

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

New triple molybdate K₅ScHf(MoO₄)₆: Synthesis, properties, structure and phase equilibria in the M_2 MoO₄–Sc₂(MoO₄)₃–Hf(MoO₄)₂ (M =Li, K) systems

Victoria G. Grossman^{a,*}, Jibzema G. Bazarova^a, Maksim S. Molokeev^{b,c}, Bair G. Bazarov^a

^a Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakhyanovoy St., 6, Ulan-Ude, 670047, Buryat Republic, Russia

^b Kirensky Institute of Physics, Federal Research Center KSC, Siberian Branch, RAS, 50 / 38 Akademgorodok, Krasnoyarsk, 660036, Russia

^c Siberian Federal University, 82 Svobodniy Av., Krasnoyarsk, 660041, Russia

ARTICLE INFO	A B S T R A C T
Keywords: Synthesis Molybdates X-ray diffraction DSC Electrical properties	Subsolidus phase relations in the M_2MOO_4 -Sc ₂ (MOO ₄) ₃ -Hf(MOO ₄) ₂ ($M = \text{Li}$, K) systems have been studied by the method of "intersecting cuts". No new triple molybdates have been identified in the Li ₂ MoO ₄ -Sc ₂ (MoO ₄) ₃ -Hf(MoO ₄) ₂ system and a new triple molybdate K ₅ ScHf(MoO ₄) ₆ is formed in the K ₂ MoO ₄ -Sc ₂ (MoO ₄) ₃ -Hf(MoO ₄) ₂ system. The structure of K ₅ ScHf(MoO ₄) ₆ , have been determined in space group $R\overline{3}c$ through Rietveld analysis of X-ray powder diffraction data. The melting point of molybdate is 999 K. The compound has high ion conductivity (about 10 ⁻³ S cm ⁻¹).

1. Introduction

The interest to the chemistry of double and triple molybdates during last decades has been maintaining due to their application in science and engineering. Molybdates are well-known and promising as laser materials [1,2], ferroelectrics and ferroelastics [3,4], phosphors [5], ionic conductors [6-11], materials for Li(Na)-ion batteries [11,12] etc. Compounds with open 3D frameworks are considered as promising Na, K- or Li-ion conductors or battery materials [13–20]. For example, ionic conductivities 10^{-4} – 10^{-5} S cm⁻¹ at room temperature were determined for oxides $Li_3M(MoO_4)_3$ (M = Cr, Fe) [21] with Li atoms in large channels, which is comparable to the conductivity of known lithium ion conductors such as LiAlSiO₄ and LiSbO_{3.6}. Over the past decades, the range of complex Mo(VI) oxide phases was expanded because many new triple molybdates were detected during the study of ternary salt systems [13, 22–30]. A series of $C_{SM}^{3+}Zr_{0.5}(MoO_4)_3$ compounds with large channels occupied by Cs⁺ ions have a significant electrical conductivity of about 10^{-5} S cm⁻¹ at 800 K with a predominant ionic component above 673 K and average activation energies of 0.3–0.6 eV was measured for M = Al, Sc, In Ref. [29].

The triple molybdates of potassium, trivalent and tetravalent cations were discovered and synthesized [6,31–33]. These triple molybdates $(K_5RZr(MOO_4)_6 \ (R = Al, Cr, Fe, In, Sc)$ undergo reversible first-order phase transitions at 755–876 K with sharp increase of conductivity up

to 10^{-2} – 10^{-3} S cm⁻¹ [6]. The open framework, the mobility of cations and the phase transformation were features interesting enough to motivate us to study triple molybdates.

The major task of this work was to search for triple molybdates in M_2MoO_4 -Sc₂(MoO₄)₃-Hf(MoO₄)₂ (M = Li, K) systems. These systems can contain compounds with interesting physical properties and, therefore, they are very attractive.

2. Experimental

2.1. Materials and preparation

Commercially available chemically pure MoO₃, HfO₂, Li₂MoO₄, K₂MoO₄ and high-purity Sc₂O₃ were used as starting materials for the synthesis of simple, double and triple molybdates. Molybdates of scandium and hafnium were synthesized from Sc₂O₃ and MoO₃ at 673–1073 K for 96 h and from HfO₂ and MoO₃ at 673–973 K for 120 h. The starting reactants were well mixed and ground in an agate mortar. For better reactivity, the reaction mixtures were then progressively calcined at the temperatures indicated with intervening by mixing and grinding every 24 h of annealing.

Subsolidus phase relations in the M_2MOO_4 –Sc₂(MoO₄)₃–Hf(MoO₄)₂ (M = Li, K) systems at 723–823 K were established by the intersecting joins method [34,35]. Compounds from the boundary systems were

* Corresponding author. E-mail address: grossmanv@mail.ru (V.G. Grossman).

https://doi.org/10.1016/j.jssc.2019.121143

Received 17 October 2019; Received in revised form 16 December 2019; Accepted 19 December 2019 Available online 23 December 2019 0022-4596/© 2019 Elsevier Inc. All rights reserved.

Fig. 1. Subsolidus phase relations in the M₂MoO₄–Sc₂(MoO₄)₃–Hf(MoO₄)₂ (M = Li (a), K(b)) systems at 723–823 K: T = Li_{10–4x}Hf_{2+x}(MoO₄)₉ (0.21 $\leq x \leq$ 0.68), S–K₅ScHf(MoO₄)₆.

Table 1

Main parameters of processing and refinement of the $\rm K_5ScHf(MoO_4)_6$ sample.

Fig. 2. Difference Rietveld plot of K₅ScHf(MoO₄)₆.

Table 2

Fractional atomic coordinates and isotropic displacement parameters (Å²) of $K_5ScHf(MoO_4)_6$.

Atom	x	у	z	$B_{\rm iso}$	Occ.
Mo	0.34997 (13)	0.05489 (11)	0.03254 (3)	1.05 (7)	1
Hf1	0	0	0	0.66 (9)	0.548 (4)
Sc1	0	0	0	0.66 (9)	0.452 (4)
Hf2	0	0	0.25	0.71 (10)	0.452 (4)
Sc2	0	0	0.25	0.71 (10)	0.548 (4)
K1	0	0	0.35330 (12)	2.13 (13)	1
K2	0.3852 (4)	0	0.25	3.51 (13)	1
01	0.1658 (8)	0.0279 (9)	0.03393 (19)	1.23 (12)	1
02	0.4835 (9)	0.2315 (8)	0.05139 (17)	1.23 (12)	1
O3	0.3498 (9)	0.0920 (9)	0.05349 (18)	1.23 (12)	1
04	0.3972 (7)	0.0604 (7)	-0.01022 (18)	1.23 (12)	1

Main bond lengths (A	Å) of K ₅ ScHf(MoO ₄) ₆ .	
Mo-O1	1.821 (4)	K1–O3

Mo-O1	1.821 (4)	K1–O3 ⁱⁱ	2.771 (7)
Mo-O2	1.828 (7)	K1–O4 ⁱ	2.889 (6)
Mo-O3	1.739 (7)	K2–O2 ⁱ	3.075 (7)
Mo-O4	1.677 (7)	K2–O3 ⁱⁱⁱ	2.979 (7)
(Hf1/Sc1)-01	2.066 (7)	K2–O4 ⁱⁱ	2.823 (7)
(Hf2/Sc2)—O2 ⁱ	2.065 (7)		

Symmetry codes: (i) -*x*+2/3, -*y*+1/3, -*z*+1/3; (ii) -*x* + *y*+2/3, -*x*+1/3, *z*+1/3; (iii) y+2/3, -*x* + *y*+1/3, -*z*+1/3.

preliminarily synthesized, tested for monophasity and used as starting substances for the preparation of samples which served to triangulate isothermal sections.

2.2. Characterization

The powder diffraction data of K₅ScHf(MoO₄)₆ for analysis was

Fig. 3. Crystal structure of K₅ScHf(MoO₄)₆.

Fig. 4. Differential scanning calorimetric scans of the K₅ScHf(MoO₄)₆.

collected at room temperature with a Bruker D8 ADVANCE powder diffractometer (Cu-K α radiation, $\lambda = 1.5418$ Å) and linear VANTEC detector. The step size of 2θ was 0.016° , and the counting time was 1 s per step. Data analysis was performed using the program TOPAS 4.2.

The thermal property was investigated by the differential scanning calorimetric (DSC) analysis using a NETZSCH STA 449C TG/DSC/DTA thermal analyzer (NETZSCH, Berlin, Germany). A 18 mg sample of powder was placed in a Pt crucible and heated from room temperature at a rate of 10 K min⁻¹ in an Ar atmosphere.

Electrical conductivity measurements were carried out on cylindershaped ceramic samples which were 10 mm in diameter and 2 mm thick, with platinum electrodes by the electrochemical impedance method on a *Z*-1500*J* impedance meter in the temperature range 293–923 K. The test frequency can be set from 1 Hz to 1 MHz at high resolution. Electrical conductivity σ for each temperature was calculated from

$$\sigma = 4h/\pi D^2 R \tag{1}$$

where *h* is sample thickness in cm, *D* is diameter in cm, and *R* is ohmic resistance in Ω .

3. Results and discussion

3.1. Subsolidus phase relations in the M_2MoO_4 -Sc₂(MoO_4)₃-Hf(MoO_4)₂ (M = Li, K) systems

The boundary binaries of the M_2 MoO₄–Sc₂(MoO₄)₃–Hf(MoO₄)₂ (M = Li, K) ternary systems we studied are described in the literature in a sufficiently detailed way [36–48]. It is known that in the Li₂MoO₄–Sc₂(MoO₄)₃ system was found one compound of Li₃Sc(MoO₄)₃ (1:3) composition [36–40]. The compound Li₃Sc(MoO₄)₃, belongs to the family of isostructural phases Li₃R(MoO₄)₃ (R = In, Sc, Fe, Cr, Ga, Al) crystallizing in the orthorhombic structure type of lyonsite α -Cu₃Fe₄(VO₄)₆ [41].

According to Solodovnikov et al. [42], the Li₂MoO₄–Hf(MoO₄)₂ system contains a lithium hafnium molybdate with the composition Li_{10–4x}Hf_{2+x}(MoO₄)₉ (0.21 $\leq x \leq$ 0.68). Although it has been suggested in the papers [43,44] that both compositions Li₂Hf(MoO₄)₃ and Li₁₀Hf₂(MoO₄)₉ are single phases from powder diffraction. Perhaps results can depend on the synthesis conditions. The crystal structure of Li_{2.82}Hf_{0.795}Mo₃O₁₂ is identical to lyonsite-type compounds [41].

According to data [36,38,39,45], three double molybdates of KSc(MoO₄)₂ (1:1), K₃Sc(MoO₄)₃ (3:1), and K₅Sc(MoO₄)₄ (5:1) compositions are formed in the K₂MoO₄–Sc₂(MoO₄)₃ system. The partial non-quasibinarity of the system K₂MoO₄–Sc₂(MoO₄)₃ occurs only in the subsolidus region [40,46]. This is due to the fact that along with double molybdates, the presence of potassium dimolybdate is recorded in the system. At 723 K, the K₂MoO₄–Sc₂(MoO₄)₃ system become quasi-binary.

The K₂MoO₄–Hf(MoO₄)₂ system contains compounds with the compositions K₈Hf(MoO₄)₆ (4:1) and K₂Hf(MoO₄)₃ (1:1) [47]. No intermediate compounds were found inside the Sc₂(MoO₄)₃–Hf(MoO₄)₂ system [48].

The results of experimental studies of the ternary systems M_2MoO_4 -Sc₂(MoO₄)₃-Hf(MoO₄)₂ (M = Li, K) at 723–823 K are represented in Fig. 1.

In the Li₂MoO₄–Sc₂(MoO₄)₃–Hf(MoO₄)₂ ternary system, double molybdates Li₃Sc(MoO₄)₃ (1:3) and Li_{10–4x}Hf_{2+x}(MoO₄)₉ (0.21 $\leq x \leq$ 0.68) are formed only in two boundary systems and, therefore, is divided by

Fig. 5. The impedance profiles for K₅ScHf(MoO₄)₆ molybdate measured at different temperatures.

Fig. 6. Variation in ac conductivity with 1000/T at different frequencies (a; filled circles – heating, open circles – cooling) and (b) with frequency at different temperatures for the sample K₅ScHf(MoO₄)₆.

quasi binary joins into three ternary subsystems. For this reason, only these joins was studied in a detailed way in this ternary system (Fig. 1a), as well as several points inside secondary triangles.

In addition, the system has the homogeneity region of the phase with the structure of $\text{Li}_{10-4x}\text{Hf}_{2+x}(\text{MoO}_4)_9$ (0.21 $\leq x \leq$ 0.68) lyonsite. Unfortunately, the lithium system is not phase-forming.

Subsolidus phase formation data for the Li₂MoO₄–Sc₂(MoO₄)₃–Hf(-MoO₄)₂ ternary system was supplemented with the results of solutionmelt crystallization; however, search experiments, too, failed to succeed in preparing triple molybdates as crystals. The crystallization products under the chosen conditions were crystals of Li₂MoO₄ and Li₃Sc(MoO₄)₃ (1:3).

The results of the investigation of the K_2MOQ_4 – $Sc_2(MOQ_4)_3$ –Hf(- MOQ_4)₂ system are presented in Fig. 1b. The join $K_5Sc(MOQ_4)_4$ (5:1)– $Hf(MOQ_4)_2$, where the new compound $K_5ScHf(MOQ_4)_6$ is formed, was studied with a step of 5–10 mol %, and in the vicinity of a new compound – with a step of 1.5–2.5 mol %. The joins $K_5Sc(MOQ_4)_4$ – $K_8Hf(MOQ_4)_6$, $K_3Sc(MOQ_4)_3$ – $K_8Hf(MOQ_4)_6$, $KSc(MOQ_4)_2$ – $K_8Hf(MOQ_4)_6$, $KSc(MOQ_4)_2$ – $K_8Hf(MOQ_4)_6$, $KSc(MOQ_4)_2$ – $K_8Hf(MOQ_4)_6$, $KSc(MOQ_4)_2$ – $K_5ScHf(MOQ_4)_6$, $K_5CHf(MOQ_4)_6$, $K_5CHf(MOQ_4)_6$ – $K_8Hf(MOQ_4)_6$ and $K_5ScHf(MOQ_4)_6$ – $K_2Hf(MOQ_4)_3$ divide the K_2MOQ_4 – $Sc_2(MOQ_4)_3$ – $Hf(MOQ_4)_2$ system into eight subsystems. Molybdate $K_5ScHf(MOQ_4)_6$ was synthesized by annealing in the temperature range of 723–873 K for 100 h.

Fig. 7. Plot of ln (σ_{dc}) versus (1000/*T*) for K₅ScHf(MoO₄)₆ compound.

3.2. Structure

All peaks were indexed by trigonal cell ($R\overline{3}c$) with parameters close to K₅InHf(MoO₄)₆ [32]. Therefore this structure was taken as starting model for Rietveld refinement which was performed using TOPAS 4.2 [49]. Two Hf/In sites were occupied by Hf/Sc ions and their occupancies were refined taking into account that sum of occupancies are equal to 1 in each site. In order to reduce number of refined parameters, only one thermal parameter was refined for all O atoms. Refinement was stable and gave low *R*-factors (Table 1, Fig. 2).

Coordinates of atoms and main bond lengths are in Table 2 and Table 3 respectively. The crystal structure of $K_5ScHf(MoO_4)_6$ is shown in Fig. 3. The structure of trigonal triple molybdate $K_5ScHf(MoO_4)_6$ is formed by Mo tetrahedrons and two independent (Sc, Hf) octahedrons, which are connected through shared vertexes. Two potassium atoms occupy large voids of the framework.

3.3. Thermal and electrical properties

According to the DSC measurements shown in Fig. 4, the obtained molybdate does not possess phase transitions over the temperature range of 300–1060 K and melts at 999 K.

Keeping in mind that from structural point of view the K molibdate are favorable for potassium-ion transport, we studied electric conduction properties of this phase.

We have plotted impedance diagrams viz., ReZ (pure resistive part of the impedance) versus ImZ (capacitive reactance). A typical impedance Nyquist spectrum of a solid electrolyte material may include arcs corresponding to the grain bulk, grain boundary, electrode-related impedance.

As shown, the impedance spectrum measured at 643 K (Fig. 5a) exhibits two semicircular arcs and a straight line from high frequency to low frequency, which corresponds to the conduction across the bulk, the conduction across grain boundary and the impedance response corresponding to electrode, respectively. With the increasing of temperature, the arc corresponds to the grain contributions gradually disappearing, and the arc or spike corresponds to the grain boundary and electrode shifted to higher frequencies as shown in the impedance spectrum (Fig. 5b and c). When the temperature is beyond 823 K, the increase of arc corresponding to the contribution of the electrode is observed, which indicates that the ion could diffuse through the entire thickness of bulk and grain boundary (Fig. 5c).

The corresponding conductivity is converted by the resistance *R* using $\sigma = 4h/\pi D^2 R$ (1).

In Fig. 6 the variation of ac conductivity (σ) with 1000/*T* at various frequencies and with ω (at various temperatures) are presented for K₅ScHf(MoO₄)₆.

At high temperatures, the conductivity curves do not depend significantly on frequency, with their temperature behavior obeying the Arrhenius law. The temperature dependence of electrical conductivity in K₅ScHf(MoO₄)₆ shows a kink appears on the curve at 770 K. As seen from (Fig. 6a), the conductivity on heating accompanies fall on cooling. These effects are separated by thermal hysteresis of about 100 K. Below 600 K, the conductivity data demonstrate behavior depending on frequency. From Fig. 6b shows that conductivity of K₅ScHf(MoO₄)₆ gradually increases with the increase of frequency of applied alternating electric field. This is mainly attributed as the enhanced migration of the ions through grain boundaries.

The thermal evolution of the specific conductivity $\ln(\sigma_{dc})$ versus 1000/T is illustrated in Fig. 7.

The plot linearity shows that $K_5ScHf(MoO_4)_6$ does not present any phase transition in the studied temperature range and, secondly, that the conductivity is characterized by an Arrhenius-type behavior, which can be expressed as follows (2)

$$\sigma_{dc} = \sigma_0 \exp(-E_a/k_b T) \tag{2}$$

In this relation, E_a is the activation energy, k_b is the Boltzmann constant and σ_0 is a constant. Thermal dependence of σ_{dc} conductivity according to Arrhenius law indicates that the movement of K⁺ ions through the crystal lattice probably results from the succession of thermally activated independent jumps between equivalent sites. Following this law (2), the activation energy for K₅ScHf(MoO₄)₆ is about 0.84 eV.

The 900 K conductivity of the compound $K_5ScHf(MoO_4)_6$ is 10^{-3} S cm⁻¹, and comparable with those for $K_5RZr(MoO_4)_6$ (R = Al, Cr, Fe, In, Sc) [6], $Na_{1-x}Mg_{1-x}Sc_{1+x}(MoO_4)_3$ ($0 \le x \le 0.5$) [50], $Na_{25}Cs_8R_5(MoO_4)_{24}$ (R = Sc, In) [15], $K_{1-x}A_{1-x}R_{1+x}(MoO_4)_3$ ($0 \le x \le 0.5$) (A = Mg, Mn, Co, Ni; R = Sc, Yb, Lu) [51], Rb₅TmHf(MoO_4)_6 [10], but lower than the conductivity of the superionic material [52,53].

4. Conclusions

Our study of chemical interactions in the system K_2MoO_4 -Sc₂(-MoO₄)₃-Hf(MoO₄)₂ by means of solid state reactions us to reveal a new triple molybdate K_5 ScHf(MoO₄)₆.

It was found that triple molybdates are not formed in the lithiumcontaining system. The unit cell parameters were precisely determined for K₅ScHf(MoO₄)₆. This molybdate crystallizes in a trigonal structure, space group $R\overline{3}c$. The electrophysical and thermal properties of molybdate have been studied. Molybdate under study is characterized with ionic conductivity of the 1×10^{-8} – 10^{-3} S cm⁻¹ at 445–900 K. The high conductivity of K₅ScHf(MoO₄)₆ molybdate allows us to consider it as promising solid electrolyte.

Author contribution section

Victoria G. Grossman; Investigation, Writing - Original Draft Conducting, Writing - Review & Editing and co-wrote the paper. Jibzema G. Bazarova; Conceptualization and co-wrote the paper. Maksim S. Molokeev; Refinement of the structure by the Rietveld method and co-wrote the paper. Bair G. Bazarov; Writing - Review & Editing and co-wrote the paper.

Acknowledgments

This study was carried out within the state assignment of FASO of Russia (Theme No 0339-2016-0007) as well was supported by RFBR Grants 18-08-00799 and 18-03-00557.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://do i.org/10.1016/j.jssc.2019.121143.

References

- [1] D. Lu, X. Gong, Y. Chen, J. Huang, Y. Lin, Z. Luo, Y. Huang, Synthesis and photoluminescence characteristics of the LiGd3(MoO4)5: Eu3+ red phosphor with high color purity and brightness, Opt. Mater. Express 8 (2018) 259–269, https:// doi.org/10.1364/OME.8.000259.
- [2] G.Q. Wang, L.Y. Li, Y.N. Feng, H. Yu, X.H. Zheng, Tb³⁺- and Yb³⁺-doped novel KBaLu(MOO₄)₃ crystals with disordered chained structure showing down- and upconversion luminescence, CrystEngComm 20 (2018) 3657–3665, https://doi.org/ 10.1039/C8CE00461G.
- [3] M.B. Zapart, W. Zapart, M. Maczka, Complex ferroelastic domain patterns of K₁. xRb_xSc(MoO₄)₂ crystals, Ferroelectrics 1 (2016) 34–41, https://doi.org/10.1080/ 00150193.2016.1160729.
- [4] W. Zapart, M.B. Zapart, Phase transitions in ferroelastic RbIn(MoO₄)₂ at 163 and 143 K, Ferroelectrics 1 (2013) 116–120, https://doi.org/10.1080/ 00150193.2013.839289.
- [5] G. Benoît, J. Véronique, A. Arnaud, G. Alain, Luminescence properties of tungstates and molybdates phosphors: illustration on ALn(MO₄)₂ compounds (A = alikaline cation, Ln = lanthanides, M = W, Mo), Solid State Sci. 13 (2011) 460–467, https:// doi.org/10.1016/j.solidstatesciences.2010.12.013.
- [6] J.G. Bazarova, A.V. Logvinova, B.G. Bazarov, Y.L. Tushinova, S.G. Dorzhieva, J. Temuujin, Synthesis of new triple molybdates K₅RZr(MoO₄)₆ (*R* = Al, Cr, Fe, In, Sc) in the K₂MoO₄-R₂(MoO₄)₃-Zr(MoO₄)₂ systems, their structure and electrical properties, J. Alloy. Comp. 741 (2018) 834–839, https://doi.org/10.1016/ ij.allcom.2018.01.208.
- [7] K.M. Begama, Y.H. Taufiq-Yap, M.S. Michael, S.R.S. Prabaharana, A new NASICONtype polyanion, Li_xNi₂(MoO₄)₃ as 3-V class positive electrode material for rechargeable lithium batteries, Solid State Ion. 172 (2004) 47–52, https://doi.org/ 10.1016/j.ssi.2004.01.037.
- [8] N.M. Kozhevnikova, I.Yu Kotova, X-ray diffraction study of phases of variable composition $M_{1-x}A_{1-x}R_{1+x}(MoO_4)_3$ ($0 \le x \le 0.3-0.5$) with M = Na or K; A = Mg, Mn, Co, or Ni; and R = Al, In, Cr, Fe, Sc, Zh. Neorg. Khim. 45 (2000) 102–103.
- [9] J. Galy, Ph Salles, P. Rozier, A. Castro, Anionic conductors Ln_{2/3}[Bi₁₂O₁₄](MoO₄)5 with Ln = La, Nd, Gd, Ho, Yb. Synthesis-spark plasma sintering-structure-electric properties, Solid State Ion. 177 (2006) 2897–2902, https://doi.org/10.1016/ j.ssi.2006.07.059.
- [10] O.D. Chimitova, B.G. Bazarov, K.N. Fedorov, ZhG. Bazarova, Electrical properties of triple molybdates Rb₅LnHf(MoO₄)₆, Russ. J. Appl. Chem. 81 (2008) 1928–1929, https://doi.org/10.1134/S1070427208110335.
- [11] (a) I. Jendoubi, R.B. Smail, M. Maczka, M.F. Zid, Optical and electrical properties of the yavapaitie-like molybdate NaAl(MoO₄)₂, Ionics 24 (2018) 3515–3533, https://doi.org/10.1007/s11581-018-2490-x;
 (b) D. Mikhailova, A. Sarapulova, A. Voss, A. Thomas, S. Oswald, W. Gruner, D.M. Trots, N.N. Bramnik, H. Ehrenberg, Li3V(MoO4)3: a new material for both Li extraction and insertion, Chem. Mater. 22 (2010) 3165–3173, https://doi.org/10.1021/cm100213a.
- [12] J. Gao, P. Zhao, K. Feng, Na_{2.67}Mn_{1.67}(MoO₄)₃: a 3.45 V alluaudite-type cathode candidate for sodium-ion batteries, Chem. Mater. 29 (2017) 940–944, https:// doi.org/10.1021/acs.chemmater.6b05308.
- [13] V.N. Yudin, E.S. Zolotova, S.F. Solodovnikov, Z.A. Solodovnikova, I.V. Korolkov, S.Yu Stefanovich, B.M. Kuchumo, Synthesis, structure, and conductivity of alluaudite-related phases in the Na₂MoQ₄-Cs₂MoQ₄-Cs₀MoQ₄ system, Eur. J. Inorg. Chem. (2019) 277–286, https://doi.org/10.1002/ejic.201801307.
- [14] M. Niazmand, Z. Khakpour, A. Mortazavi, Electrochemical properties of nanostructure NASICON synthesized by chemical routes: a comparison between coprecipitation and sol-gel, J. Alloy. Comp. 798 (2019) 311–319, https://doi.org/ 10.1016/j.jallcom.2019.05.170.
- [16] I. Ennajeh, S. Georges, Y.B. Smida, A. Guesmi, M.F. Zid, H. Boughazala, Synthesis, crystal structure, sintering and electrical properties of a new alluaudite-like triple molybdate K_{0.13}Na_{3.87}MgMo₃O₁₂, RSC Adv. 5 (49) (2015) 38918–38925, https:// doi.org/10.1039/C5RA02276B.
- [17] S. Patoux, C. Wurm, M. Morcrette, G. Rousse, C. Masquelier, A comparative structural and electrochemical study of monoclinic Li₃Fe₂(PO₄)₃ and Li₃V₂(PO₄)₃, J. Power Sources 119–121 (2003) 278–284, https://doi.org/10.1016/S0378-7753(03)00150-2.
- [18] A.S. Andersson, B. Kalska, P. Eyob, D. Aernout, L. Haggstrom, J.O. Thomas, Lithium insertion into rhombohedral Li₃Fe₂(PO₄)₃, Solid State Ion. 140 (2001) 63–70, https://doi.org/10.1016/S0167-2738(01)00694-4.
- [19] J. Gaubicher, C. Wurm, G. Goward, C. Masqulier, L. Nazar, Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries, Chem. Mater. 12 (2000) 3240–3242, https://doi.org/10.1021/cm000345g.
- [20] K.M. Begam, M.S. Michael, Y.H. Taufiq-Yap, S.R.S. Prabaharan, New lithiated NASICON-type Li2Ni2(MoO4)3 for rechargeable lithium batteries synthesis, structural, and electrochemical properties, Electrochem. Solid State Lett. 7 (2004) A242–A246, https://doi.org/10.1149/1.1760711.
- [21] L. Sebastian, Y. Piffard, A.K. Shukla, F. Taulelle, J. Gopalakrishnan, Synthesis, structure and lithium-ion conductivity of Li_{2-2x}Mg_{2+x}(MoO₄)₃ and Li₃M(MoO₄)₃ (M(III) = Cr, Fe), J. Mater. Chem. 13 (2003) 1797–1802, https://doi.org/10.1039/ B301189E.
- [22] V.G. Grossman, B.G. Bazarov, ZhG. Bazarova, Subsolidus phase diagrams for the Tl₂MoO₄– Ln_2 (MoO₄)₃–Hf(MoO₄)₂ systems, where Ln = La-Lu, Russ. J. Inorg. Chem. 53 (2008) 1788–1794, https://doi.org/10.1134/S003602360811020X.

- [23] N.M. Kozhevnikova, S.Yu Batueva, Phase formation in the system Li₂MoO₄–MgMoO₄–Sc₂(MoO₄)₃, Russ. J. Inorg. Chem. 61 (2016) 1379–1382, https://doi.org/10.1134/S0036023616100120.
- [24] O.A. Gulyaeva, Z.A. Solodovnikova, S.F. Solodovnikov, V.N. Yudin, E.S. Zolotova, V.Yu Komarov, Subsolidus phase relations and structures of solid solutions in the systems K₂MoO₄–Na₂MoO₄–MMoO₄ (*M* = Mn, Zn), J. Solid State Chem. 272 (2019) 148–156, https://doi.org/10.1016/j.jssc.2019.02.010.
- [25] B.G. Bazarov, R.F. Klevtsova, TsT. Bazarova, L.A. Glinskaya, K.N. Fedorov, A.D. Tsyrendorzhieva, O.D. Chimitova, ZhG. Bazarova, Phase equilibria in the systems Rb₂MoO₄–R₂(MoO₄)₃–Hf(MoO₄)₂ (*R* = Al, In, Sc, Fe(III)) and the crystal structure of double molybdate RbFe(MoO₄)₂, Rw, J. Inorg. Chem. 51 (2006) 1111–1115, https://doi.org/10.1134/S0036023606070151.
- [26] I.Yu Kotova, S.F. Solodovnikov, Z.A. Solodovnikova, D.A. Belov, S.Yu Stefanovich, A.A. Savina, E.G. Khaikina, New series of triple molybdates AgA₃R(MoO₄)₅ (A = Mg, R = Cr, Fe; A = Mn, R = Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices, J. Solid State Chem. 238 (2016) 121–128, https:// doi.org/10.1016/j.jssc.2016.03.003.
- [27] K.M. Khal'baeva, S.F. Solodovnikov, E.G. Khaikina, Y.M. Kadyrova, Z.A. Solodovnikova, O.M. Basovich, Phase formation in the Li₂MoO₄–K₂MoO₄–In₂(MoO₄)₃ system and crystal structures of new compounds K₃InMo₄O₁₅ and LiK₂In(MoO₄)₃, J. Solid State Chem. 187 (2012) 276–281, https:// doi.org/10.1016/j.jssc.2012.01.010.
- [28] B.G. Bazarov, R.F. Klevtsova, A.D. Tsyrendorzhieva, L.A. Glinkaaya, ZhG. Bazarova, Crystalline structure of triple molybdate Rb₅FeHf(MoO₄)₆ – a new phase in the system Rb₂MoO₄–Fe₂(MoO₄)₃–Hf(MoO₄)₂, J. Struct. Chem. 45 (2001) 1038–1043, https://doi.org/10.1007/s10947-005-0091-9.
- [29] B.G. Bazarov, T.V. Namsaraeva, K.N. Fedorov, Zh G. Bazarova, Subsolidus phase diagrams of the systems Cs₂MoO₄-R₂(MoO₄)₃-Zr(MoO₄)₂, where R = Al, Sc, or In, Russ. J. Inorg. Chem. 52 (2007) 1454–1458, https://doi.org/10.1134/ S0036023607090240.
- [30] V.G. Grossman, B.G. Bazarov, R.F. Klevtsova, L.A. Glinskaya, ZhG. Bazarova, Phase equilibria in the Tl₂MoO₄–Fe₂(MoO₄)₃–Hf(MoO₄)₂ system and the crystal structure of ternary molybdate Tl(FeHf_{0.5})(MoO₄)₃, Russ. Chem. Bull. 61 (2012) 1546–1549, https://doi.org/10.1007/s11172-012-0202-7.
- [31] E.Yu Romanova, B.G. Bazarov, R.F. Klevtsova, L.A. Glinskaya, YuL. Tushinova, K.N. Fedorov, ZhG. Bazarova, Phase formation in the K₂MoO₄-Lu₂(MoO₄)₃-Hf(MoO₄)₂ system. Crystal structure study of triple molybdate K₅LuHf(MoO₄)₆, J. Inorg. Chem. 52 (2007) 815–818, https://doi.org/ 10.1134/S0036023607050154.
- [32] B.G. Bazarov, TsT. Bazarova, K.N. Fedorov, ZhG. Bazarova, R.F. Klevtsova, L.A. Glinskaya, Synthesis and crystal structure of triple molybdate K5InHf(MoO4)6, Russ, J. Inorg, Chem. 50 (2005) 1240–1243.
- [33] J.G. Bazarova, YuL. Tushinova, V.G. Grossman, TsT. Bazarova, B.G. Bazarov, R.V. Kurbatov, Phase relations in the *Me*₂MoO₄-In₂(MoO₄)₃-Hf(MoO₄)₂ systems, where *Me* = Li, K, Tl, Rb, Cs, Chim. Techno Acta 5 (2018) 126–131, https:// doi.org/10.15826/chimtech.2018.5.3.01.
- [34] W.Z. Guertler, Zur Fortentwicklung der Konstitutionsforschungen bei ternaren Systemen, Anorg. Allg. Chem. Bd. 154 (1926) 439–455.

- [35] L. Niepel, M. Malinovsky, Triangulation of phase diagrams, Chem. Zvesti 32 (1978) 810–820.
- [36] YuA. Velikodny, Abstract of the Dissertation ... Candidate of Chemical Sciences, Moskow, 1975, p. 17 [in Russian].
- [37] P.V. Klevtsov, Synthesis of the crystal and the study of some double Li, *R*-molybdates for R³⁺ = Fe, Al, Sc, Ga and In, Sov. Phys. Crystallogr. (Engl. Transl.) 15 (1970) 682–685.
- [38] V.K. Trunov, V.A. Efremov, YuA. Velikodny, Crystal Chemistry and Properties of Double Molybdates and Tungstates, Nauka, Leningrad (USSR), 1986.
- [39] L.N. Komissarova, V.K. Trunov, N.P. Anoshina, L.A. Nesterova, B.M. Shatsky, Double molybdates and scandium tungstates and alkali metals, Inorg. Mater. 6 (1970) 1025–1027.
- [40] YuM. Kadyrova, Abstract of the Dissertation ... Candidate of Chemical Sciences, Irkutsk, 2010, p. 24p [in Russian].
- [41] J.P. Smith, P.C. Stair, K.R. Poeppelmeier, The adaptable lyonsite structure, Chem. Eur J. 12 (2006) 5944–5953, https://doi.org/10.1002/chem.200600294.
- [42] S.F. Solodovnikov, L.V. Balsanova, B.G. Bazarov, E.S. Zolotova, ZhG. Bazarova, Phase formation in the Rb₂MoO₄-Li₂MoO₄-Hf(MoO₄)₂ system and the crystal structure of Rb₅(Li_{1/3}Hf_{5/3})(MoO₄)₆, Russ. J. Inorg. Chem. 48 (2003) 1084–1088.
- [43] V.K. Trunov, About double molybdates of alkali and alkaline earth elements, Zh. Neorg, Khim. 16 (1971) 553–554.
- [44] P.V. Klevtsov, E.S. Zolotova, Crystallization from a solution in the melt of Li₂O–MoO₃ and some properties of zirconium, hafnium and titanium molybdates, Izv. Akad. Nauk. SSSR - Neorganicheskiye Mater. 9 (1973) 79–82.
- [45] R.F. Klevtsova, P.V. Klevtsov, Synthesis and crystal structure of the double moibdates KR(MoO₄)₂ for R³⁺ = Al, Sc, and Fe, and of the tungstate KSc(WO₄)₂, Sov. Phys. Crystallogr. (Engl. Transl.) 15 (1970) 953–959.
- [46] E.G. Khaikina, Abstract of the Dissertation ... Doctor of Chemical Sciences, Novosibirsk, 2008, p. 39 [in Russian].
- [47] E.S. Zolotova, Abstract of the Dissertation ... Candidate of Chemical Sciences, Novosibirsk, 1986, p. 25 [in Russian].
- [48] YuL. Tushinova, J.G. Bazarova, S.I. Arhincheeva, Phase equilibria in R₂(MoO₄)₃-Zr(MoO₄)₂ systems, in: All-Russian Scientific Conf. With Int. Partic., Ulan-Ude: BSC SB RAS Press, 2002, pp. 90–91.
- [49] Bruker AXS TOPAS V4, General Profile and Structure Analysis Software for Powder Diffraction Data. – User's Manual, Bruker AXS, Karlsruhe, Germany, 2008.
- [50] N.M. Kozhevnikova, S.Yu Tsyretarova, Synthesis and study of the phase formation in the Na₂MoO₄–MgMoO₄–Sc₂(MoO₄)₃ system, Russ. J. Inorg. Chem. 60 (2015) 520–525, https://doi.org/10.1134/S0036023615040087.
- [51] N.M. Kozhevnikova, M.B. Mosokhoev, Troinye molibdaty (ternary molybdates), Ulan-Ude: Buryat. Gos. Univ (2000) 297 [in Russia].
- [52] S. Murugesan, B. Bergman, Direct evidence for purely silver ion conduction in Culdoped silver oxysalt superionic systems: combined electrolysis and EDS studies, Electrochim. Acta 52 (2007) 8064–8068, https://doi.org/10.1016/ i.electacta.2007.06.080.
- [53] S. Murugesan, Structural and electrical properties of CuI–Ag₂O–MoO₃–WO₃ glassy–crystalline composite solid electrolyte system, J. Non-Cryst. Solids 396–397 (2014) 8–12, https://doi.org/10.1016/j.jnoncrysol.2014.04.025.