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ABSTRACT

The morphology of vortex lattice domains in bulk type-II/1 superconductors is of central interest for many areas such as fundamental
condensed matter physics, engineering science, and the optimization of materials for high transport current superconductivity applications.
Here, we present a comprehensive experimental study of a single crystal niobium in the intermediate mixed state and Shubnikov phase with
two complementary neutron techniques: high resolution polarized neutron imaging and small-angle neutron scattering. In this way, we were
able to identify and visualize the occurrence of compensating currents, the flux line closure, and the freezing of the vortex spacing during the
process of field cooling and high field cooling. With the combination of complementary neutron techniques, it was possible to add insights
into the quest for the understanding of the flux pinning and nucleation of vortices in type-II/1 superconductors during the process of field
cooling and high field cooling.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0004438

In the last decade, the spatial resolution capabilities of neutron
imaging have brought additional insights into the investigation of
magnetic phenomena in matter.1–21 In particular, the thermodynamics
of the phase transition between normal and superconducting states
and also the flux pinning and trapping in superconductors due to the
their peculiar nature of local magnetic interactions have spurred inter-
est of neutron imaging researchers.1,6,22–26

Small-angle neutron scattering (SANS) is a well-known estab-
lished method, which provides information about the size and shape
of structures embedded in a homogeneous matrix. While SANS probes
the Abrikosov vortex lattice (VL) and yields information, averaged
over the illuminated region, about its morphology and spacing cover-
ing length scales from 10 to hundreds of nm, the polarized neutron
imaging (PNI) technique allows us to assess complementary informa-
tion about the magnetic field distributions.27–29

Superconductors are classified by the Ginzburg–Landau parame-
ter j into type-I (j < 1=

ffiffiffi
2
p

) and type-II (j > 1=
ffiffiffi
2
p

).30,31 Here, the
Ginzburg–Landau parameter is defined as j ¼ kL

nGL
, with kL being the

London penetration depth and nGL the superconducting coherence
length. The phase diagram of type-II superconductors is characterized
by the Meissner state (MS), which also occurs in type-I superconduc-
tors, and the Shubnikov phase (SH), aside from the normal conducting
state (NS), as shown in Figs. 1(a) and 1(c). Furthermore, superconduc-
tors characterized by j � 1=

ffiffiffi
2
p

, such as niobium, are subclassified as
type-II/1, while j� 1=

ffiffiffi
2
p

as type-II/2. The vortex lattice of type-II/1
superconductors shows both attractive and repulsive intervortex inter-
action components, as opposed to type-II/2, which is characterized by
a purely repulsive behavior.32 This peculiar behavior of the VL of type-
II/1 superconductors can be observed in the intermediate mixed state
(IMS), in which a domain structure develops in the form of a mixed
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phase of the SH clusters and the MS regions, as depicted in Fig. 1(a).
The origin and thermodynamics of the IMS have been the subject of
numerous studies, and they are still a subject of investigations.6,25–27

A pivotal aspect of every investigation on the thermodynam-
ics of type-II/1 superconductors is the cooling procedure adopted
to access the superconductive phase, as depicted in Fig. 1(c).
Recent investigations, based on a neutron multiscale approach, of
the IMS state in niobium, focused on the process of field cooling
(FC), have revealed an inhomogeneous domain structure of the VL
and a universal temperature dependence of the vortex spacing,
which is, however, independent of the external magnetic field.25,26

A phenomenological explanation of the hysteretic behavior caused
by pinning is provided by the Bean critical state model in type-II/1
superconductors assuming the existence of lossless critical cur-
rents, as depicted in Fig. 1(b).33

Here, we present an experimental study of the interplay of com-
pensating currents, flux pinning, and line closure in a type-II/1 super-
conductor niobium during the process of FC and high field cooling
(HFC). In order to extend the results of the previous investigations
into the IMS, this study is based on the combination of magnetization,

SANS, and PNI measurements. The PNI technique is based on mea-
suring variations of the neutron polarization, which undergoes a
change in direction due to Larmor precession during the passage
through a magnetic sample.29,34 The polarization (P) can only be ana-
lyzed in relation to a specific direction (i.e., magnetic field orientation)
and can be expressed as29

P ¼ Iþ � I�
Iþ þ I�

; (1)

where Iþ and I� are the transmitted intensities measured behind a
spin analyzer, with parallel ðþÞ and antiparallel ð�Þ alignment to the
probed polarization direction. The precession angle / is given by the
path integral as follows:28

/ ¼ xLt ¼ cnBt ¼
cn
v

ð
BðsÞds ¼ cnmnk

h

ð
BðsÞds; (2)

where xL is the Larmor frequency, t is the time a neutron spends in
the magnetic field B, cn is the gyromagnetic ratio of the neutron, v is
the velocity, mn is the neutron mass, k is the wavelength, and h the is
Planck constant. In order to detect a precession angle, the neutrons
have to experience a non-adiabatic transition, which depends on the
magnetic field gradient and neutron energy. The adiabatic regime is
defined by the following condition:18

1
B

d
B
jBj
dt

0
@

1
A
� xL: (3)

The FC and HFC cooling procedures applied for both the
SANS and PNI measurements are depicted in Fig. 1(c). The FC
procedure consists of ramping up the external magnetic field at a
temperature of 12 K (T1), above the critical temperature
(Tc ¼ 9:25 K for Nb), and cooling the sample down to 4 K (T0),
below the critical temperature, for each measured field. Scanning
through the HFC procedure starts with the access to the SH phase
from T¼ 12 K to T¼ 4 K at B¼ 80mT, in a similar manner like
FC at the same field, and subsequently, the external magnetic field
is ramped down step by step for consecutive measurements, while
the temperature is kept constant.

The sample is a low purity single crystal disk of niobium with
12mm diameter, 2mm thickness, and a residual resistivity ratio
(RRR) of �10, which has been characterized by a quantum design
physical property measurement system (PPMS). The h111i crystallo-
graphic axis is perpendicular to the face of the Nb disk. This kind of
low purity specimen can be considered a realistic model material for
practical applications of superconductors.

The magnetization curves of the Nb sample are shown in Fig.
2 as a function of the applied magnetic field, perpendicular to the
face of the disk, for various temperatures between 4 and 9 K. Such
magnetization curves are typical for type-II/1 superconductors: the
behavior of the magnetization hysteresis loop is determined by an
entrance of the VL into the sample and by trapping the magnetic
field. The broad hysteresis loop is characteristic of a strong pinning
behavior, a hallmark of superconductors with a low RRR. The
demagnetization factor (D) for a disk with the magnetic field
applied along the cylindrical axis has been estimated to be �0:88,
calculated according to28

FIG. 1. (a) Illustration of the four different domain morphologies of a superconductor
type-II/1 reached through the FC procedure: MS, IMS, SH, and NS, respectively.
The external magnetic field H is applied perpendicular to the face of the disk. (b)
Schematic illustration of the field distributions in the IMS in a superconductor type-
II/1 disk for FC (top) and HFC (bottom). Particularly, the compensating currents,
flux pinning, and line closure during the process of high field cooling HFC are
depicted. The regions penetrated by magnetic fields are shown in green. The �
and � symbols show outgoing and incoming directions of the compensating cur-
rents. (c) Schematic phase diagram of a superconductor type-II/1 subdivided into
MS, IMS, SH, and NS. The demagnetization factor (D) equals 0.88 for the probed
specimen because the disk geometry is taken into account for the effective critical
fields. The blue arrows depict different FC measurements at distinct magnetic fields
B1; Bi, and Bn, from T1 > Tc to T0 < Tc, where Tc is the critical temperature. The
red arrows depict the HFC measurements once the SH phase is accessed via the
FC procedure at the specific external magnetic field Bn. The parameters B0; Bc1,
and Bc2 are the constant magnetic induction, the lower critical field, and the upper
critical field, respectively.
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D ¼ 1� 1

1þ r
h

� �
q
;

q ¼ 4
3p
þ 2
3p

tan
h
r
ln 1þ r

h

� �1:27
 !

;

(4)

where r and h are the radius and the thickness of the cylinder. The
SANS measurements have been carried out at SANS-I, at PSI, via
rocking scans over 62�. The data have been corrected for a high tem-
perature background using a background measurement in the normal
state. The external magnetic field is applied along the neutron beam
direction and perpendicular to the face of the Nb disk. A sixfold pat-
tern is observed for the illuminated area of the sample, corresponding
to the central inner part of the Nb disk� 8 mm in diameter, as
expected from the literature.6,27 The properties of the VL extracted
from the SANS during the FC measurements, depicted in Fig. 3(a),
show a plateau in the IMS state and the characteristic gVL /

ffiffiffi
B
p

behavior in the SH phase for magnetic field B�Hc � 45 mT, in
agreement with the literature.6,25–27 Here, gVL is the reciprocal lattice
vector, i.e., the inverse of the vortex lattice parameter aVL, and can be
expressed as25

gVL ¼
4pffiffiffi
3
p

aVL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p2Bintffiffiffi

3
p

U0

s
; (5)

where U0 is the magnetic flux quantum and Bint depends on the
demagnetization D of the sample. However, in the probed magnetic
field range, the sample does not show the characteristic drop at a very
low field due to the flux expulsion in the MS, mainly due to pinning
and impurities, yellow region in Fig. 3(a). This does not allow us to
estimate the value of the field for the IMS-MS phase transition.
The field dependence of the integrated scattering intensity in the FC
measurements, as illustrated in Fig. 3(b), shows the characteristic
peak at the IMS-SH phase transition, in good agreement with the
literature.6,25–27,35 The HFC measurements, on the other hand, show a
freezing of gVL at the initial value, i.e., when the superconducting phase

is accessed at 80mT, without exhibiting any discontinuities through-
out the SH-IMS phase transition. In a similar manner, the integrated
intensity distribution, which is proportional to the magnetic flux struc-
tures in the sample, is constant for HFC, as shown in Fig. 3(b), and
indicates no nucleation process of vortex domains, in agreement with
the results reported by Bykov et al.35

The PNI measurements have been carried out at the polarized
cold neutron beamline BOA, at PSI.36 The monochromatic neutron
beam is polarized along the vertical axis with an overall polarization of
� 90% at k ¼ 3:5 Å. A spatial resolution of 130lm has been mea-
sured with a Siemens star test object.37 The cryomagnet used for the
measurements generates a magnetic field that is aligned along the
propagation direction of the neutrons, and it is adiabatically coupled
with the incoming neutron spin polarization and the spin analyzer. A
complete sequence covering the magnetic field ranging from 20mT to
80mT has been acquired for both FC and HFC. In Figs. 4(a)–4(d), a
selection of images is shown. Throughout the whole FC procedure,
only a weak signal has been detected, visible only at the edge of the
disk, as shown in Figs. 4(a) and 4(e). This indicates that during the
SH-IMS phase transition in the FC procedure, the neutron polariza-
tion is adiabatically coupled, as defined in Eq. (3), with the external
magnetic field applied to the sample, which, thus, has no

FIG. 2. PPMS data of the Nb disk. Magnetization as a function of the applied exter-
nal magnetic field perpendicular to the face of the disk, measured for different tem-
peratures between 4 K and 9 K in the range between 6350mT. Here, the initial
magnetization curves after zero field cooling (ZFC) and three quarter of a hystere-
sis loop are shown. The demagnetization factor D is shown in gray as
M ¼ �DHext ¼ �0:88Hext.

FIG. 3. SANS results. (a) Reciprocal lattice vector gVL measured by SANS as a
function of increasing and decreasing applied magnetic fields through FC (blue)
and HFC (orange). For a high field, the FC data points are proportional to

ffiffiffi
B
p

,
characteristic of the SH phase. (b) Integrated scattering intensity curves. The blue
data points have been acquired via independent FC procedures. The orange data
points have been measured via the HFC procedure. Hc � 45 mT defines the
boundary between IMS (red) and SH (green). The MS (yellow) has not been probed
during the SANS measurements.
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perpendicular component to the polarization vector; hence, no spin
flipping precession occurs and the polarization is equal toþ 1, as
shown in Fig. 4(a).29 Hence, it serves as the reference point for the
comparison of the images acquired during the HFC hysteresis loop.
The PNI images of the HFC, on the other hand, show a field depen-
dent behavior emerging at the periphery of the disk, as illustrated in
Figs. 4(b)–4(d). This local decrease in polarization during the HFC
becomes more pronounced for weaker fields, and it shifts toward
larger radii, extending beyond the edge of the Nb disk, as shown in
Figs. 4(d) and 4(e). The fact that a polarization of P � 0% is reached,
as illustrated in Fig. 4(e) for the case of HFC at 20mT, indicates a
non-adiabatic transition, according to Eq. (3), due to the strong
gradient generated by the swirling of the magnetic field, as
depicted in Fig. 1(b).

While the VL cannot be directly resolved in real space by PNI, a
comprehensive interpretation of the VL structure can be inferred via
the SANS results, which show the characteristic SH-IMS phase transi-
tion in FC followed by the subsequent nucleation of an irregular
domain structure. In contrast, for HFC, no signs of the SH-IMS phase
transition have been observed experimentally, and gVL and the

integrated scattering intensity indicate a freezing of the VL at the initial
value of the thermodynamic path, which does not lead to a vortex
domain formation, mainly due to pinning. The PNI results do not
show a stationary system during the freezing of the VL for HFC, and a
clear field dependent ring appears, which protrudes beyond the edge of
the disk. Since circulating currents appear only during ZFC, the signal
induced by the HFC procedure leads to the compensating currents and
the flux line closure as depicted in Fig. 1(b). A similar situation has
been observed using the Faraday effect in high Tc superconductors.

38

In conclusion, we have shown how the combination of the results
obtained with two complementary neutron techniques, SANS and
PNI, provides additional insights into the thermodynamics of low
purity type-II/1 superconductors by characterizing the VL throughout
the thermodynamic path and visualizing the occurrence of compensat-
ing currents and flux line closure.

See the supplementary material for the SANS diffraction patterns
and for the complete dataset of the PNI images.
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