordinate-de-
pendent exchange z( ), in contrast to the coordinate-dependent z( ),
does not change the shape of the energy potential. Spin-wave oscilla-
tions in a film with a variable exchange occur in the same rectangular
potential well created by the film surfaces, as in a uniform film, re-
gardless of the profile of the function z( ). The form of oscillations is
different from harmonic one. The discrete frequency spectrum n, de-
pending on the symmetry and boundary conditions of the oscillations, is
either quadratic, as in a homogeneous film, or has small deviations from
the quadratic. The main effect of the variable exchange z( ) is that it
leads to a decrease in the effective exchange parameter in the law of n
versus n. The analytical formula for the effective exchange parameter is
derived.

The authors of Ref. [30], who for the first time created ferromag-
netic films with predefined profiles of variable magnetic parameters,
also investigated spin-wave resonance in films with an artificially cre-
ated parabolic profile of the magnetization M z( ) and a wedge-shaped
profile of exchange z( ). The strong deviations from the quadratic de-
pendence of n on n, which they obtained for the case of changing z( ),
and the results of our theory, which allows only negligible deviations,
diverge from each other. The theoretical result follows from the general
statement that the form of the energy potential is independent of the
form of the function z( ). Therefore, it can be assumed that discrepancy
between theory and experiment is caused by to the fact that some
gradient parameter, besides z( ), was present in the samples of Ref.
[30].

Exact solutions of the wave equations with the coordinate-depen-
dent coefficients found in the work can be used in the theory of elec-
tromagnetic and elastic waves in gradient metamaterials, as well as in
the theory of electrons in condensed media. Examples of this applica-
tion of the results are given in the work: the exact solution of the wave
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equation with variable magnetic anisotropy z( ) was used to find the
exact solution of the Schrödinger equation, Eq. (25), for electrons in the
potential U z( ), proportional to z( ); the exact solution of the wave
equation with the variable exchange parameter z( ) was used to find
the exact solution of the Schrödinger equation, Eq. (98), with the ef-
fective mass profile m z( ), proportional to the function, inverse to the
function z( ).
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