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Abstract. We analyze the energy spectrum of the three-site Bose-Hubbard model. It is shown that this spectrum is a mixture
of the regular and irregular spectra associated with the regular and chaotic components of the classical Bose-Hubbard model. We
find relative volumes of these components by using the pseudoclassical approach. Substituting these values in the Berry-Robnik
distribution for the level spacing statistics we obtain good agreement with the numerical data.

INTRODUCTION

The Bose-Hubbard (BH) model contains the basic physics of interacting bosons in a lattice [1] with particular interest
in the context of cold Bose atoms in optical lattices [2]. The many-site BH model is known to belong to the class of
quantum nonintegrable systems whose spectral and dynamical features are consistent with predictions of the theory
of Quantum chaos [3]. The chaotic dynamics of cold Bose atoms in the optical lattice has been intensively studied
in recent years [3, 4, 5, 6, 7, 8, 9]. On the contrary, the two-site BH model is completely integrable, i.e. can be
solved analytically [10]. The cold atom realizations of the two-site BH model are nowadays a popular playground for
studying such phenomena as Josephson oscillations and self-trapping [11, 12].

In this work we analyze the three-site BH model which is the simplest representative of the nonintegrable BH
Hamiltonians. On the other hand, the three-site system retains certain features of the integrable two-site system [4, 13,
14]. For example, it can show the generalized Josephson oscillations with quasiperiodic change of the site occupations
[4]. In the work we give description of dynamical regimes of the three-site BH model and identify their signatures
in the energy spectrum. There are several ways to distinguish regular and chaotic regimes: Loschmidt echo [15, 16],
machine learning algorithms [17], and semiclassical (or, better to say, pseudoclassical) methods [6, 18, 19]. Here we
employ the latter approach – we introduce the classical analogue of the quantum three-site BH model and demonstrate
that it shows a mixture of chaotic and regular dynamics. We quantify chaos by calculating the finite-time Lyapunov
exponent and relative volumes of the regular and chaotic components.

THE SYSTEM

The Bose-Hubbard Hamiltonian reads

Ĥ =−J
2

L

∑
l=1

(
â†

l+1âl +h.c.
)
+

U
2

L

∑
l

â†
l â†

l âl âl , (1)
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where the index l labels the lth well of the optical potential, âl and â†
l are the bosonic annihilation and creation

operators,

[âl , â
†
l ] = h̄δl,l′ , (2)

J is the hopping matrix element, and U the microscopic interaction constant. Experimentally, the three-well optical
potential can be realized using different technics [20] where the hopping energy and the particle interaction can be
controlled separately.

Depending on the lattice geometry of the summation limit in the hopping term L can take two different values. If the
potential wells are arranged along a straight line the system is a linear oligomer (LO) where the hopping terminated
at the first l = 1 and the last l = L sites on the line. Then we have

LLO = L−1. (3)

Another geometry is a circular oligomer (CO) where we additionally have the hopping between the first and last sites
that leads to the periodical boundary condition âL+1 = â1. Then

LCO = L. (4)

The periodic boundary condition also implies conservation of the total quasimomentum. This can be proved by

rewriting the Hamiltonian (1) in terms of the operators b̂k and b̂†
k ,

b̂k =
1√
L ∑

l
exp(i2πkl/L)âl . (5)

which annihilate and create a particle in the Bloch state with the quasimomentum κ = 2πk/L. We obtain

Ĥ =−J ∑
k=−1,0,1

cos

(
2πk

3

)
b̂†

k b̂k +
U
6

∑
k1,k2,k3,k4

b̂†
k1

b̂†
k2

b̂k3
b̂k4

δ̃ (k1 + k2 − k3 − k4), (6)

where the presence of the δ−function in the interaction term insures that the total quasimomentum is conserved. The
Hilbert space of (6) is spanned by the quasimomentum Fock states |n−1,n0,n+1〉 , where Σknk = N is the total number
of particles.

Next we discuss the energy spectrum of the system. Fig. 1 shows the energy spectrum for LO (left panel) and CO
(right panel) as a function of the macroscopic interaction constant g=UN/3, where we simultaneously set the hopping
matrix element to J = 1−g. This allows us to consider the both cases of weak and strong coupling/interaction – the
case of g = 0 corresponds to the system of noninteracting bosons whereas in the case of g = 1 the interwell tunnelling
is completely suppressed. In these limits the BH model is integrable and its energy spectrum can be found analytically.
However, within the intermediate range of g it is highly irregular and the energy levels exhibit avoided crossings as
they approach each other, see the area between two dashed red lines in Fig. 1(a). In this parameter region the system
is nonintegrable. Following the standard procedure we calculate the normalized distances between the nearest levels
s = (En+1 −En)ρ(En) where ρ(E) is the density of states, see Fig. 2(a). In Fig. 2(b) we show the integrated level
spacing distribution I(s) =

∫ s
0 ds′P(s′) for the central energy region comprising 70 percent of the states (solid line) and

compare it with the Poisson distribution (dash-dotted line),

PP(s) = exp(−s), (7)

and the Wigner-Dyson distribution (dashed line),

PWD(s) =
π
2

sexp(−π
4

s2). (8)

It is seen that the level spacing statistics is close to the Wigner-Dyson distribution which is a hallmark of Quantum
chaos.

We stress that we get a reasonable agreement with the Wigner-Dyson statistics only because we neglect 30 percent
of the energy levels which are presumably not chaotic. A more accurate description of the spectrum is given by the
Berry-Robnic distribution,

PBR(s) =
[

ν2
r er f c(

√
π

2
νcs)+(2νrνc +

π
2

ν2
c s)exp(−π

4
ν2

c s2)

]
exp(−νrs), (9)

which includes the relative size of the regular (νr) and chaotic (νc) components as the fitting parameters. In the next
section we obtain these fitting parameters from the first principles by using the pseudoclassical approach.
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FIGURE 1: Energy spectrum of N = 10 bosons as a function of the macroscopic interaction constant g =UN/3 and
the hopping matrix element J = 1−g. Left panel: the whole spectrum of the linear oligomer (LO). Right panel: the

spectrum of the circular oligomer (CO) for the independent subset of states with zero total quasimomentum.
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FIGURE 2: Upper panel: The density of states ρ of the three-site Bose-Hubbard model. Lower panel: Integrated
distribution I(s) =

∫ s
0 ds′P(s′) for the Poisson level spacing statistics PP(s) (dash-dotted black curve), the

Wigner-Dyson statistics PWD(s) (dashed red curve), and numerical data P(s) (blue) for the central part of the energy
spectrum. Parameters are N = 30, g = 0.8, and J = 1−g.
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REGULAR AND CHAOTIC DYNAMICS

Pseudoclassical approach borrows its ideas from the semiclassical method in single-particle quantum mechanics to
address the spectral and dynamical properties of the system of N interacting bosons with 1/N playing the role of
Planck’s constant [6, 18, 21, 22]. In this approach the operators are substituted by their Weyl images which gives

âl√
N

→ al ,
â†

l√
N

→ a∗l , (10)

and

Ĥ
N

→ H =−J
2

L̄

∑
l=1

(
a∗l+1al + c.c.

)
+

g
2

L

∑
l=1

|al |4 (11)

where g = UN/L is the macroscopic interaction constant. In the semiclassical limit N → ∞ and U = g/N → 0 this
approach is equivalent to the mean-field approximation. The main advantage of the pseudoclassical approach above
the mean-field approximation is that it can treat the case of finite N as well. The validity of this approach was
discussed, for example, in Ref. [18] where it was demonstrated that it works well till N ∼ 10. In what follows,
however, we shall assume the limit N → ∞ where the Hamiltonian (11) generates the Hamilton equations of motion

i
dal

dt
=

∂H
∂a∗l

=−J
2
(al−1 +al+1)+g|al |2al , i

da∗l
dt

=−∂H
∂al

, (12)

which are known as the discrete nonlinear Schrödinger equation (DNLSE) [23]. The solution al(t) is the classical
trajectory and, since |a1(t)|2 + |a2(t)|2 + |a3(t)|2 = 1, it is bounded to the S5 sphere in the 6-dimensional phase space.

We numerically solve Hamilton’s equations of motion (12) for the ensemble of initial conditions uniformly dis-
tributed over the whole phase space, i.e., over the surface of the sphere S5. As an example, Fig. 3 samples regular
and chaotic trajectories from this ensemble. We distinguish between regular and chaotic trajectories by calculating
the finite-time Lyapunov exponent defined according to the following equation [24, 25, 26]

λ (t) =
|δa(t)|
|δa0| /t. (13)

Here δa = (δa1,δa2,δa3,δa∗1,δa∗2,δa∗3)
T is the deviation from a given trajectory a(t) which obeys the linearized

equation of motion

i
d
dt

δa = M[a(t)]δa, (14)

with M[a(t)] being 2L×2L matrix of the following structure:

M[a(t)] =
(

A+gB gC
−gC∗ −(A+gB)∗

)
, (15)

Al,m =−J
2
(δl+1,m +δl−1,m), (16)

Bl,m = (2|al(t)|2 − E
g
)δl,m Cl,m = a2

l (t)δl,m (17)

E =
1

3
g− J cos(

2π
3

k) (18)

The finite-time Lyapunov exponent shows the temporary evolution of the separation between two close initial con-
ditions and for sufficiently long computational times converges to the celebrated Lyapunov exponent. Namely, it
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(a) Regular (b) Chaotic

FIGURE 3: Examples of regular (a) and chaotic (b) trajectories. Regular dynamics correspond to the Josephson
oscillations of the site occupations.

approaches zero for regular trajectories (λ � 0) while it is always well above zero for chaotic trajectories (λ ≥ 0), see
Fig. 4(a).

Next, we calculate the exponent λ for all trajectories from the uniform ensemble of initial conditions. The insets in
Fig. 5 show λ as a function of the trajectory energy E (which is obviously a conserved quantity). Additional vertical
lines mark the energies of the nonlinear Bloch waves,

al(t) =
1√
L

exp[iκl + iJcos(κ)t − igt], κ = 2πk/L, (19)

which are stable (|κ| < π/2) or unstable (|κ| > π/2) periodic trajectories of the system, see Fig. 4(b). We count the
number of regular and chaotic trajectories by introducing some λcr 
 1 which we set in our simulations to λcr = 0.01.
Then all trajectories with finite-time Lyapunov exponent λ < λcr are treated as regular. Following this idea we find
volumes of the regular and chaotic components as the relative number of regular and chaotic trajectories. The results
are shown in the main panel in Fig. 5 where the blue curve refers to the case of circular olligomer and the red curve
to the linear oligomer.
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FIGURE 4: Upper panel: Finite-time Lyapunov exponent λ (t) for regular (λ � 0|t=tend ) and chaotic (λ > 0|t=tend )
trajectories. Lower panel: The phenomenon of the dynamical or modulation instability for the Bloch wave with

nonzero total quasimomentum due to chaoticity.
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FIGURE 5: The volume of the chaotic component as a function of the macroscopic interaction constant g for
thelinear oligomer (red curve) and circular oligomer (blue curve). Results are based on the numerical analysis of the
ensemble of 500 trajectories with initial conditions uniformly distributed over the whole phase space. Insets show the

Lyapunov exponent for each trajectory from the uniform ensemble as a function of the trajectory energy given by
Eq. (11). Vertical lines mark energies of the periodic trajectories (19).
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RESULTS AND CONCLUSIONS

Now we are prepared to discuss the statistical properties of the whole energy spectrum of the three-site BH system.
The histograms in Fig. 6 show the level spacing distribution and integrated level spacing distribution as compared to
the Berry-Robnic distribution (9) which is depicted by the magenta line. In the distribution (9) we use the values of
the parameters vc and vr obtained in the previous section. A nice agreement is noticed. This agreement proves that
the three-site BH model is a genuine mixed system where the regular spectrum coexists with the irregular spectrum.
Furthermore, the results presented in the insets in Fig. 5 undoubtedly tell us which part of the energy spectrum is
associated with the chaotic dynamics and, hence, is irregular.

0 1 2 3
s

0

0.2

0.4

0.6

0.8

1

I(s
)

0 1 2 3
s

0

0.2

0.4

0.6

0.8

1

P(
s)

FIGURE 6: The level spacing distribution (left panel) and integrated level spacing distribution (right panel) of the
quantum energy spectrum in the comparison with the Berry-Robnic distribution (magenta line) with vr and vc

extracted from results of the pseudoclassical analysis. Additionally, the red and black lines show the Wigner-Dyson
and Poisson distribution. Parameters: linear oligomer, vc = 0.8,vr = 0.2,N = 50,g = 0.8,J = 1−g.
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