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ABSTRACT

The theory of spin-wave resonance in gradient ferromagnetic films with magnetic parameters varying in space described by both concave
and convex quadratic functions is developed. Gradient structures such as a potential well, a potential barrier, and a monotonic change in
potential between the film surfaces for both quadratic functions are considered. The waveforms of oscillations mn(z), the laws of the depen-
dence of discrete frequencies ωn, and relative susceptibilities χn=χ

0
1 of spin-wave resonances on the resonance number n are studied. It is

shown that the law ωn / n for n , nc, where nc is the resonance level near the upper edge of the gradient inhomogeneity, which is well
known for a parabolic potential well, is also valid for the potential barrier and for the monotonic change in potential, if these structures are
formed by a concave quadratic function. It is shown that the law ωn / (n� 1=2)1=2, which we numerically derived and approximated by the
analytical formula, is valid for all three structures formed by a convex quadratic function. It is shown that the magnetic susceptibility χn of
spin-wave resonances for n , nc is much greater than the susceptibility of resonances in a uniform film. An experimental study of both
laws ωn(n) and χn(n) would allow one to determine the type of quadratic function that formed the gradient structure and the form of this
structure. The possibility of creating gradient films with different laws ωn(n) and the high magnitude of the high-frequency magnetic sus-
ceptibility χn(n) at n , nc make these metamaterials promising for practical applications.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143499

I. INTRODUCTION

Electromagnetic and elastic waves in substances with artifi-
cially created smooth inhomogeneities of material parameters—the
refractive index and elastic constants, respectively—are intensively
studied experimentally and theoretically. A detailed review of the
research and use of such metamaterials in application devices is
given in the book.1 The situation with the development of both
experimental and theoretical studies of spin waves in gradient mag-
netic metamaterials is fundamentally different from the situation
with the study of electromagnetic and elastic waves. Until recently,
theoretical and experimental studies of spin waves in ferromagnets
dealt only with the natural gradient inhomogeneity, which arises
uncontrollably in the production of thin magnetic films.

Targeted experimental studies of gradient magnetic materials
are just a beginning. The authors of Ref. 2 developed a technology
for creating layered films in which the magnetic parameters of the

layers smoothly change across the film thickness, simulating a pre-
determined law of change in the magnetization M(z) or exchange
α(z). By appropriate selection of the alloy composition for each
layer, the authors obtained samples in which one of the magnetic
parameters changes according to a given law, while the others
remain approximately constant. The dependence of the parameter
on z obtained with this technology is stepwise, but with small layer
thicknesses, it can be approximated by a smooth function.
Spin-wave resonance was also studied in Ref. 2 on the obtained gra-
dient samples.

The development of the theory of spin-wave resonance in the
natural gradient ferromagnets began in the 1960s. It was stimulated
by experimentally discovered deviations of the dependence of the
resonance frequencies ωn (or resonance fields Hn) on the mode
number n, from the quadratic law ωn / n2 predicted by Kittel’s
theory3 for homogeneous magnetic films. In Ref. 4, it was assumed
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that these deviations are due to the smooth inhomogeneity of the
magnetization M over the film thickness caused by various techno-
logical factors. The actual dependences of the magnetization M
on z were unknown, but there was reason to believe that the func-
tion M(z) decreases from the middle of the film to its surfaces.
Therefore, the convex quadratic function M(z) for modeling was
used, which, due to the minus sign in the expression of the
demagnetizing field Hm(z) ¼ �4πM(z), led to a parabolic potential
well in the effective magnetic field Heff (z). The approximate linear-
ized equation for spin-wave oscillations in a ferromagnet with
z-dependent magnetization M(z) or uniaxial magnetic anisotropy
β(z) has the form of the Schrödinger equation for electrons in the
external potential U(z). Exact solutions of these equations for a
concave quadratic potential U(z) (potential well) are expressed in
terms of a confluent hypergeometric Kummer function.5 In some
cases, technological factors led to another dependence of M(z)—its
almost linear change from one surface of the film to another.
For such cases, the solution of the Schrödinger equation can be
expressed in terms of the Airy functions.5 The characteristics of
spin-wave oscillations, taking into account both the features of the
magnetic system and the boundary conditions on the film surfaces,
were obtained from these exact solutions by approximate analytical,
graphical, and numerical methods in Refs. 6–11. The main one of
these characteristics is the law of the dependence of discrete fre-
quencies ωn (or resonance fields Hn) on the spectral level number
n (number of the spin-wave resonance peak). For frequencies
ωn , ωc, where ωc corresponds to the upper edge of the gradient
potential well, a model with a parabolic dependence of the effective
magnetic field Heff on z leads to the law ωn / n, and a model with
a linear dependence of Heff (z) leads to the law ωn / (n� 3=4)2=3,
where n ¼ 1, 2, 3, . . .. For frequencies ωn . ωc, the dependence of
ωn on n with increasing n for both models approaches the law
ωn / n2, which corresponds to a uniform film.

Theoretical works6–11 made it possible to qualitatively explain
the results of experimental studies of spin-wave resonance of those
years and stimulated an improvement in the technology for producing
films. An increase in technological requirements (high vacuum, tem-
perature conditions, artificial formation of boundary conditions, etc.)
led to the creation of more advanced permalloy films,12 for which
Kittel’s law ωn / n2 was well satisfied for all values of n. However,
deviations from this law for frequencies ωn , ωc are still observed
both on films of alloys other than in Ref. 12 and on films of granular
materials consisting of small ferromagnetic particles in a non-
magnetic matrix. These deviations are qualitatively explained by the
authors of experimental works in the framework of models of either a
parabolic13–19 or linear11,20–24 variation of the effective magnetic field.

In Refs. 6–11, spin-wave modes were calculated only for two
functions M(z), the spontaneous appearance of which in the
sprayed films is most likely: parabolically decreasing from the
center of the film to its surfaces and linearly dependent on z. After
the development of technology for the artificial creation of gradient
films in which magnetic parameters vary according to a predeter-
mined law,2 it became clear that many different profiles of changes
in magnetic parameters along the z coordinate can be realized. Of
particular interest is the possibility shown by the authors of Ref. 2
to create films in which only one of the magnetic parameters
changed according to a given law, while the others remained

approximately constant. The one-dimensional wave equations in
this case contain one coordinate-dependent coefficient, the profile
of which is described by some function U(z). The development of
the theory of waves in such a gradient material involves, in the
general case, a sequential solution of two problems: (i) finding
the exact solution of the differential equation with a coordinate-
dependent coefficient and (ii) analyzing this exact solution in
relation to a specific physical model using approximate analytical
or numerical methods. Such a program was implemented in our
work,25 in which the method of searching for the profiles of the
gradient dependence of the material parameters of matter on
the coordinates, which allows one to obtain an exact solution of the
wave equations developed earlier for electromagnetic and elastic
waves,1 is generalized to the case of spin waves in gradient ferromag-
nets. The found profiles and the obtained exact solutions were then
used in the same work to develop the theory of spin-wave resonance
in a ferromagnet with space-changing parameters of uniaxial mag-
netic anisotropy β(z) and exchange α(z). However, the first, purely a
mathematical problem, has already been solved in many cases: exact
solutions of differential equations with coordinate-dependent coeffi-
cients are well known for a number of profiles of these coefficients.5

In these cases, the primary problem of the theory of spin waves is
the use of this exact solution to calculate the spectrum and ampli-
tudes of standing spin-wave oscillations in thin magnetic films. We
are dealing in this work with just such a situation.

The goal of this work is to develop the theory of spin-wave
resonance for quadratic gradient structures of the form of a potential
well, a potential barrier, and a monotonic change in the magnetic
parameters from one surface of the film to another. We study the
potentials described both by ordinary concave (increasing with z
growth) and convex (decreasing with z growth) quadratic functions.

II. GRADIENT MAGNETIC STRUCTURES AND THE
EQUATION OF MOTION

We consider the case of spin-wave resonance in an external
constant magnetic field H directed along the z axis perpendicular
to the film surface. The axis of the uniaxial anisotropy is also
directed along the z axis. In a gradient film, when the effective
magnetic field along the film thickness is a function of the z coor-
dinate, the approximate equation of motion for the resonant circu-
lar projection of the magnetization m(z, t) has the form6–11

d2m
dz2

þ 1
αM0

ω

g
� Heff (z)

� �
m ¼ 0: (1)

Here, α is the exchange parameter, M0 ¼ hM(z)i is the average mag-
netization value, ω is the frequency, and g is the gyromagnetic ratio.

Variations in the effective magnetic field Heff (z) can be caused
either by a dependence on the z coordinate of either the magnetiza-
tion M(z) or the uniaxial anisotropy β(z),

Heff (z) ¼ H � 4π � β(z)½ �M(z)� α
d2M(z)
dz2

: (2)

Here, the dependence of the magnetization on z is left only in the
expression for Heff (z) and is replaced by the average value of
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M0 ¼ hM(z)i in the coefficient in front of the term in square
brackets of Eq. (1). Estimates show that such a replacement does
not lead to significant deviations of the solution from the exact
result obtained by numerically solving Eq. (1). We consider cases
of variations of M(z) and β(z) separately: a variable M(z) at
β ¼ const and a variable β(z) at M ¼ const. The last term in
Eq. (2) is a constant value for the quadratic potential.

We consider the case when the magnetization M(z) depends
on z. Several gradient structures can be described by the quadratic
function M(z), six of which are shown in Fig. 1. The solid curves
correspond to the convex quadratic function M(z) or the separated
parts of this function. They describe cases where the magnetization
decreases quadratically from the middle of the film to its surfaces
(a), from the surfaces of the film to its middle (b), and from one
surface to another (c). The theory of spin-wave resonance was pre-
viously developed only for one of these structures—the structure in
Fig. 1(a) described by a solid curve.6–9 The magnetization M(z)
corresponding to a convex quadratic function can be represented
for the gradient structure in Fig. 1(a) in the form

M(z) ¼ Mmax 1� ϵ(pz)2
� �

(3)

and for the gradient structure in Fig. 1(b),

M(z+) ¼ Mmax 1� ϵ(pz+)
2

h i
, (4)

where �d=2 � z� � 0, 0 � zþ � d=2. Here, d is the film thick-
ness, p ¼ 2=d,

ϵ ¼ ΔM
Mmax

, ΔM ¼ Mmax �Mmin, (5)

z+ ¼ z + d=2: (6)

The gradient structure in Fig. 1(c), corresponding to a monotonic
change in the magnetization M(z) from one surface of the film to

another, is shown for a film whose thickness is half that of the
films of structures (a) and (b). This is done for the convenience of
comparing the spectral characteristics of all three structures.
The magnetization for the structure (c) is described by Eq. (3), in
which d=2 now corresponds to the total film thickness. The magne-
tization M(z) corresponding to a concave quadratic function
(dashed curves in Fig. 1) is described by equations similar to
Eqs. (3) and (4) with the replacement of Mmax by M0

min and the
minus sign by the plus sign in square brackets. The magnetization
M(z) appears in the effective magnetic field Heff (z) with a negative
sign. Therefore, the convex function M(z) leads to a concave gradi-
ent of the magnetic potential Heff (z) and vice versa. For example,
the previously studied case of a quadratic decrease in the magneti-
zation to the film surfaces6–9 [Fig. 1(a), a solid convex curve M(z)]
leads to a concave quadratic potential Heff (z)—a potential well.
We consider separately the cases of concave and convex quadratic
potential.

A. Concave quadratic potential

Consider the case of variable magnetization M(z). Gradient
structures corresponding to a concave quadratic potential are
described by Eqs. (3)–(6). We represent Heff (z) as

Heff (z) ¼ Heff
0 � ΔHeff (pz)2, (7)

where

Heff
0 ¼ H0 � 4π � β þ 2αϵp2

� �
Mmax, (8)

ΔHeff ¼ ϵ 4π � βð ÞMmax: (9)

Equation (1) can be represented in the form

d2m

dζ2
þ Ω� 1

4
ζ2

� �
m ¼ 0 (10)

for all three structures corresponding to such a potential
[Figs. 1(a)–1(c), solid curves]. Here, the dimensionless frequency Ω
and the dimensionless coordinate ζ are given by

Ω ¼ 1
2

ΔHeffp2αM0
� ��1=2 ω

g
�Heff

0

� 	
,

ζ ¼ ffiffiffi
2

p ΔHeff

p2αM

� 	1=4

pZ,

(11)

where p ¼ 2=d, Z ¼ z for cases (a) and (c), and Z ¼ z+ for case (b).
Equation (10) takes the form of the well-known Schrödinger equa-
tion for the harmonic oscillator, and its general solution can be
represented in the form of parabolic cylinder functions (Weber
functions), which are expressed in terms of confluent hypergeomet-
ric functions M(a, b, c) (Kummer functions).5 The even and odd
harmonics of spin waves have the form, respectively,

ms ¼ exp
�ζ2

4

� 	
M �Q

2
þ 1
4
,
1
2
,
ζ2

2

� 	
, (12)

FIG. 1. Gradient magnetization structures for convex (thick solid curves) and
concave (thick dashed curves) quadratic functions M(z) with the same mean
value M0 ¼ hM(z)i. The minimum (Mmin and M0

min) and maximum (Mmax and
M0
max) values of the convex and concave quadratic functions M(z), respectively

(thin dotted lines).
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ma ¼ ζ exp
�ζ2

4

� 	
M �Q

2
þ 3
4
,
3
2
,
ζ2

2

� 	
, (13)

where Q plays the role of a dimensionless “wave number.”
Substitution of Eq. (12) or Eq. (13) into Eq. (10) leads to the
dimensionless dispersion law,

Ω ¼ Q, (14)

identical for all three structures of Figs. 1(a)–1(c).
We consider solutions, Eqs. (12) and (13), with boundary con-

ditions as pinned,

m(z)jz¼+d=2 ¼ 0, (15)

or unpinned,

dm(z)
dz

����
z¼+d=2

¼ 0, (16)

oscillations on both surfaces of the film. For the magnetic structure
of Fig. 1(b), in addition to the boundary conditions of Eq. (15) or
Eq. (16), it is also necessary to fulfill the conjugation conditions
for the solutions obtained for zþ and z� in the center of the film
at z ¼ 0,

m(zþ)jz¼0 ¼ m(z�)jz¼0,

dm(zþ)
dzþ

����
z¼0

¼ dm(z�)
dz�

����
z¼0

:
(17)

This value of z corresponds to zþ ¼ �d=2 and z� ¼ d=2.
Substituting the boundary conditions Eq. (15) or Eq. (16) into
Eqs. (12) and (13), we obtain transcendental dispersion equations for
finding a discrete set of Qn values that were studied numerically.

For numerical studies, we choose magnetic parameters close
to real experimental samples: α ¼ 2� 10�12 cm2, M0 ¼ 1000G,
Heff

0 ¼ 2333Oe, ΔHeff
0 ¼ 5000Oe, ω=g ¼ 3280G, and d ¼ 300 nm.

The discrete eigenfrequencies Ωn, according to Eq. (14), correspond
to the obtained functions Qn of n. Discrete resonant frequencies ωn

at H ¼ const or discrete resonant magnetic fields Hn at ω ¼ const
can now be found from Eq. (11). It is convenient for us to carry
out further analysis in terms of discrete frequencies ωn at
H ¼ const. Some features of another situation, Hn at ω ¼ const,
will be discussed below when discussing the results of work.

The calculated levels of the discrete frequency spectrum ωn are
shown in Fig. 2 (dotted horizontal lines). The waveforms mn(z) of
the spin-wave unpinned (a)–(c) and pinned (a0)–(c0) oscillations
are also shown in Fig. 2. They are arbitrarily located at the corre-
sponding spectral levels n ¼ 1, 2, 3, . . . . Black-coated modes corre-
spond to symmetrical and green thin dashed curves to antisymmetric
oscillations. The oscillation amplitudes at all levels are normalized to
the same value. The forms of the gradient potential for each of the
structures are shown by red thick curves. The critical frequency ωc

corresponds to the upper edge of the gradient inhomogeneity of the
potential. The properties of oscillations at frequencies ωn , ωc differ
significantly from the waveform of oscillations at frequencies

ωn . ωc occurring in a rectangular potential well formed by
the surfaces of the film. We will call the critical level n ¼ nc
whose frequency is closest to ωc from the low frequency side.
As can be seen from Fig. 2, the waveform of the oscillations for
n � nc differs significantly from the harmonic one: the effective
“wavelength” of oscillations of the confluent hypergeometric func-
tion increases as they approach the surface of the gradient potential.
For n � nc, the pinning of the ends of magnetic oscillations on the
“surface” of the potential takes place, which was first discovered for
films with a parabolic gradient in Ref. 9 and called there “dynamic
pinning.” Due to this effect, the waveform at levels n � nc for films
with a parabolic gradient does not depend on the boundary condi-
tions on the film surface [compare Figs. 2(a) and 2(a0)].

There are no oscillations outside the potential well, with the
exception of tails of internal oscillations penetrating through the
potential surface as a result of tunneling. In the case of a potential
barrier [Figs. 2(b) and 2(b0)], the oscillations at n � nc occur in
two potential wells bounded by the boundaries of the barrier and
the corresponding film surfaces. There are no oscillations inside the
barrier, with the exception of tails of external oscillations penetrat-
ing through the barrier surface as a result of tunneling. In the thin
part of the barrier (n ¼ 7–11), these tails can merge, forming

FIG. 2. Gradient structures of the effective magnetic field Heff (z) described by a
concave quadratic function (red thick dashed curves): potential well (a) and (a0),
potential barrier (b) and (b0), and monotonic growth of potential between surface
films (c) and (c0) for unpinned (a)–(c) and pinned (a0)–(c0) oscillations.
Frequencies ωn of discrete levels n (thin green dotted lines). Black-coated
modes correspond to symmetric ones, and green thin dashed curves corre-
spond to the antisymmetric waveform of oscillations mn(z).
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transparency windows in the barrier. The sharp difference between
the spectrum for the potential barrier and the spectrum for the
potential well is that the spectral levels of symmetric and antisym-
metric oscillations in the case of a barrier degenerate at levels from
n ¼ 1 to n ¼ 7. This degeneracy is lifted for higher levels. The fre-
quency spectrum ωn and the waveform of spin-wave oscillations in
gradient structures in which one of the sides of the potential well(s)
is the surface of the film [Figs. 2(b), 2(b0), 2(c), and 2(c0)] is sub-
stantially determined by the boundary conditions on this surface.
The frequencies of unpinned oscillations for the gradient barrier
(b) and for the potential well (a) coincide with each other both for
n , nc and n . nc. They correspond to odd levels n ¼ 1, 3, 5, . . . .
The frequencies ωn of the pinned oscillations for the gradient
barrier (b0) coincide with the frequencies of the antisymmetric
oscillations in the potential well (a0), which correspond to even
levels n ¼ 2, 4, 6, . . . . Gradient structures (c) and (c0), correspond-
ing to a monotonic change in the magnetization M(z) from one
surface of the film to another, are shown for a film whose thickness
is half the thickness of the films of structures (a) and (b). This is
done for the convenience of comparing the spectral characteris-
tics of all three structures. The waveform of oscillations of the
structures (c) and (c0) is described by the right half of the sym-
metric function [Eq. (12) for z . 0] for unpinned oscillations at
n ¼ 1, 3, 5, . . . (c) and the right half of the antisymmetric function
[Eq. (13)] for pinned oscillations at n ¼ 2, 4, 6, . . . (c0). The index of
spectral levels n chosen in the work corresponds to n of “half-waves”
of oscillations for the gradient structures (a), (a0), (b), and (b0) and
n=2 of “half-waves” for structures (c) and (c0). If both the wavelength
and the penetration depth of the exciting external high-frequency
field are much larger than the film thickness, then it can be consid-
ered as the value of h0 independent of z. In this case, the high-
frequency magnetic susceptibility of the nth oscillation is

χn ¼
1
h0d

ðd=2
�d=2

mn(z) dz: (18)

Antisymmetric modes are not excited by the field h0 in either a
uniform or gradient film, since for them the integral in Eq. (18) is
equal to zero. Symmetric oscillations in a homogeneous film are
excited by the field h0 only for the boundary conditions for pinning
oscillations on the film surface [Eq. (15)]. Symmetric modes of the
gradient structures (a), (a0), (b), and (b0), in contrast to this, are
excited at n , nc both with the boundary conditions of pinning,
Eq. (15), and unpinning, Eq. (16), on the film surface. This is due to
the effect of the dynamic pinning of oscillations inside the film on
the “surface” of the gradient potential. The same effect also occurs
for the modes of asymmetric structures (c) and (c0). The waveform
of the oscillations at the levels n . nc with increasing n is increas-
ingly approaching the harmonic one, for which the conditions of
excitation by a uniform along z a.c. field are preserved only for spins
pinned on the film surface [Figs. 2(a0)–2(c0)].

The main characteristics of the oscillations calculated by us,
which can be measured experimentally, are shown in Fig. 3. This is
the discrete frequency spectrum ωn(n) [Figs. 3(e)] and 3(e0) and
relative susceptibility χn=χ

0
1 [Figs. 3(f) and 3(f 0)], where χ01 is the

susceptibility of the first peak of a homogeneous film. The same

functions calculated by us for a uniform film are also given for
comparison (dotted curves). As can be seen from Figs. 3(e) and 3(e0),
the points of the discrete laws ωn(n) for all the gradient structures
shown in Fig. 2 are located along the same continuous curve. This
allows us to make a general conclusion,

The form of the law ωn(n) is the same for all gradient struc-
tures in which potential wells are described by a concave qua-
dratic function, or one side of each well is described by a concave
quadratic function and the other is bounded by a vertical line
(film surface). The “macroscopic” appearance of the gradient
structures containing these potential wells does not matter: it
can be a potential well [Figs. 2(a) and 2(a0)], a potential barrier
[Figs. 2(b) and 2(b0)], or a monotonous increasing potential
[Figs. 2(c) and 2(c0)].

The law ωn(n) in the limiting case n � nc can be written in
an analytical form. The form of solutions of Eqs. (12) and (13) for
a parabolic potential in an unlimited space is greatly simplified.5

They can be written in the form of Hermite polynomials, to which
the linear law of dependence of ω on n corresponds. It was shown
in Refs. 6–9 that this law is the limiting case for n � nc for
the dependence of ω on n in a parabolic potential well in a thin
magnetic film [Figs. 2(a) and 2(a0)]. The graphs calculated by us
[Figs. 3(e) and 2(e0)] show that this is also true for all gradient
structures shown in Figs. 2(b), 2(b0), 2(c), and 2(c0). Consequently,
the law ωn(n) for all gradient structures described by a concave
quadratic function, in the limiting cases of small and large n, has

FIG. 3. The frequency spectrum ωn (e) and (e0) and the relative susceptibility
χn=χ

0
1 (f ) and (f

0 ) vs n for unpinned (e) and (f ) and pinned (e0) and (f 0 ) oscilla-
tions in gradient structures of Heff (z) described by a concave quadratic function.
Designations of the symmetry of oscillations and gradient structures corresponding
to them are shown in the figures with links to Figs. 2(a)–2(c) and 2(a0)–2(c0).
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the form

ωn / n, n � nc,
n2, n � nc:

�
(19)

The signs “much smaller” and “much larger” here have a condi-
tional meaning, since the transition between the limiting cases is
rather narrow and occurs almost at a distance between two or three
levels n adjacent to nc. The points of discrete laws ωn(n) for all gra-
dient structures corresponding to symmetric and antisymmetric
oscillations are located along the same continuous curve in differ-
ent ways for different structures and different boundary conditions.
Therefore, the frequencies of antisymmetric oscillations in a poten-
tial well [Fig. 3(e), crosses] are located between the frequencies of
symmetric oscillations (circles); antisymmetric oscillations in the
structure of the potential barrier [Fig. 3(f), red dots] coincide with
the frequencies of symmetric oscillations for n , nc and are located
between the latter for n . nc. The frequencies of degenerate oscilla-
tions in the structure of the potential barrier in the absence of
pinning coincide with the frequencies of symmetric oscillations in
the potential well and with the frequencies of antisymmetric oscil-
lations under the boundary conditions of pinning of oscillations.

The relative susceptibilities χn=χ
0
1 of unpinned oscillations in

all gradient structures corresponding to Figs. 2(a)–2(c) are shown
in Fig. 3(f ) (squares). Here, the susceptibility of the pinned oscilla-
tions in the potential well is shown too [Fig. 3(f ), crosses]. Both of
these functions for n , nc coincide with each other and slightly
differ from each other for n . nc. It is seen that the susceptibility
of the first peak of the gradient films is less than the susceptibility
of homogeneous films (dotted curve). However, it decreases with
increasing n much slower than the susceptibility of homogeneous
films and exceeds the latter by several times for peaks in the range
from n ¼ 2 to n ¼ nc þ 2. The laws of the dependence of χn=χ

0
1 on

n for the pinned oscillations in the structures of the gradient barrier
[Fig. 3(f 0), asterisks] and monotonically growing quadratic potential
[Fig. 3(f 0), blue dots] also coincide for n , nc and differ for n . nc.
Both of these laws are fundamentally different from the laws of
Fig. 3(f) for unpinned oscillations in the same structures. The sharp
failures of the function mn(z) occur at levels 4, 8, and 12, which cor-
respond to an even number of half-waves in each potential well on
both sides of the barrier [Fig. 2(b0)] and in the potential well of a
monotonically increasing potential [Fig. 2(c0)]. An even number of
half-waves for a harmonic function would lead to a vanishing of the
susceptibility, and for degenerate hypergeometric functions, only
partial compensation of positive and negative “half-waves” occurs.

B. Convex quadratic potential

Equation (1) in this case can be represented in a form that
differs from Eq. (10) only by the plus sign in square brackets,

d2m

dζ2
þ Ωþ 1

4
ζ2

� �
m ¼ 0: (20)

The general solution of this equation can be represented in the
form of functions of a parabolic cylinder (Weber functions) of an
imaginary argument.5 The symmetric ms(ζ) and antisymmetric

ma(ζ) solutions of Eq. (20) in this case have the form, respectively,

ms ¼ exp
�iζ2

4

� 	
M

iQ
2
þ 1
4
,
1
2
,
iζ2

2

� 	
, (21)

ma ¼ ζ exp
�iζ2

4

� 	
M

iQ
2
þ 3
4
,
3
2
,
iζ2

2

� 	
: (22)

Confluent Kummer hypergeometric functions of an imaginary
argument M(ia, b, ic) in Eqs. (21) and (22) are well studied.5 They
can be calculated with any accuracy for specific values of ζ and Q
using mathematical packages (for example, Maple 2016 software
package). Spin-wave resonance in the gradient structures of mag-
netic parameters formed by a convex quadratic potential is studied
here for the first time. Spin-wave oscillations in the gradient struc-
tures of the potential well, potential barrier, and potential quadrati-
cally decreasing from one film surface to another are considered.
The calculation was carried out with the same values of the mag-
netic parameters that were used in Sec. II A.

The convex quadratic potential leads to a fundamental differ-
ence between all gradient structures (Fig. 4, red thick dashed
curves) from similar structures formed by a concave quadratic
potential (Fig. 2, red thick dashed curves). Potential wells entering

FIG. 4. Gradient structures of the effective magnetic field Heff (z) described by a
convex quadratic function: potential well (a) and (a0), potential barrier (b) and
(b0), and monotonic decrease in potential between the surfaces of the film (c)
and (c0). The frequencies ωn of discrete levels n and the waveforms of spin-
wave oscillations mn(z). Designations as in Fig. 2.
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into all gradient structures sharply narrow, and their bottom is
sharpened. The arrangement of the levels of the discrete frequency
spectrum ωn changes just as dramatically. The distances between
the spectral levels with increasing n for n , nc decrease (Fig. 4)
instead of their uniform location for the concave potential (Fig. 2).
For n . nc, the distance between the levels begins to increase,
approaching with increasing n of the quadratic dependence ωn(n),
as for the concave quadratic potential. As in the case of a concave
quadratic potential, degeneration of even and odd levels in the
structure of the potential barrier [Figs. 4(b) and 4(b0)] occurs,
which is removed at n . nc.

The main characteristics of the oscillations calculated by us:
the discrete frequency spectrum ωn(n) [Figs. 5(e) and 5(e0)] and the
relative susceptibility χn=χ

0
1 [Figs. 5(f) and 5(f 0)] vs n for the case

of a convex quadratic gradient also differ from similar laws for a
concave quadratic potential. Susceptibility in Fig. 5 decreases more
sharply with increasing n for n . nc than in Fig. 3. In Fig. 5(f 0), as
in Fig. 3(f 0), there are alternating dips and peaks of susceptibility,
but a sharper decrease in susceptibility with increasing n leads
to blurring of this effect. The waveform mn(z) described by
Eqs. (21) and (22) is similar to the waveform described by
Eqs. (12) and (13). The increase in the “wavelength” of the oscilla-
tions as they approach the surface of the gradient potential, the
pinning of their ends on this surface, and the partial tunneling of
the oscillations through the surface of the potential can be seen in
Figs. 2 and 4.

As can be seen from Figs. 5(e) and 5(e0), the points of discrete
laws ωn(n) for all the gradient structures shown in Fig. 4 are
located along the same continuous curve. This allows us to draw a
general conclusion similar to that made in Sec. II A for the case of
structures described by a concave quadratic function.

The form of the law ωn(n) is the same for all gradient struc-
tures in which potential wells are described by a convex quadratic
function, or one side is described by a convex quadratic function
and the other is bounded by a vertical line (film surface). The
“macroscopic” appearance of the gradient structures containing
these potential wells does not matter: it can be a potential well
[Figs. 4(a) and 4(a0)], a potential barrier [Figs. 4(b) and 4(b0)], or a
monotonous increasing potential [Figs. 4(c) and 4(c0)]. However,
the forms of laws for gradient structures described by convex or
concave quadratic functions are significantly different. The inflec-
tion of the function ωn(n) in the vicinity of n ¼ nc occurs for the
case of gradient structures described by a convex quadratic function
and a smooth bending for the case of a concave quadratic function.

For the confluent hypergeometric Kummer functions of an
imaginary argument, there is no such representation as Hermite
polynomials for functions of a real argument that would allow us
to obtain an analytical expression for the dependence ωn(n) for
small n. Therefore, we selected an analytical expression that would
most accurately describe the results of our numerical calculations.
As a result, we obtained the laws of the dependence of the oscilla-
tion frequency ωn on n for all structures with a convex quadratic
potential gradient: potential well [Figs. 4(a) and 4(a0)], potential
barrier [Figs. 4(b) and 4(b0)], and a monotonously decreasing
potential [Figs. 4(c) and 4(c0)] in the limiting cases of small and

FIG. 5. The frequency spectrum ωn (e) and (e0) and the relative susceptibility
χn=χ

0
1 (f ) and (f 0 ) vs n for unpinned and pinned oscillations, respectively, in the

gradient structures of Heff (z) described by a convex quadratic function.
Designations of the symmetry of oscillations and gradient structures corresponding
to them are shown in the figures with links to Figs. 4(a)–4(c) and 4(a0)–4(c0).

FIG. 6. The frequency spectrum ωn of the pinned oscillations vs (n� 1=2)1=2

in the gradient structures of a convex quadratic potential. Designations as
in Fig. 5(e0).
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large n have the form

ωn / (n� 1=2)1=2, n � nc,
n2, n � nc:

�
(23)

Indeed, the numerically found function ωn vs (n� 1=2)1=2 for
n , nc has the form of a straight line (Fig. 6).

C. Magnetic anisotropy gradient

The uniaxial magnetic anisotropy β(z), whose axis is perpen-
dicular to the film surface, is included in Eq. (2) with a plus sign.
Therefore, in contrast to the variable magnetization M(z), the
concave gradient function of the magnetic potential Heff (z) corre-
sponds to the concave function β(z), and the convex function
Heff (z) corresponds to the convex function β(z). The quadratic gra-
dient structures corresponding to β(z) are described in the same
figure as in Fig. 1 for M(z). Formulas for a convex quadratic depen-
dence M(z), Eqs. (4)–(6), are replaced by formulas of the form

β(z) ¼ βmax 1� ε0(pz)2
� �

, (24)

and so on, where

ε0 ¼ Δβ=βmax, Δβ ¼ βmax � βmin: (25)

For a concave quadratic dependence β(z) in expressions of the
form (24), βmax is replaced by β0min, which corresponds to the
minimum of the concave function β(z) and the minus sign in
square brackets for the plus sign. All results of Sec. II A for a
concave quadratic potential now correspond to a concave quadratic
function β(z) and the results of Sec. II B to a convex quadratic
function β(z).

III. CONCLUSION

The theory of spin-wave resonance in ferromagnetic films
with a gradient structure of magnetic parameters described by both
concave and convex quadratic functions is developed. Gradient
structures such as a potential well, a potential barrier, and a mono-
tonic change in potential between the surfaces of the film are con-
sidered (for one of these six structures—a parabolic potential well
—the theory of spin-wave resonance was developed previously6–9).
It is shown that the law of the dependence of the resonance fre-
quency ωn on the spectral level n, which for the parabolic potential
well for n , nc has the form ωn / n, where nc is the level closest to
the upper boundary of the gradient potential, is also valid for struc-
tures such as the potential barrier and monotonically changing
potential if potential wells in these structures are formed by parts
of a concave quadratic function and film surfaces. The law of the
dependence of the resonance frequency ωn on the spectral level n,
valid for n , nc for all three gradient structures (potential well,
potential barrier, and monotonic change in potential) formed by a
convex quadratic function, was first derived by us numerically and
approximated by the analytical function ωn / (n� 1=2)1=2. It is
shown that the degeneracy of the frequencies of symmetric and
antisymmetric oscillations occurs at n , nc for structures of the
type of potential barriers formed by both concave and convex

quadratic functions. The values of the high-frequency susceptibility
of the resonance peaks of all investigated gradient structures at n , nc
(except for the first peak) are many times higher than the values
of the susceptibility peaks of homogeneous films. The laws of the
dependence of χn on n for n , nc are different for different gradi-
ent structures and different boundary conditions on the film
surface. Thus, an experimental study of the law ωn(n), the presence
or absence of degeneracies of frequencies of oscillations of differ-
ent symmetries, and the laws χn(n) in many cases makes it possi-
ble to identify the type of a real gradient structure in the sample.
The importance of this identification is due to the possibility that
any other magnetic parameter may appear during the production
of films of an uncontrolled gradient (for example, uniaxial mag-
netic anisotropy arising due to the magnetoelastic interaction
between the layers of the gradient structure).

Spin-wave resonance in gradient magnets is considered in the
work with a constant magnetic field H and a changing frequency ω.
This allows us to describe the physics of processes in standard terms
of discrete spectral levels, gradient potential, etc. Experimental
studies of spin-wave resonance are carried out, as a rule, at a constant
frequency ω and a changing magnetic field H. The transition from
one consideration scheme to another for gradient films does not
differ from the same transition for homogeneous films, and the
graphs obtained for discrete frequencies obtained in this work can
easily be rearranged into graphs for discrete resonant fields. In par-
ticular, the limit equations (19) and (23), which describe the depen-
dence of the discrete frequencies ωn on n, when replacing the minus
sign in front of their right sides, describe the laws of decreasing
resonant magnetic fields from a certain initial field with increasing
resonance number n.

Theoretical studies of spin-wave resonance in ferromagnetic
films with a gradient structure of magnetic parameters, both carried
out in this work, and all previous studies6–11 were built on the basis
of Eq. (1), which corresponds to the sample magnetized to satura-
tion. This corresponds to the requirement that the effective magnetic
field Heff (z) be positive, defined by Eq. (2) for all values of the inter-
val of variation of the z coordinate in the gradient sample. The first
experiments2 to study spin-wave resonance in films with a predeter-
mined gradient of magnetic parameters were carried out at a fre-
quency of 9:2GHz. The requirement of positivity of Heff (z) under
these conditions can be violated for some values of the resonance
fields Hn. The developed theory in this case cannot lead to an agree-
ment with the experiment. A particularly large discrepancy between
the theory and experiment is in the case when the resonance fields
Hn are measured at ω ¼ const, since each resonance field Heff in an
unsaturated sample corresponds to different magnetic states. A way
out of this situation would be to conduct experimental studies of gra-
dient films at higher frequencies and, accordingly, in high magnetic
fields when the requirement is fulfilled.

The authors hope that this work stimulates the development
of technology for the creation and experimental study of such
gradient structures in magnetic films, for which the frequency spec-
trum and high-frequency susceptibility of spin-wave resonances are
theoretically calculated. The creation of such materials would con-
tribute to eliminating the lag in the study and application of gradi-
ent magnetic materials from similar studies in the field of optical
and elastic gradient metamaterials.1
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