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1. Introduction

Recently, topological insulators (TI), which is a new class of 
condensed matter with the dielectric gap in the bulk and gap-
less edge states, are attracting a lot of attention [1–7]. The 
edge states properties are of great attention because of their 
nontrivial properties [8–11]. For example, the TI without mag-
netic impurities are characterized by the absence of the back-
scattering of the edge states. The idea of topological protected 
edge states developed for solid-state physics was broaden to 
other systems, such as magnonic [12–14] and photonic crystals 
[15–17]. The investigation of the edge states are commonly 
carried out in the case of a semi-infinite system with only one 
surface. Generally, this approach appears to be sufficient to 
identify the energy and polarization characteristics. At once, 
the TI application in the micro- and nanoelectronic devices 
leads to the need of edge states properties invest igation in the 
case of the open borders in all the directions.

The additional interest in the fully opened topological sys-
tems is connected with the prediction of the Majorana state 
in the 1D systems with superconducting coupling [18]. These 
zero energy states, which are predicted to emerge on the ends 
of nanowires or vortices for thin films, are expected to mani-
fest non-Abelian quantum statistics [19]. The classification 
of topological phases for the case of noninteracting electrons 
was carried out in [20, 21]. In these papers, the authors con-
sidered the topological systems of a large size in order to be 
able to neglect the size effects.

At once, there are few studies of the edge states realization in 
small-size systems with open borders [22–29]. However, these 
studies show the appearance of size-effects in the TI and super-
conductors. The illustrative example of qualitative changing in 
properties of such systems induced by taking into account the 
open borders and finite system size was recently considered 
[22–24]. New lines in the parameter space corresponding to the 
presence of zero-energy modes were demonstrated in the case 
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The edge states properties of a finite-size 2D topological insulator (TI) with the open boundary 
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the vortex structure of the probability flux located near corners is found.
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of finite-size 1D models. The essential effect consists in the 
division of topological nontrivial phase, calculated in the case 
of the periodic boundary conditions, into the areas with the 
alternating fermion parity in the case of finite system with open 
borders. The zero-mode lines were shown to be the boundaries 
between the areas with opposite fermion parity. This leads to 
the presence of quantum phase cascade induced by external 
magnetic field in the case of quantum wires with the Rashba 
spin–orbit coupling and induced superconductivity. It is shown 
that this cascade manifests itself in the anomalous magnetoca-
loric effect behavior [23, 24].

In the case of 2D systems, the presence of two nonparallel 
edges leads to the appearance of the fermion path nonanaly-
ticity points on the edge. There are two research guidelines of 
influence of these points on the topological system properties. 
The first guideline is connected with recently formulated the 
higher-order topological insulators concept [30]. These sys-
tems are gapped both in the bulk and the first-order edge spec-
trum, but contain the states located at the corner between two 
edges of the system and characterized by energy in the gaps. 
The special interest to the second-order edge states is caused 
by the existence of the Majorana corner states [31, 32] in the 
finite 2D second-order topological superconductors, which 
are protected by the energy gap.

The second guideline is connected with possible modifi-
cation of the well-known edge states properties obtained in 
the case of the semi-infinite system with one open border 
[33]. The transition between the Majorana modes case and 
the chiral edge states case induced by the sides length ratio 
changing was shown for the 2D Kitaev model with the p -wave 
superconducting coupling. The same result was obtained for 
2D system with Rashba spin–orbit coupling and induced 
superconductivity [34]. It was shown that the Majorana modes 
mixing in the corners of the system lead to their collapse.

The influence of the fermion nonanalyticity points on the 
system transport properties was recently studied in [35]. The 
authors carried out the analytical investigation of the transport 
properties in the case of the ring-shaped device built from two 
segments: a trivial and topological superconductors. However, 
the authors pointed out that such a system can hardly be real-
ized in the experiment and should be replaced by square-
shaped device. The numerical calculations for this geometry 
of the device showed that, in spite of the fact that there were 
no qualitative changes in the obtained results, the presence 
of the corners leads to quantitative changes. In the case of 
the square-shaped wire with the Rashba spin–orbit coupling, 
the corners induce a complete reflection from the device with 
the spin–orbit characteristic length and the square side length 
coincidence [36].

This study is carried out in the network of the latter guide-
line and devoted to the investigation of modification of well-
known edge states properties in the case of finite-size 2D TI 
providing the presence of the fermion nonanalyticity points 
on its edges. This investigation is of great importance both for 
the experiment data interpretation, as well as for the search of 
new effects permitting the transport control in the nano-size 
devices. The calculation were performed in the framework of 
the Bernevig–Hughes–Zhang (BHZ) model.

2. Edge states properties of square-shaped 2D 
topological insulator

The BHZ Hamiltonian in the tight-binding approximation can 
be written as [37]

HBHZ = H0 + T + Tsp,

H0 = −ε
∑
fσ

c†fστzcfσ ,

T = −t
∑
〈 ff ′〉σ

c†f ′στzcfσ ,

Tsp = −iα
∑
fσ

[
σc†f+xστxcfσ + c†f+yστycfσ

]
+ h.c.,

c†fσ =
(

a†fσ , d†
fσ

)
.

 

(1)

Here, the summation over f  corresponds to the summation 
over the square sites, 〈 f ′f 〉 is summation over the nearest 
neighbors, f + x(y) is the site next to the f  in x(y) direction, 
τj—the Pauli matrix, σ = ±1 is the spin projection sign. The 
first term in the Hamiltonian is on-site energy of the s- and 
p -orbitals. The second term describes the hopping processes 
between orbitals of the same type. The last term describes the 
hopping processes between the orbitals of different types and 
takes into account the fact that the on-site spin–orbit coupling 
leads to the formation of px + iσpy orbitals and, consequently, 
the spin-dependent hopping phase factor [2, 38].

The eigenstates of the Hamiltonian (1) can be classified by 
σ, and may be written as

Ψσ =
∑

f

[
ufσa†fσ + vfσd†

fσ

]
|0〉. (2)

Square-shaped TI contains the edge states band with in-gap 
self energies as it does in the case of the periodic boundary 
conditions along one direction and open borders in another 
(cylinder geometry). The first difference from the latter case 
consist in the absence of degeneracy for the eigenstates with 
the same σ since they can not be independent any longer.

An important feature of BHZ model in the case of cylinder 
geometry is the connection between the spin projection of 
edge state and its velocity. As far as in the case of fully opened 
system the translational symmetry is absent in any direction, 
one should investigate the probability flux properties instead 
of velocity. In the tight-binding approximation [39], the 
comp onents of the probability flow vector on the site f  should 
be defined as

jx(y)( f ) = Im
(

u†
f+x(y)Ĥf+x(y),f uf

+ u†f Ĥf ,f−x(y)uf−x(y)

)
/�,

 
(3)

where u†
f = (u∗

fσ , v∗fσ) is the row vector, Ĥ  is an appropriate 
2 × 2 part of the Hamiltonian (1).

All the edge states in the square-shaped TI possess the 
probability flux circulating along the surface. The direction of 
this circulation depends on the spin projection σ and its value 
slightly differs from each other for different edge states. At 
once, there is a deviation for the edge states with energy level 
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in the middle of the gap. Such states are characterized by the 
appearance of the vortexes in the corners of TI. The circula-
tion direction of probability flux in the vortexes is opposite to 
that along the rest surface (figure 1).

These vortexes are connected with the non-monotonic edge 
states descent from the surface of TI into the bulk. As it was 
shown in [38, 40] this descent demonstrates the spatial oscil-
lations. The size of the vortex is defined by period of the oscil-
lations depending on the spin–orbit coupling constant α and 
the difference of the on-site energy ε for the s- and p -orbitals.

The presence of corners in the system leads to the depend-
ence of the edge states on-site amplitude spatial modulation 
on the edge state energy. The edge states with the energy in 
the middle of the bulk band gap tend to be localized in the 
corners of the square. The edge states electron density in the 
corners continuously decreases with the edge state self energy 
moving away from the middle of the bulk gap, and the edge 
state amplitude spatial modulation changes to the opposite 
case: it vanishes for the edge states with energy close to the 
edge of edge states band (figures 2 and 3). At once, the wave 

Figure 1. Typical probability flux spatial distribution in the corner of TI for the edge states with σ = +1 and different energies. The 
number of sites at the square side is N  =  40. The bottom bar displays the allowed energies. Shaded areas mark the bulk bands and the space 
between them corresponds to the edge states band.

Figure 2. Spatial distribution of the edge states wave function amplitude. Left: edge state with the energy close to the edge states band 
edge. Center: edge state energy is equal to the quarter of the gap size. Right: edge state in the middle of the gap. Top figures represent the 
distribution on the whole square, bottom figures correspond to the distribution along the square side. Number of sites at the square side is 
N  =  80. The bottom bar displays the allowed energies. Shaded areas mark the bulk bands and the space between them corresponds to the 
edge states band.

J. Phys.: Condens. Matter 32 (2020) 215301
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function amplitude at the middle of the square side remains 
almost the same for all the edge states. This feature should be 
expected to manifest itself in the transport properties of the 
square-shaped TI.

Commonly, it is useful to calculate the inverse participation 
ratio (IPR) [41, 42], which is defined as:

Iq(m) =

∑
f |Ψm( f )|2q

(∑
f |Ψm( f )|2

)q , (4)

where Ψm( f ) is the wave function with number m at the f  site 
and q is usually set to be q  =  2. The IPR is a constant for 
localized states (Iq  =  1 if state is precisely localized at one 
site) and is Iq = 1/Vq−1 for the extended states in the system 
with V  sites. As one can see in the bottom of figure 3, IPR well 
distinguishes the edge states and the bulk states and demon-
strates the localization of the edge states with energy in the 
middle of the gap. Nevertheless, it fails to reveal the opposite 
effect: the vanishing of wave function in the corners of the 
square for the edge states with the energy close to the edge of 
the bulk band. At the same time this effect will be significant 
for the transport properties of the square-shaped TI.

3. Transport properties of square-shaped  
topological insulator

In this section, an observable consequence of the spatial 
modulation of the edge state amplitude in finite 2D TI will be 
shown. The transport properties of the system can be calcu-
lated using the Landauer–Büttiker approach. In this approach, 
the Shroedinger equation  should be solved with the the 
Hamiltonian [43]

Figure 3. Top: wave function amplitude in the corners of the square 
(solid line) and at the middles of the square sides (dotted line) 
versus energy. Bottom: I2 (solid line) and I4 (dashed line) versus 
energy. ε = 3, t = −1.2, α = 0.3, N  =  80.

Figure 4. Transmission coefficient versus incident electron energy 
for the square-shaped TI device. Top: the contacts connected with 
the corners of square-shaped TI; Bottom: contacts connected with 
the middle of square sides. ε = 3, t = −1.2, α = 0.3, N  =  20.

Figure 5. Current-voltage characteristics of the square-shaped 
TI. The solid line corresponds to the contacts connected with the 
corners of the device, the dashed line corresponds to the contacts 
connected with the middle of square sides. Wiggles originate from 
limited number of sites N and the low-temperature limit and the 
curves will smooth out in the case of sufficient great N.
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Ĥ = ĤL + ĤLD + ĤBHZ + ĤRD + ĤR,

ĤL = tL
−1∑

n=−∞,σ

(
c†n−1σcnσ + c†nσcn−1σ

)
,

ĤR = tR
∞∑

n=1,σ

(
c†n+1σcnσ + c†nσcn+1σ

)
,

ĤLD = tLD

∑
σ

(
c†−1σafLσ + a†

fLσc−1σ

)
,

ĤRD = tRD

∑
σ

(
c†1σafRσ + a†

fRσc1σ

)
.

 

(5)

Here, ĤL,R is the 1D-contact Hamiltonian, ĤLD,RD describes the 
electron tunneling between contacts and the device, where afL,R 
means the annihilation operator on the device site directly con-
nected to the contacts. The approach assumes that the device 
has no other degrees of freedom except the electron ones.

The calculation of the transport characteristic reduces to 
the calculation of wave function in the electron scattering 
problem. This wave function can be written as

Ψ =

−1∑
n=−∞,σ

wnσc†nσ|0〉+
∞∑

n=1,σ

znσc†nσ|0〉

+
∑
nmσ

(
ufσa†fσ + vfσd†

fσ

)
|0〉,

wnσ = pσeikLn + rσe−ikLn, |p↑|2 + |p↓|2 = 1,

znσ = tσeikRn,

 

(6)

where the expansion coefficients describe the incident and 
scattering wave in the case of left contact and transmitted 
wave in the right contact. Here, pσ describes the incident elec-
tron spin polarization, and the vector kL,R has the measure of 
reciprocal interatomic distance.

The reflection and transmitting coefficient are defined by 
the reflecting and transmitting probability flux and incident 
flux ratio, correspondingly, as

R =
∑
σ

|rσ|2, T =
tR sin kR

tL sin kL

∑
σ

|tσ|2. (7)

The spatial modulation of the wave function amplitude 
along the square side leads to the features in the transport 
properties of TI with fully opened borders (figure 4). In the 
case of the contacts connected with the corners of the device, 
the width of the transmission coefficient peaks differs sub-
stantially for the different energies in the gap (figure 4 on the 
top). The peaks corresponding to the excitation of the edge 
states, which have the energy in the middle of the gap, are 
wide, while that for the edge states, which have the energy 
close to the edge states band edge, are vanishingly narrow. 
This effect appears due to the transmission dependence of the 
coefficient peaks width on the corresponding one-electron 
state wave function amplitude at the sites connected with the 
contacts. On the contrary, in the case of the contacts connected 
with the middle of the square sides, the transmission peaks 
width is the same for different edge states energies (figure 4 
on the bottom). It is connected with the weak wave function 

amplitude dependence on the edge state energy at the middle 
of the square sides.

The current through the device connected with the 1D con-
tacts in the Landauer–Bütticker approximation is given by

I = ILR − IRL,

ILR =
2e
L

∑
k

1
�

(
∂E
∂k

)
TLR(E) fL(E),

IRL =
2e
L

∑
k

1
�

(
∂E
∂k

)
TRL(E) fR(E),

 

(8)

where TLR and TRL are the left-to-right and right-to-left trans-
mission coefficients correspondingly, calculated with taking 
into account the additional term

ĤV =

−1∑
n=−∞,σ

eVLc†nσcnσ +

∞∑
n=1,σ

eVRc†nσcnσ , (9)

which the electric potential in the contacts. Here, 
fL,R(E) = f (E − µL,R) is the Fermi–Dirac distribution func-
tion. Passing from the summation on quasi-momentum to 
the integration over the energy, the expression for the current 
through the device takes the form [44]

I(VL, VR) =
2e
h

∫
dE [TLRfL(E)− TRLfR(E)] . (10)

Here, the coincidence of the transmission coefficients for the 
different electron spin is taken into account.

With the transmission coefficient being the differential 
conductivity in the case of weak electric fields, the different 
current–voltage characteristics can be obtained depending on 
the contacts connection mode. The current–voltage charac-
teristics is linear in the case of contacts connected with the 
middle of square sides, and it is significantly nonlinear for 
the contacts connected to the corner of the square-shaped TI 
(figure 5). The latter situation obtained in experiment could be 
wrongly explained as the density of the edge states depend-
ence on the in-gap energy. In fact, this effect appears due to 
the dependence of the edge states amplitude at the corners of 
the system on its energy position in the gap.

Figure 6. Current through the 2D TI versus gate voltage at 
V = 0.2 V . The solid line corresponds to the contacts connected 
with the corners of the device, the dashed line corresponds to the 
contacts connected with the middle of square sides. The origin of 
the wiggles is the same as on the figure 5.
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Such a nonlinear current–voltage dependence opens the 
possibility to control the current with the gate voltage (one 
can read in [45] and experimental realization in supplemental 
materials in [46]). The typical current dependence on the gate 
voltage is shown on the figure 6.

4. Conclusion

The edge states properties are investigated in the case of the 
2D TI with the fermion path nonanalyticity points on the edge 
arising in the fully opened geometry. The analysis was carried 
out in the tight-binding approximation in the framework of the 
BHZ model. It is shown that the bond between the edge state 
probability flux and its spin remains for the square-shaped TI 
in general. However, the presence of the fermion nonanalyti-
city points leads to the appearance of the probability flux vor-
texes located at the corners of the system for the edge states 
with the energy in the middle of the bulk band gap. The flux 
circulation in these vortexes is opposite to the general flux 
circulation direction.

Another consequence of the fermion nonanalyticity points 
is the edge states amplitude spatial distribution dependence on 
their energy. The edge state with the energy in the middle of 
the bulk gap tends to be localized in the corners of the 2D TI. 
The edge states band from the middle of the gap to its edges 
shows monotonic decreasing of the edge states amplitude at 
the corners and vanishing for the energy corresponding to the 
edge states band edge. The manifestation of this effect in the 
observable transport properties of the square-shaped TI was 
shown. So far as the wave function amplitude at the sites con-
nected directly with the contacts defines the corresponding 
transmission coefficient peak width, this width decreases from 
the middle of the bulk gap to its edges in the case of the con-
tacts connected with the corners, while it remains almost con-
stant both in the case of the contacts connected to the middle 
of the square sides and in the case of cylindrical geometry. 
This feature leads to the fundamentally nonlinear current-
voltage characteristics of the TI device. By turn, it opens the 
possibility to control the current with the gate voltage.
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Appendix. The effect of the parameters on the edge 
states properties of square-shaped TI

We have two energy parameters to vary in our model: the 
spin–orbit coupling constant α and the difference of the on-
site energy ε for the s- and p -orbitals. In the α � |t| limit the 
spin–orbit constant is responsible for the gap size ∆ ∼ α and 
the localization length of the edge states, which is Lloc ∼ |t/α| 
for the edge states with the energy in the middle of the gap. In 

Figure A1. Probability flux spatial distribution in the corner of TI for the edge states with σ = +1 and the energy in the middle of the 
gap in the case of small interception of s and p  initial bands ε = 4.4 and different spin-orbital coupling constant α. Left: α = 0.1, center: 
α = 0.2, right: α = 0.4. The number of sites at the square side is N  =  40.

Figure A2. Wave function amplitude in the corners of the square 
(solid line) and at the middles of the square sides (dotted line) 
versus energy. Top-left: ε = 3.0, α = 0.1; Top-right: ε = 3.0, 
α = 0.6; Bottom-left: ε = 2.4, α = 0.3; Bottom-right: ε = 4.4, 
α = 0.3. The number of sites at the square side is N  =  60.
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the same limit the on-site orbital splitting ε, which determines 
the interception of the initial s and p  bands, is responsible for 
the oscillation period of the edge states descending.

One can obtain a larger flux probability vortex size in the 
corner of the square, mentioned in the section  2, by taking 
ε → 4|t| (figure A1). In this case the size of such vortex is 
determined as:

L ≈ π

2
√

1 − |ε/4t|
. (A.1)

At the same time the spin-orbital constant effects in local-
ization of the edge states on the edge of the system, so the 
increasing of α leads to the suppression of the vortex and 
restoring of the ‘right’ direction of the probability flux in the 
corners (figure A1).

While the appearance of the vortex structure and its size 
in the probability flux of the edge state with the energy in the 
middle of the gap is sensitive to the parameters of the system, 
the effect of changing of edge state spatial distribution char-
acter with changing of its energy is insensitive. The electron 
density in the corners almost monotonically decrease along 
the edge states band from the middle of the bulk band gap to 
its edge, although it does not vanish in the case of rather large 
α (figure A2). At the same time the wave function amplitude 
in the corners differs for different parameter sets according 
to the spin–orbit coupling efforts to put the edge state ampl-
itude maximum on the site located on the edge, while the 
oscillations, defined by ε, attempt to move it away from the 
edge. It results in the different peak width in the dependence 
of transmission coefficients on incident electron energy for 
the square-shaped TI device (figure A3) for different sets of 
parameters. However, the qualitative effect consisting in the 

dependence of the width of the transmission coefficient peaks 
on the incident electron energy remains.
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