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One-dimensional photonic bound states
in the continuum
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In 1985 Fridriech and Wintgen proposed a mechanism for bound states in the continuum
based on full destructive interference of two resonances which can be easily applied to the
two- and three-dimensional wave systems. Here we explicitly show that this mechanism can
be realized in one-dimensional quantum potential well, owing to destructive interference of
electron paths with different spin in tilted magnetic field. Due to one-by-one correspondence
between the spin of the electron and the polarization state of light, we have found numerous
bound states in the continuum in the one-dimensional photonic system and experimentally
confirmed them. The experimental set-up consists of the one-dimensional photonic crystal
conjugated with a liquid-crystalline anisotropic defect layer and covered by metal film.
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range oscillating attractive one-dimensional (1D) potential can

support localized solutions that correspond to isolated discrete
eigenvalues embedded in the continuum of positive energy states.
Extension and some correction of this work was done by Stil-
linger and Herrick?, who presented a few examples of attractive
local potentials with bound states embedded in the continuum
(BICs) of scattering states. The BIC is a classical paradox of a
quantum particle with the energy enough to escape from the
potential well and nevertheless remaining spatially confined. The
BIC emerges due to precise destructive interference of waves
scattered by a bound potential in such a way that, after enough
distance, we obtain a localized state. The physics of localization is
similar to Anderson localization in random potential®. However,
the specially selected long-range bounded 1D potentials in refs. 12
have not been realized experimentally to consider the phenom-
enon of BICs as mathematical curiosity for a long time. In 1985,
Friedrich and Wintgen* in the framework of generic two-state
effective non-Hermitian Hamiltonian formulated the concept of
the BIC as the result of complete destructive interference of two
resonances undergoing an avoided crossing. When two resonant
states approach each other as a function of a certain continuous
parameter, the width of one of them vanishes. Since the energy
remains above the threshold for decay into the continuum, this
state becomes a BIC although each resonant state has a finite
width.

This concept was applied to two-dimensional plane microwave
open resonator’ and two-dimensional photonic crystal (PhC)
waveguide with two off-channel resonators®. In what follows, we
define such a BIC as the Friedrich-Wintgen (FW) BIC. After the
first experimental observation of the symmetry-protected (SP)
BICs in two-dimensional PhC by Plotnik et al.’, the studies of
BICs were intensively grown (see the review by Hsu et al8).
Recently, the BICs have found many applications, including
sensing’, lasing!9-12, terahertz magneto-optics!3, photonic inte-
grated circuits!4, and topological photonics!>=20, Although the
individual dielectric resonator cannot support BIC, the concept of
the avoided crossing of resonances is turned out to be very fruitful
even with one or two subwavelength high-index dielectric reso-
nators allowing to achieve resonant modes with high Q (quality)
factor?1-24,

When Maxwell’s equations are decoupled over transverse
electric (TE) and transverse magnetic (TM) polarizations, they
can be written in the form of the Helmholtz equations?’ to result
in one-by-one equivalence with quantum mechanics?®. Therefore,
layered one-dimensional PhC is equivalent to the 1D quantum
mechanical problem with a stepwise potential profile for each
polarization. However, in the 1D quantum mechanics with an
arbitrary bounded potential, there are no transmittance zeros®’,
and respectively there are no FW BICs because of the absence of
degeneracy and thereby of avoided crossing of resonances, which
could result in the complete destructive interference. Thus, in the

I n 1929, von Neumann and Wigner! discovered that the long-

Table 1 Quantum/optical correspondence.

Quantum mechanics Optics

Electron Photon

Electron wave function y Electric field E
%‘Z’ Magnetic field H
Spin Polarization
Energy Frequency

Transverse electric wave
Transverse magnetic wave
Anisotropy axis

Spin-down electron |{)
Spin-up electron |1)
External magnetic field

1D-layered PhC structure, FW BICs cannot occur if the polar-
izations can be separated. However, if the PhC structure holds a
defect layer that mixes polarizations of light, the FW BICs can
occur because of complete destructive interference of two chan-
nels with different polarizations in the defect layer?8-30. Similar
FW BICs were also reported in a dielectric slab on a surface?!, 1D
solid-fluid phononic crystal3?, and elastic layer in liquid33.

In this paper, we show that BICs occur even in 1D quantum
well potential owing to destructive interference of electron paths
with different spin in a tilted magnetic field. Moreover, due to the
one-by-one correspondence between the spin of the electron and
the polarization of light, we report numerous BICs in the one-
dimensional PhC structure with anisotropic defect layer (ADL)
that plays a role of the quantum well with a tilted magnetic field.
In the experimental setup, the ADL is presented by liquid-
crystalline anisotropic defect layer. We propose to replace one of
the PhC arms with a metallic mirror in order to facilitate fabri-
cation, decrease the structure size, and govern the BIC by external
fields applied to liquid crystal. In the reflectance spectra, we show
numerous events of the Fano resonance collapse34, which
unambiguously witness the FW BICs. Thus, the 1D-layered
structures pave the way to novel tunable high-quality devices both
in spintronics and photonics.

Results

Friedrich-Wintgen BICs in a one-dimensional spin model
Due to the one-by-one correspondence between the spin of the
electron and the polarization state of light (Table 1),

we illustrate the one-dimensional FW BICs first in a toy
quantum model of spin-polarized electron transmission. Let us
consider three domains in which the external stationary magnetic
field is applied as sketched in Fig. la. Assume that the external
magnetic field B inside the central layer is tilted relative to the x-
oriented outer magnetic field. We also assume that the inner layer
has the potential shifted relative to the outer layers by a value U,.
Outside of the central layer, an electron has two split-energy
spectra E = k> ¥ B, 0=1, | which specify the continua by the
wave vector k,. In the central layer, the spin-dependent spectra
have the following form E =4k + U, F B, s=1,2 which
specifies spin-dependent channels by the vector k,. The energy
band structure is given in Supplementary Note 1. Owing to the
choice of the potential step (Uy = —20) as depicted in Fig. 1a by
green, both spin channels are open in the central layer, while
outside only the spin-up continuum is open for E < B. Therefore,
only the electron with spin up can transmit and reflect by the
central layer. The solution of the scattering problem is given in
Supplementary Note 2.

Figure 1b shows the electron reflectance in dependence on
energy E. One can see numerous points of collapse of Fano
resonances that are the unambiguous signatures of the BICs>34,
These points coincide with the analytic solutions for the BICs as
the solution that has zero coupling with the spin-up continuum,
but is coupled with the evanescent spin-down channel. These
conditions and the corresponding equations for the BICs are
presented in Supplementary Note 2, and two examples of the
solutions are shown in Fig. lc. Similarly, the numerous Fano
resonance collapses appear for dependencies on such parameter
as the angle of incidence 0 (Fig. 1d).

Friedrich-Wintgen BICs in a one-dimensional photonic
model. Although this spin model cannot be directly applied for
electrons because of neglecting the orbital motion of electrons in
the magnetic field, it has one-by-one correspondence to the
polarized light reflection from an anisotropic defect layer (ADL).
The aim of this paper is realization of the FW BICs in the optical
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Fig. 1 A toy one-dimensional spin model for illustration of Friedrich-Wintgen bound states in the continuum (BIC). a Beyond the central layer, the

magnetic field B is directed along the x axis, inside the central layer B that is tilted by angle ¢. The spin-up electron falls by angle 6 with the energy below
the spectrum of spin-down and splits into two channels specified by k; and k. b Reflectance of the spin-up electron for B=10 tilted by angle ¢) = z/4 and
Uo = —20, vs incident energy E and central layer thickness L at angle of incidence 6 = /3. Magenta pluses mark the BIC solutions symmetric with respect
to the center of the layer, while crosses mark the antisymmetric BICs. The wave function w for both symmetric and antisymmetric BIC solutions is plotted
in (). d Reflectance of the spin-up electron for B=10 tilted by angle ¢ = z/4 and Uy = —20 vs angle of incidence 0 and central layer thickness L at incident

energy E=30.

analog of the spin model, in a 1D-layered PhC structure where
the TE and TM polarizations of the light play the role of spin
up and -down, and the defect layer with optical anisotropy plays
the role of the layer with a tilted magnetic field. What is more
remarkably predicted is that FW BICs are certified
experimentally.

There are also some differences between the spin model and its
optical analog. First of all, there is no counterpart of Zeeman
interaction in optics, which could split the frequency of light with
different polarizations. Instead, we use the optical materials in
which propagation bands are split by the polarization of light. In
particular, one way is the use of anisotropic optical
waveguides?$30-35. Another way is 1D-alternating PhC that
supports continua specified by light polarization? having close
correspondence with the spin model. The ADL conjugated with
two 1D PhC arms is equivalent to the central layer with the tilted
magnetic field (see Fig. 2a), while the 1D- alternating PhC arms
respond for the continua split by polarization as shown in Fig. 2b.
Similar to the spin model, we expect that the FW BICs of
superposed polarizations are embedded into the TM continua of
the 1D PhC arms specified by wave number k, or angle of
incidence 6.

A fabrication of the 1D anisotropic PhC is technologically
difficult because of the necessity to exploit highly anisotropic
materials. The exploitation of low-anisotropic material would
increase the total number of layers, and elongate the structure,
leading to fabrication inaccuracies. Here we suggest a different
fabrication-friendly photonic structure for observing FW BICs. In
order to split the propagation bands into the polarization of light
outside the ADL, we use semi-infinite 1D PhC arms (Fig. 2a)
composed of alternating isotropic layers A and B with refractive

indices n, and #y, and thicknesses d, and d,. The polarization-
dependent band structure in these 1D PhC arms is given in
Supplementary Note 3 and shown in Fig. 2b.

The 1D PhC arms are conjugated with the uniaxial ADL with
thickness L. The optical properties of the ADL are determined by
the longitudinal ) and transverse n, refractive indices with the
unit vector of the direction of the optical axis
a = (sin(¢), cos(¢),0). In Fig. 2b, the TM continuum (shown
by red) is open with the appropriate choice of k,, while the TE
continuum (shown by blue) is closed. Similar to the layer with a
tilted magnetic field in the spin model, the ADL supports two
orthogonal eigenmodes whose polarization vectors are tilted
relative to the polarization vector of TM-wave light propagating
in the 1D PhC arm. These modes can also be identified as the
ADL channels. As a result, we obtain the one-by-one correspon-
dence between the spin toy model in Fig. la and the present
photonic system as illustrated in Table 1.

If a TM plane wave e/k*—©?) is injected, both eigenmodes of the
ADL become observable as resonances in the TM reflectance
spectra. Here wave vector k = (k,, 0, k,) and k, is fitted into the
propagation band of the 1D PhC shown by red in Fig. 2b.
Figure 2c demonstrates how the reflectance depends on
wavelength and anisotropy axis tilt ¢. Similar to the spin model,
one can plot the dependencies on the angle of incidence 6 and the
ADL thickness L. Both analytical and numerical routines are
presented in Supplementary Notes 3, 4 and “Methods”. Under
variation of the parameters (Fig. 2c), the resonant width turns to
zero similar to the spin behavior shown in Figs. 1b,d. Thereby, we
realize the FW BICs with zero resonant widths as the result of
complete destructive interference of TE and TM polarizations.
The BICs are decoupled from the continua of the 1D PhC arms.
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Fig. 2 One-dimensional photonic model for illustration of Friedrich-Wintgen bound states in the continuum (FW BIC). a 1D photonic crystal (PhC) with
the anistropic defect layer (ADL). Optical properties of the ADL are defined by refractive indices ny, n; and direction of the anisotropy axis (a). The
transverse magnetic (TM)-polarized light is incident at Brewster's angle 6. Local intensity of the electric field distribution for the transverse electric (TE)
(blue) and TM wave (red) near the FW BIC: asymmetric solution (¢ =53. 5°, =568 nm) in (c). b Photonic band structure for TE (blue) and TM wave
(red). The solid black line corresponds to Brewster's angle. Magenta pluses correspond to the symmetric analytical solutions for BICs; crosses correspond
to the asymmetric solutions for ¢ = 0. ¢ Numerical TM-polarized reflectance spectra vs anisotropy axis rotation angle ¢. d Quality (Q) factor for one of the
resonant curves in (c) containing FW BIC (¢ =52.4°, 1 =568 nm) (black). The Q factor for twice-reduced scheme (1D PhC conjugated with twice-thinner
ADL), covered by a metal film with refractive index ny = 0.14 + 20i (magenta).
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Fig. 3 Experimental model for illustration of Friedrich-Wintgen bound states in the continuum (FW BIC). a 1D photonic crystal (PhC) conjugated with
the anisotropic defect layer (ADL) and a metallic mirror. Local intensity of the electric field distribution for the transverse electric (TE) (blue) and
transverse magnetic (TM) wave (red) near the FW BIC: asymmetric solution (¢ =50.6°, A =573.6 nm) in (b). b Numerical TM-polarized reflectance
spectra vs anisotropy axis rotation angle ¢ for structures depicted in (a) with low-loss metal (refractive index ny = 0.14 + 20i). Magenta crosses
correspond to the asymmetric solutions for BICs.

The coupling can be easily tuned by rotating the optical axis given
by the azimuthal angle ¢. In this study, we observe two types of
BICs: SP (at ¢ =0, 90°) and nontrivial FW BICs (at ¢ =0, 90°).
The value of the Q factor is plotted in Fig. 2d. Three BICs
correspond to the infinite Q factor.

Experimental realization of Friedrich-Wintgen BICs. For
experimental verification, the model was modified to facilitate
fabrication and measurement (Fig. 3a) where the right 1D PhC
arm was replaced by a gold mirror film with refractive index ny,
(thickness = 300 nm). The left 1D PhC arm consists of eight pairs
of SiO, (d, =145nm) and TiO, (d, =94 nm) layers. The ADL

with length d=1L1/2=1.375um is filled by planar-aligned E7
nematic liquid crystal. Such a setup allows us to eliminate the
right 1D PhC and optical prism collimating the light beam at the
right of ADL, and control the angle ¢ of the anisotropy axis of the
ADL through the voltage applied to the gold film. That setup
brings unnecessary material losses in metals and sets the limit to
the Q factor as shown in Fig. 2d even for low-loss metal. The
number of BICs with the metal mirror case (Figs. 3b, 4a) is two
times less than that in the symmetric setup (Fig. 2c). It stems
from the fact that the metal mirror can support only anti-
symmetric solutions in the ADL. In the case of the ideal metal
mirror (ny = ioo), the electric field has its node at the interface.
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Fig. 4 Experimental confirmation of Friedrich-Wintgen bound states in the continuum (FW BICs). a Experimental (right panel) and numerical (left
panel) transverse magnetic (TM)-polarized reflectance spectra vs liquid-crystal anisotropy axis rotation angle ¢. Magenta crosses correspond to the
asymmetric analytical solutions for BICs and experimental points of resonance collapse. b Spectral branch shows one FW and another symmetry-protected
BIC. The blue dashed line shows the analytical dispersion curve for the transverse electric (TE)-polarized microcavity mode. € Experimental (dashed line)
and numerical (solid line) TE-polarized reflectance spectra present no resonances.

A vivid example of the difference in the 1D PhC band
structures for the TE- and TM waves is the presence of a certain
wave propagation direction in which the photonic bandgaps for
the TM waves vanish at the Brewster’s angle’®. In Fig. 2b, the
Brewster’s direction is shown by the black solid line. In this
situation, the angles of propagation in alternating layers A and B
satisty the relation 8, + 6, = /2, where 0, = arctan(n,/n,). The
radiation was introduced into the structure using a glass lens to
implement the Brewster’s effect for the 1D PhC arm. The sample
was mechanically rotated to change the tilt angle ¢ of the optical
axis relative to the plane of incidence. The measured reflectance
spectra of the structure are presented in Fig. 4a, b right panel. The
details of sample preparation and measurement techniques are
presented in Methods. For comparison, the results of the
numerical calculation with the Berreman matrix method” are
shown in Fig. 4a, b left panel.

There are no resonances in the TE-polarized spectra (Fig. 4c),
indicating that the TE continuum is closed. The position and
width of the resonances corresponding to microcavity modes in
the TM spectra (Fig. 4a) depend on the angle ¢. The blue shift of
the wavelength of the microcavity mode localized in the ADL is
qualitatively explained by a decrease in the effective refractive
index nyq of the ADL and consequently by its optical thickness.
Under variation of the angle of the optical axis in the range of
0°< ¢ <90° the effective refractive index of the ADL for the
electric component E, of the localized TE mode takes the values
between n 2ng=n,.

The change in the spectral width of the microcavity mode is
caused by the change in the coupling between the TE-polarized
localized mode (the analog of the state with ||)) and the TM-
polarized continuum (the analog of the state |1)) through the
mixing of the polarizations in the ADL. The situation is
qualitatively explained by the fact that, in the general case, in
the ADL upon rotation of the optical axis a, there exist two types
of eigensolutions: the extraordinary (e) (the analog of the state
|2)) and ordinary (o) (the analog of the state |1)) waves. The
electric field vectors of the e- and o waves are mutually
orthogonal ((E.a)#0, (E,a)=0) and, generally, make the
nonzero contributions to the TE- and TM waves, thereby
ensuring the coupling between them. One can see from the
spectra that at certain values of the parameters, the resonance
collapses that is an unambiguous signature of the BIC.

The collapse of the resonance mode width at ¢ =0° and ¢ =
90° indicates the existence of the SP BICs. At ¢ =0°, the ADL
optical axis a=(0, 1, 0) is oriented along the y axis, and the
localized TE mode with the electric field component E,, excites the
e wave with the electric field vector directed along the y axis and
does not contribute to the continuum of the propagating TM
waves. Inversely, the propagating TM wave with the electric field
component E, excites only the o wave in the ADL, the electric
field vector of which is directed along the x axis and does not
contribute to the localized TE mode. Thus, the localized TE mode
is decoupled to the continuum of the TM waves; it can be neither
excited through the continuum nor decays into it, since the
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coupling between the localized mode and the continuum turns to
zero. Similarly, at ¢ =90°, the optical axis a=(1, 0, 0) of the
anisotropic layer is oriented along the x axis, so the e wave makes
the nonzero contribution to the TM-wave only, and the o wave
contributes to the TE-mode only.

The collapse of the resonant mode width in the experimental
spectra at ¢ = 55° and ¢ = 40° evidences for the existence of the
FW BICs as shown in Fig. 4a and Supplementary Fig. 8. The
occurrence of the FW BIC is explained by complete destructive
interference of the e- and o waves at the output from the ADL.
The rotation of the ADL optical axis a, which is analogous to the
rotation of the direction of the magnetic field, changes the
absolute value and direction of the e-wave vector k. = k.(¢), as
well as the electric fields E. = E.(¢) and E, = E,(¢) of both the e-
and o waves. As a result, at certain angle ¢ at the ADL output (at
z=d), the conditions E., + E,,#0 and E. +E,,=0 are
satisfied. The contribution to the TE mode is nonzero, and that
to the propagating TM wave turns to zero, i.e., the resonant mode
becomes a BIC again.

The field distributions for the TE- and TM-polarized waves
near the FW BIC are shown in Figs. 2a and 3a. One can see that
the localized field near the FW BIC has both TE- and TM
components, in contrast to the TE-polarized SP BIC. It is worth
noting that, in contrast to the SP BICs, which exist for every
resonant branch at ¢ = 0° and 90° only, the number and position
of the FW BICs may be arbitrarily tuned. This depends not only
on the angle ¢ of rotation of the optical axis, but also on the
thickness d and anisotropy n;/n, of the ADL.

For the qualitative description, we analytically solved the
eigenvalue problem with reflectionless boundary conditions, and
found the dispersion equation for the microcavity modes
(Supplementary Note 4). The solution has a complex eigenfre-
quency w = w, + iy, meaning that the corresponding microcavity
mode has the spectral position A, = 27/w, and the quality factor
Q = w,/2y. The analytical dispersion curves 1,(¢) fit well with the
experimental and numerical spectra (Fig. 4b and Supplementary
Figs. 2, 4, 9). The Q factor of the resonant mode is determined by
two components: the material loss 1/Qy;, which is the absorption
of light by the metallic layer, and the TE-mode leakage into the
continuum of TM waves 1/Q(¢): 1/Q =1/Qym + 1/Q(¢). At 1/Q
(¢) =0, the total Q factor is limited by the material loss. The
experimental Q factors were found to be lower by an order of
magnitude in comparison with the theoretical Q factor limited by
Qum (see Supplementary Fig. 10). The reason is the liquid-crystal
layer thickness variation, which can potentially be eliminated by
replacing liquid ADL by metasurface38-4! at the price of
tunability.

It should be noted that for the normal incidence?’, the FW
BICs are described by relation 2d(k. — k,) = 2nm. Physically, it
means that the FW BICs occur when the ADL acts as a full-wave
phase plate*2, The TE-polarized light incident onto such a full-
wave phase plate preserves its original polarization at the layer
output, without being converted into the continuum of the
orthogonal TM waves. To the best of our knowledge, the FW
BICs in a 1D PhC-layered structure were experimentally observed
in this study for the first time.

Discussion

The proposed scheme has an important advantage over the
previous schemes of BIC observation in layered media?8-39, it
requires the only one 1D PhC arm and a defect layer holding a
liquid-crystal cell. In addition, the Brewster’s angle is less than the
angle of total internal reflection?8-30, providing easier excitation
and increased confinement of the radiation. The sensitivity of a
liquid crystal to external influence*>~#> allows one to control the

coupling between the continuum and localized modes by heating
or application of electric or magnetic fields.

A decrease in the ADL thickness leads to the reduction of the
number of leaky bands up to the single one. In the last case, we
face with Tamm plasmon-polariton*®47 widely used in photonics
and optoelectronics*®4%, as an optical analog of the electronic
Tamm state in condensed matter physics®®. The Tamm state is
transformed into the BIC in the present setup IDPhC arm+ADL
~+metal when the ADL is sufficiently thin.

Owing to the one-by-one equivalence between quantum
mechanics and optics, the Brewster-tilted BICs have been
observed experimentally in the 1D PhC with a defect anisotropic
layer. The possibility of controlling of the Q factor of the quasi-
BIC modes is demonstrated by rotating the optical axis of the
liquid crystal. One can use an all-dielectric structure 1D PhC arm
+ADL+1D PhC (Fig. la) in order to diagnose BIC with an
extremely high Q factor. We propose to replace one of the PhC
arms with a metallic mirror in order to facilitate fabrication,
decrease the structure size, and govern the BIC by external fields
applied to liquid crystal. The experimental data obtained from
reflectance spectra of E7-liquid-crystal cell placed between a PhC
and a gold mirror are in good agreement with the theoretical and
numerical results. We underline that the 1D-layered structures
pave the way to novel tunable high-quality devices both in
spintronics and photonics.

Methods

Berreman's transfer-matrix method. To calculate the reflection spectra of the
layered structure, the transfer-matrix method is used, which is generalized by
Berreman to anisotropic media®’, a detailed description of which is given in ref. 42.
The system of Maxwell’s equations is written in the form of wave equation for the
4 x 1 vector field amplitudes J = (E,, H,,E,, —Hx)T

aJ_ .

d_

Jz
where A is a differential matrix of propagation whose elements are expressed in
terms of elements of the permittivity tensor. If the permittivity tensor does not
depend on z within the jth layer with a thickness of d;, then integration (1) gives a
connection of fields on the right (z = z; + d;) and the left (z = z;) boundaries of the
layer: J(z; + d;) = I:j](zj), I:] = ¢4 That allows to relate fields at the entrance
to the fields at the first layer of the structure and further to the exit from the last,
Nth layer, in the form

koAJ, (1)

N

1<z1 + Zdj> =Nz, 2=]]L (2)
j=1 j=1

The field on the left boundary of the structure can be represented as a sum of
the incident and reflected waves J(z;) = Ji(z1) + J(21); the field on the right
boundary is the field of the transmitted wave J(z, + 2}11 d) =J(z; + E;il d)).
Substituting these boundary conditions into (2), we link the amplitudes J;, J,, Js.
After that, reflection coefficients R, Rqp, Ry ps Rps are naturally expressed, as well
as transmission coefficients Ty, Tsp, Tpp Tps through the elements of the matrix
. The s index corresponds to the TE wave, and the p index corresponds to the
TM wave. The Berreman’s method is implemented in the MATLAB software

(license # 984723).

Finite-difference time-domain method. To simulate the Brewster-tilted BIC
resonance with tunable Q factors, the Finite-difference time-domain (FDTD,
Lumerical) method®! is used. In the modeling, the BIC structure includes the
substrate, PhC, alignment layer, anisotropic layer, and the gold layer. The refractive
indices of the anisotropic layer are set to (x, y, z) = (#1,, 1o, #1.). Boundary condi-
tions (BCs) in the form of the perfectly matching layers (PML) are set in the y
direction, and the Bloch boundaries are set in the x direction. The Bloch BCs allow
us to find the solution of the entire system by simulating the one- unit cell by a
phase shift of the fields. The source of the plane wave is illuminated from the
substrate in the Brewster angle (53.13°). The monitor of frequency-domain fields
and power is used to calculate the reflectance spectrum of the structure. The
schematic diagram of FDTD simulation is given in Supplementary Fig. 5.

Calculation parameters. To calculate the band structure, dispersion curves and
reflectance spectra of the finite structure, frequency-dependent refractive indices
for gold (Aurum) (ny = n,,)°2, silicon dioxide (n, = nSiOZ)S3> titanium dioxide
(ny, = ”T102)54’ E7 liquid-crystal mixture (n), = 1, ¢g7)°>>°, and poly(methyl
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methacrylate) (n. = npyma)®’ were used. The tangent component of the wave
vector is k, = n,,k, sin(6;,), where the RI of the prism is n;, = 1.52 and the angle
of incidence in the prism satisfies the Brewster condition for the PhC

0., = 0y = arcsin((ny, /0y, ) sin(6y,)) ~ 53.1°. The geometrical parameters of the
layers used for the calculation correspond to the real structure described in the
“Experimental setup” section. To obtain the realistic Q-factor and reflection
spectra, the simulated spectra were averaged over the E7-layer thicknesses +10 nm.

Experimental setup: fabrication and measurements. To fabricate the BIC
sample, the gold film (thickness = 300 nm) and the PhC (8 pairs of SiO, (d, = 145
nm) and TiO, (d, =94 nm)) are deposited on two substrates separately. Poly-
methylmethacrylate (PMMA) (d. =200 nm) is spin-coated on the PhC as the
alignment layer. In order to make a smaller gap, the plano-convex curvature
substrate (f= 5000 mm) is used for the gold film. Then, the optical fixture is used
to clamp the two substrates, and the Newton’s ring will appear and make the cell
gap (~1.375 um) in the structure. Then, the anisotropic material (liquid crystal E7)
is filled into the small gap. The schematic diagram of the experimental sample is
given in Supplementary Fig. 6. In characterization, the Brewster-titled spectral
measurement system is set up. The excitation light source is a halogen lamp. The
light incidents from the prism in the Brewster angle. The pinhole (aperture stop) is
used to control beam size, and the linear polarizer is used to set the polarization
state (TE or TM). The sample can be rotated in azimuthal angles to measure
reflectance spectra from ¢ = 0° to ¢ = 180° with the Brewster-angle incident cone.
The schematic diagram of the experimental setup is given in Supplementary Fig. 7.

Data availability
All essential data are available in the paper and Supplementary Information. Further
supporting data can be provided from the corresponding author upon request.
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