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Abstract
The 2D triangle-shaped C3-symmetric topological insulator with the chiral superconducting
coupling on the triangular lattice is investigated. While such a system cannot provide the
topologically protected corner excitations, we report the presence of the nontopological corner
excitations with energy value to lie in the first-order edge spectrum gap. Though these
excitations are not topologically protected, they appear for a rather wide range of the
parameters values and are robust against the boundary defects and weak disorder. We reveal
the presence of the Majorana corner states, which appear along the line in the parameter space.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, a novel class of condensed matter named higher-
order topological insulator (HOTI) was proposed [1]. These
systems are gapped both in the bulk and the first-order (con-
ventional) edge spectrum, but contain the states located at the
corner between two edges of the system and characterized by
the energy in the gaps. It should be noted that the edge states
arising on the domain walls between the regions with different
topological numbers on the surface of the system (the second-
order edge states) were investigated earlier in [2, 3]. As it was
done in the case of the conventional topological insulators,
the concept of the HOTI was broaden to the photonic [4, 5],
acoustic [6–8] and spintronic systems [9, 10].

The special interest to the second-order edge states is
caused by the existence of the Majorana corner states [11,
12] in the finite 2D higher-order topological superconductors
(HOTSC). The HOTSC help to solve one of the problems of
construction of the Majorana modes. One can hardly make a
purely 1D system in practice, while any degree of freedom in
the direction perpendicular to the main direction gives rise to
the gapless band. While the zero-energy excitations still exist

in such a system and separated from the bulk excitations with
the gap, they are not isolated from the other edge excitations
any longer. The another aspect of this problem is the chang-
ing of zero-mode edge states character from the Majorana-like
state to the chiral state with changing of the stripe length and
the width ratio [13, 14]. The Majorana corner states solve these
problems, because they are separated with the energy gap both
from the bulk and the first-order edge excitations. Addition-
ally, they are localized precisely in the corners of the system
and avoid spreading along the edges and consequently remain
the Majorana-like states.

The conventional method to construct the HOTSC is to
take the topological insulator and add the superconducting
coupling in such way, that the first-order edge excitations
become gapped with the different Dirac mass signs on the
adjacent edges (e.g. [11]). In this case, the corner between
the two adjacent edges becomes the domain wall and provides
the gapless second-order edge state, i.e. the zero-energy cor-
ner state. While there are a lot of square-shaped HOTI and
HOTSC investigations [15–19] and few studies of the cor-
ner states on the honeycomb lattice [20, 21], one can notice a
lack of the investigations of the Majorana corner states on the
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triangular lattice. If we consider the triangle-shaped HOTSC
on the square lattice, we can recognize two cases. The first one
is connected with the situation in which the Majorana corner
states appear only at two of the triangle corners [22]. The sec-
ond case corresponds the situation of appearance of one corner
state along with the gapless conventional edge mode [23]. The
topologically protected zero-mode corner states constructed
in the conventional way mentioned above appear always in
pairs [24]. As a result, the only way to construct them in the
odd-corner 2D systems is to break the spatial symmetries and,
consequently, to point the even number of corners in which
they appear.

Another way to construct the corner states was demon-
strated on the example of the Kagome lattice [6, 25, 26].
The investigated system at certain values of parameters in the
triangle-shaped geometry contains the decoupled sites in the
corners, providing three zero-mode corner states. These states
are stated to be protected by generalized chiral symmetry [6,
26] and appear at the values of parameters adiabatically con-
nected (without closing of the bulk gap or the first-order edge
spectrum gap) to this special parameter point. However, the
key features of this system are the tripartite lattice and the
absence of particle–hole symmetry. Consequently, it is useless
to construct the HOTSC and the protected Majorana corner
states. Besides the topological protection of the corner states
on the Kagome lattice was argued recently [27]. Moreover,
the authors of the latter investigation stated the absence of
topological protection of the zero corner modes in the chiral
C3-symmetric systems.

While the topologically protected corner states contended
to be forbidden in the triangle-shaped systems on the trian-
gular lattice without breaking of the symmetry, there are two
possibilities of study. The first possibility is connected with the
fact that there are another manifestations of nontrivial topology
besides the edge and corner states [24]. One of this manifes-
tations is the filling anomaly, namely, the impossibility of the
system to be gapped, symmetric and neutral at once. The pos-
sibility of the appearance of this anomaly in the C3-symmetric
2D system was predicted in study [28].

The second possibility arises from the fact that the absence
of the topologically protected edge states does not mean the
absence of the edge states (even gapless) at all. The edge states
appearing in the topologically trivial phase were detected in
the 1D wire with the spin–orbit Rashba coupling, the s-wave
superconducting coupling and applied magnetic field [29, 30].
The Majorana edge states were found in the trivial phase of 2D
topological superconductor with the chiral superconductivity
and 120◦ magnetic order [31, 32].

The nontopological edge states have two disadvantages.
Firstly, in contrast to the topologically protected edge states
there is no well known bulk-boundary correspondence for the
nontopological edge states, so the conditions of their appear-
ance must be investigated directly. Secondly, their appearance
can depend on the geometry of the edge. At the same time,
the gapless topologically protected edge states are not very
‘protected’. They can be removed both by closing of the abso-
lute bulk gap without changing of the topological index of the

system [33] and by the little perturbation, which brakes the
system symmetry and changes the topological class and, con-
sequently, the topological index of the system without closing
the bulk spectrum gap [34]. Thus, it is important to investigate
the nontopological corner states in the triangle-shaped sym-
metric system in the absence of the topologically protected
corner states.

This study is devoted to the investigation of the corner
states in the triangle-shaped 2D system on the triangular lat-
tice. Taking into account the aforesaid circumstances, this
investigation seems to be important both for the theory of the
second-order edge states, as well as for their possible exper-
imental implementations. The calculations were performed
for the case of the two-band topological insulator with chiral
superconductivity.

2. Topological insulator with chiral
superconductivity on the triangular lattice

Following the authors [11], we consider the two-band model
with the Rashba spin–orbit induced hybridization and the
nearest-neighbour singlet superconducting coupling in the
tight-binding approximation with the Hamiltonian

H = H0 + T +Hso +Hsc,

H0 = −μ
∑

fσ

c†fστ0c fσ +Δε
∑

fσ

c†fστzc fσ ,

T = t
∑
〈 fm〉σ

c†fστzcmσ ,

Hso = iλ
∑

〈 fm〉σσ′

(
�σσσ′ × �d fm

)
z
c†fστxcmσ′ ,

Hsc =
∑
〈 fm〉

Δ fm

(
a†

f ↑a
†
m↓ + b†

f ↑b
†
m↓

)
+ h.c.

c†fσ =
(

a†
fσ , b†

fσ

)
.

(1)

Here, the summation over f and m corresponds to the summa-
tion over the lattice sites, 〈 fm〉 is summation over the nearest-
neighbours, �d fm is the unity vector along the direction from
site m to site f; μ is the chemical potential; σj, τ j are the Pauli
matrices in spin and two-band spaces; a†

fσ, b†
fσ are the creation

operator of the electron in different bands (we will refer to
them as upper and lower bands correspondingly) with the dif-
ference between the on-site energy values Δε. The spin–orbit
coupling term is induced by the electric field perpendicular to
the system plane, which can originate from the environment,
such as the presence of substrate or heterostructure [35], or be
applied and controlled directly [36, 37]. While the spin–orbit
term does not preserve the electron spin projection sz, the
self-excitations of the (1) still can be classified by σ

ασ =
∑

f

(
u fσa fσ + v f σb f σ + w f σa†

f σ + z fσb†
fσ

)
. (2)

We consider the case of the chiral d + id supercon-
ducting order parameter, which couples electrons on the
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Figure 1. Chiral d + id superconductivity on the triangular lattice.
Left: the directions of Δj (3) superconducting coupling. Right: the
signs of Re(Δk) and Im(Δk) [38]. Grey lines mark the edge of the
Brillouin zone of the triangular lattice, the dots mark the nodal
points of Δk (4).

nearest-neighbours and corresponds to the triangular lattice
symmetry (figure 1):

Δ fm = Δ j = Δ1 e2πi( j−1)/3, j = 1, 2, 3 (3)

The bulk excitation spectrum of the Hamiltonian (1) is
given by

Ek =

√
|Δk|2 +

(
μ±

√
|tk|2 + |λkσ |2

)2
,

tk = Δε+ 2t

(
cos kx + 2 cos

kx

2
cos

ky

√
3

2

)
,

λkσ = 2iλσ

(
sin kx + sin

kx

2
cos

ky

√
3

2

)

− 2
√

3λ sin
ky

√
3

2
cos

kx

2
,

Δk = 2Δ1

(
cos kx − cos

kx

2
cos

ky

√
3

2

)

− 2i
√

3Δ1 sin
kx

2
sin

ky

√
3

2
.

(4)

Contrary to the case studied in [11], Δk has the 2D representa-
tion in the case of the chiral d + id superconducting coupling,
and so it has the nodal points like the spin–orbital coupling
instead of the nodal lines (figure 1).

In the absence of the superconducting coupling, the Hamil-
tonian (1) describes the chiral topological insulator. The spin
Chern number [39] of the system is given by

Cs = 1, −6t < Δε < 2t,

Cs = 2, 2t < Δε < 3t,
(5)

In the presence of the chiral superconducting coupling and
the absence of the spin–orbit hybridization, the system is a
topological superconductor [40, 41] with the opposite Chern
numbers for the independent upper and lower bands:

C+ = 2, −3t +Δε < μ < 6t +Δε

C− = −2, −6t −Δε < μ < 3t −Δε,
(6)

Figure 2. The topological phase diagram of the topological
superconductor on the triangular lattice. In the absence of the
spin–orbit coupling, the system splits into two independent
subsystems for upper and lower bands providing the topologically
protected edge excitations with C± = ±2. The spin–orbit coupling
does not change the topological properties of the trivial regions and
the regions with C+ + C− = ±2, but since it mixes the upper and
lower bands, it makes the interception region topologically trivial
with C = 0. This opens the possibility of appearance for the corner
excitations.

Note that though there are two sets of independent topologi-
cally protected excitations from the upper and lower bands at
the interception of the conditions (6), the Chern number of the
whole system is C+ + C− = 0. This makes this region to be
sensitive to the hybridization between the bands.

The topological phase diagram of the topological insulator
with chiral superconductivity on the triangular lattice remains
almost the same as that without account for the spin–orbital
coupling (figure 2). The regions, where in the absence of
spin–orbit coupling both C± = 0, remain trivial in the pres-
ence of the spin–orbit hybridization. The regions correspond-
ing to one of the C± = 0 along with C∓ 
= 0 preserve the
topologically protected gapless edge states with the Chern
number C = ±2. Thus, the both of these cases are not interest-
ing in the context of the corner states investigation. The main
difference between the case of absence of the spin–orbital cou-
pling and the case of its presence is that the interception region
with C = 0 does not provide the topologically protected edge
states any more, due to the spin–orbital coupling mixes the
excitations from the upper and lower bands. However, this
region contains the area, where the gapless edge excitations
exist, and the area without them. So, this region is of the main
interest of the research.

3. Nontopological corner excitations in the
triangle-shaped system

We numerically calculated the self-excitations of the Hamil-
tonian (1) in the case of the triangle-shaped geometry in the
region of main interest, mentioned in the previous section
(figure 3). Depending on the different values of the model
parameters, one of three cases is realized. In the first case,
the system contains the gapless edge excitations, which are
not topologically protected. The regions of the parameters for
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Figure 3. The parameter diagrams of the topological insulator with the chiral superconducting coupling. Left: Δ1/t = 0.5, right: Δε = 0.
The red area corresponds to the presence of the gapless first-order edge excitations at the system. The blue area shows the area of parameters
for which there are corner excitations with the energies to lie inside the first-order edge spectrum gap. The orange areas marks the case, in
which the conventional edge excitations are gapped, but there are no corner excitations inside the gap. White lines mark the parameters at
which the Majorana corner states appear. The spin–orbit coupling parameter is λ = 0.5t.

Figure 4. (a) Inverse participation ratio I4 (7) of the self-excitations of the triangle-shaped topological insulator with chiral
superconductivity. Bold blue line corresponds to the corner excitation, the vertical line marks the value of the chemical potential μ at which
the corner excitation energy value crosses the bottom of the first-order edge excitations spectrum. (b) Spectrum of the system in the
triangle-shaped geometry with μ = 0. Dots mark the first-order excitations, triangles correspond to the corner excitations, grey regions mark
the energy values, which lie inside the first-order edge excitations spectrum. (c)–(e) The spatial distribution of the normalized amplitude of
the excitation for different values of μ, marked with dots in (a): at μ = 0 it is the in-gap corner excitation, at μ = 0.9t it is the corner
excitation with the energy value to lie outside the first-order spectrum gap, at μ = 1.5t it is the conventional edge excitation with the
tendency to be localized in the corners of the limited system [46]. Here, Δ1/t = 1, Δε = 0, λ = 0.5t.

which this case arises are connected with the regions with non-
trivial topological number. In the second case, the system pro-
vides the conventional gapped edge excitations and the in-gap
corner excitations. These excitations are three-order degener-
ated since all of three corners in the system are equivalent. In
the third case, the conventional edge excitations are gapped
and there are no the in-gap excitations.

In the 1D system (and the system that can be reduced to 1D),
there is one-to-one correspondence between the state character
and its energy. If the state energy value lies in the bulk gap, it
is an edge state. If its energy value lies out of the bulk gap, it is
always a bulk state. In the case of 2D systems it works only in

one direction. The states with the energy value lies inside the
absolute gap to be the edge states (or the corner states, if there
energy is in the first-order edge spectrum gap), but they still
can be edge (corner), if their energy value lies out the absolute
gap. To distinguish the localized excitations from the delocal-
ized ones, it is useful to calculate the participation ratio [42]
or, more commonly, the inverse participation ratio (IPR) [43,
44], which appears to be powerful to reveal the edge states in
the topological insulators [45]:

Iq(m) =

∑
f (Am( f ))q(∑
f Am( f )

)q , (7)
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where Am( f ) is the amplitude of the excitation with number
m at the f site and q is usually set to be q = 2. The IPR is a
respectively large for the localized excitations (Iq = 1, if the
excitation is localized precisely at one site) and tends to be
Iq = 1/Vq−1 for the extended excitations in the system with V
sites.

We used the quantity q = 4 instead of common q = 2,
because the last one was not enough to distinguish the corner
states from the first-order edge states clearly according to the
limited size of the system. The I4 dependence on μ is demon-
strated in the figure 4. One can see that the self-excitation has
the maximum I4 and in-gap energy at μ = 0 and is localized
well at the corners of the triangle. This self-excitation remains
a second-order excitation even after its energy value crosses
the bottom of the first-order edge spectrum. The small I4 peaks
arise owing to the effect of the presence of corners on the first-
order edge excitations. This effect consists in the tendency of
the first-order edge excitations with the energy value lies deep
inside the bulk gap to localize in the corners [46]. They can
be recognized at the change of the system size. Indeed, as
far as they are still the edge states, the IPR is decreased at
the increase in the system size, while the IPR of the corner
excitation remains unchanged.

Besides the corner excitations with nonzero energy, we
reveal the presence of the Majorana corner states in the system
under consideration at the certain parameters (white line in the
figure 3). Contrary to the parameter lines in [30, 47, 48], the
line of parameters for which Majorana states appear in our case
remains independent on the system size (for not very small sys-
tems) and, consequently, is not a size effect. The presence of
the Majorana corner states in the system is robust against the
disorder or defects, but the parameters at which they appear
are sensitive to the disorder and defects in the corners of the
system (see appendix A for details).

Thus, we demonstrate that even in the absence of the
topologically protected corner excitations with the energies
localized precisely at zero, the studied system demonstrates
the nontopological corner excitations for rather wide area
of parameters, as well as the Majorana corner states. Nev-
ertheless, these corner excitations are not topologically pro-
tected, they demonstrate robustness under boundary defects
and disorder.

4. Conclusion

The triangle-shaped two-band topological insulator with the
Rashba spin–orbital coupling and chiral superconducting
order parameter is investigated. It is shown that though the
system cannot provide the topologically protected corner
excitations, it still can provide the corner excitations of non-
topological character with energy value lies in the first-order
edge spectrum gap. It was revealed that despite the fact these
excitations are not protected, they appear at rather wide ranges
of parameters and are localized well in the corners of the
system. As their energies are not pinned at zero value, they are
changed with changing of the parameters. The revealed exci-
tations preserve second-order character even after its energy
value crosses the bottom of the first-order edge excitations

spectrum. The parameters, for which the corner excitations
arise, correspond to the phase of the two-band topological
superconductor without the inter-band hybridization provid-
ing the topologically protected conventional edge excitations
with the zero full Chern number. The revealed corner excita-
tions demonstrate robustness against the boundary defects and
weak disorder.

Additionally, it is shown that even in the absence of the
topologically protected Majorana modes appearing at the
domain walls between the edges, the triangle-shaped symmet-
ric system still can provide well localized Majorana corner
states at the certain parameters, which form the line in the
parameter space.
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Appendix A. Robustness of the corner excitations
in the 2D triangle-shaped topological insulator
with chiral superconductivity on the triangular
lattice

The topologically protected edge excitations are robust against
the defects and perturbations, which preserves the symmetry
protecting the edge excitations and remains the gap open. As
far as the corner excitations revealed in the triangle-shaped
topological insulator with chiral superconductivity on the tri-
angular lattice are not topological, we have to investigate their
robustness under perturbations.

A.1. Boundary defects

Firstly, we investigate the effect of the boundary defect, located
far from the corners, on the self-excitations of the system
(figures A1(a)–(c)). As can be expected, the corner excitations
remains almost insensitive to removal or addition of the site on
the boundary. At the same time there appear several excitations
with the in-gap energy, localized at the defect.

Secondly, we examine the influence of the defect consisting
in removal (figures A1(d)–(f)) or attaching (figures A1(g)–(i))
of sites in the corner of triangle on the corner excitations of
the investigated system. Just as in the previous case, the exci-
tations in the corners far away from the defect remains insensi-
tive. The corner excitations in the defected corner remains, but
slightly change their shape according to the shape of defect.
Additionally, the number of excitations corresponding to the
defected corner increases.

In both cases the revealed corner excitations demon-
strate their robustness against small boundary defects, and
only slightly change according to the defect shape, if the
defect locates in the corner or near it. If the defect is large
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Figure A1. Spectrum (a), (d) and (g) and normalized amplitude (b) and (c), (e) and (f) and (h) and (i) of the excitations in the case of
triangle-shaped system with boundary defect, located far from the corners (a)–(c), and with boundary defect, located in the corner and
consisted in removing (d)–(f) or attaching (g)–(i) a site. The blue dots on the panels (a), (d) and (g) corresponds to the corner excitations (b),
(e) and (f) and (h) and (i), while red dots mark the excitations located at the defect (c). Here, Δ1/t = 1, Δε = 0, λ = 0.5t, μ = 0.

enough, the excitations, located at the corners of the defect,
appear.

The parameter lines, at which zero modes appear, are also
robust under defects, which are located far from the corners.
At the same time there can appear new parameter lines, at
which zero modes located at the defect realize. In the case
of the defect, located at the corner, the zero energy excitation
corresponding to this corner remains but appears at another
parameter values.

A.2. Disorder

To examine the robustness of the revealed corner excitations
against the disorder following [49] we use the additional term
to the Hamiltonian (1):

Hdo =
∑

fσ

V f c
†
fστ0c fσ , (A.1)

where Vf is a random on-site disorder potential with uniform
distribution for |Vf| < V.

Series of numerical calculations demonstrates that small
disorder remove the degeneracy of the corner excitations, but
remains their form almost unchanged (figures A2(a) and (b)).
Moreover, rather large disorder of V = 1.5t, which force the
first-order excitations to demonstrate the tendency to Ander-
son localization, remains almost unchanged even the corner
excitations with energy outside of the conventional edge gap
(figures A2(c) and (d)).

Just as it was in the case of the defect, located in the cor-
ner, the zero energy excitations remain in the case of dis-
order, but the chemical potential μ, at which they appear,
can significantly change and become different for the exci-
tations in the different corners. The shift for the zero-mode
parameter line is obviously connected with the disorder poten-
tial values in the corner (especially on the corner site), and
is vanishing, if this potential take the zero value at the cor-
ner site. Thus one have to prevent the disorder and defects
at the corners of the triangle to find the zero-modes at the
lines of parameters, revealed in the main text. At the same
time, the parameters, at which the non-zero corner excita-
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Figure A2. Typical spectrum and normalized amplitude of the corner excitations for the case of small disorder V = 0.5t and μ = 0 (a) and
(b) and for the case of large value of disorder V = 1.5t and μ = 0.9t (c) and (d). Blue circles in the panels (a) and (b) marks well localized
corner excitations, grey regions mark the energy values, which lie inside the first-order edge excitations spectrum without disorder. Here,
Δ1/t = 1, Δε = 0, λ = 0.5t.

tions appear inside the gap, slightly depend on the defects or
disorder.
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