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Abstract
Two-dimensional materials such as hexagonal boron nitride (h-BN) and graphene have attracted
wide attention in nanoelectronics and spintronics. Since their electronic characteristics are
strongly affected by the local atomic structure, the heteroatom doping could allow us to tailor the
electronic and physical properties of two-dimensional materials. In this study, a non-chemical
method of heteroatom doping into h-BN under high-energy ion irradiation was demonstrated for
the LiF/h-BN/Cu heterostructure. Spectroscopic analysis of chemical states on the relevant
atoms revealed that 6% ± 2% fluorinated h-BN is obtained by the irradiation of 2.4 MeV Cu2+

ions with the fluence up to 1014 ions cm−2. It was shown that the high-energy ion irradiation
leads to a single-sided fluorination of h-BN by the formation of the fluorinated sp3-hybridized
BN.

Supplementary material for this article is available online

Keywords: hexagonal boron nitride, heteroatom doping, high-energy ion irradiation, near edge
x-ray absorption fine structure, ab initio calculation

(Some figures may appear in colour only in the online journal)

1. Introduction

Hexagonal boron nitride (h-BN) and graphene which belong
to the so-called graphene’s group in two-dimensional (2D)
materials are expected to be applied for nanoelectronics and
spintronics devices due to the novel properties like chemical
and mechanical stability, quantum electronic transport,

extremely high mobility of the charge carriers and the
superior insulating property [1–8]. These advantages are
connected to one of the abilities of h-BN and graphene in
which single-atom layer films with large area and high crys-
tallinity can be synthesized by chemical vapor deposition
[8–11]. In recent years, the atomic modification beyond the
chemical process attracts increasing interests, which can lead
to the controlled functionalization of 2D materials through the
fabrications of heterostructures, heterojunctions and even
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circuits in a single atomic layer sheet [12, 13], where pristine
and modified regions of 2D materials are adjusted together. It
is expected that heteroatom doping into h-BN provides
superior functionalization that can be used not only for fun-
damental study but also for technological applications, e.g.
controlling the electronic and optical properties by energy
bandgap engineering, the application for the biocompatible
adsorbent which works under extreme conditions by addi-
tionally introducing the water solubility, and so on [14–19].
Atomically modified graphene derivatives, such as hydro-
genated graphene (graphane) [20] and fluorinated graphene
(fluorographene) [21–25], have been successfully fabricated
so far. In contrast, there have been scarce reports on the
heteroatom doping into h-BN. It is only recently that a few
papers about fluorinated h-BN have been published with the
description of successful fluorination of multi-layered h-BN
sheets by chemical routes [15, 17, 26]. Species of thermo-
chemically dopable heteroatoms are limited in the case of h-
BN, and in addition the heteroatom doping into the single-
atomic layer with large area over a wide concentration range
has not been realized in the reported method. The lower
crystallinity and uniformity of the film prevent the elucidation
of the atomic structure of doped h-BN which is necessary for
functional design such as the energy bandgap and adsorption
properties.

Here, we demonstrate a non-chemical route of atomistic
modification of h-BN by employing high-energy ion irradia-
tion. In the high-energy ion irradiation with energies
exceeding several MeV, the electronic excitations are domi-
nant compared with the energy transfer by nuclear collisions.
It has been reported that the electronic excitations and/or
ionizations are influential on breaking of the C-C bonds in
graphene [27] and on transformation of the B–N bonds from
sp2 to sp3 [28]. It is expected that, by applying high-energy
ion irradiation of the bilayer structure composed of 2D mat-
erial and a cover layer consisting of heteroatoms, new che-
mical bonds can be formed between the 2D material and the
heteroatoms during the relaxation process after the electronic
excitation at the interface region of the heterostructure. Given
this background, we analyzed the fluorination process of
monolayer h-BN by high-energy ion irradiation of the h-BN-
based heterostructure in the present study. Near edge x-ray
absorption fine structure (NEXAFS) spectroscopy supported
by ab initio calculations successfully revealed that highly
fluorinated h-BN can be synthesized superior to the defect
formation by high-energy ion irradiation of the LiF/h-BN
heterostructure. The distinct advantage of this technique is to
open a general way to the functionalization of various 2D
materials.

2. Method

2.1. Materials and experimental procedure

Figure 1 shows a schematic representation of the expected
atomic reaction process through ion irradiation in this study.
h-BN specimens were synthesized on polycrystalline Cu foils

by low-pressure chemical vapor deposition in a custom-
designed quartz tube furnace with a base pressure of
2×10−6 Pa. The growth procedure of h-BN is as follows.
Cu foils were introduced into the tube furnace and heated up
to 1000 °C in high vacuum (2×10−5 Pa). Hydrogen and
argon gases were introduced into the furnace with pressures
of 20 Pa and 50 Pa for 120 min, respectively, to remove the
surface oxides from the Cu foil. Subsequently, h-BN was
grown by exposing the Cu surface to the gas-phase reaction
products of ammonia borane, including borazine vapor and
hydrogen, with a pressure of 5 Pa in addition to the hydrogen
and argon gases. The reaction products were obtained by
heating ammonia borane at about 150 °C in a vacuum vessel
connected to the tube furnace with a needle valve [29]. The
generation of borazine was confirmed by quadrupole mass
spectrometer (MKS, VAC-CHECK). After the h-BN growth,
parts of the specimens were introduced to an ultrahigh
vacuum chamber and a 100 nm thick LiF film was deposited
on the surface of each h-BN/Cu specimen kept at room
temperature with a Knudsen cell. The deposition rate of LiF
was 0.5 nmmin−1. LiF was adopted as the source of F atoms
due to its water solubility, which allows removal of the LiF
layer by water-rinsing after the ion irradiation. The LiF/h-
BN/Cu specimens prepared were irradiated with 2.4 MeV
63Cu2+ ions at room temperature using a tandem-type accel-
erator at the Research Institute for Applied Mechanics
(RIAM) in Kyushu University. The loss of the kinetic energy
of the Cu ions by passing through the LiF layer is calculated
to be 0.2 MeV using the SRIM code [30]. The Cu ion fluence

Figure 1. Schematic representation of atomic reaction process
through ion irradiation. Red and purple spheres correspond to atomic
nucleus and electrons, respectively.
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was varied from 1013 to 1014 ions cm−2. The electronic states
and the atomic structure of h-BN in ion-irradiated LiF/h-BN/
Cu specimens were analyzed by x-ray photoelectron
spectroscopy (XPS), low-electron energy loss spectroscopy
(LEELS) and NEXAFS spectroscopy after removing the LiF
layer by rinsing with water. The XPS measurements were
carried out with a hemispherical energy analyzer (VSW
CLASS 100) using an Al Kα (1486.6 eV) x-ray source (PSP
TX400/2). The LEELS measurements were performed with a
double-pass cylindrical mirror analyzer (PHI 15-255G). The
B and N K-edge NEXAFS measurements were carried out at
the BL-8 of the SR center in Ritsumeikan University. The
partial electron-yield method was employed to obtain the
NEXAFS spectra. For comparison, the similar ion-irradiation
and spectroscopic experiments were also performed in the h-
BN/Cu specimens without deposition of the LiF layer.

2.2. Theoretical calculation

All calculations of the atomic structure were performed using
DFT within the Perdew–Burke–Ernzerhof (PBE) functional
[31]. We used the projector augmented wave method [32]
approximation with the periodic boundary conditions imple-
mented in the Vienna ab initio simulation package [33–36]. A
plane-wave energy cut-off was set to 400 eV and a vacuum
space of ∼15 Å was used to avoid interactions between
neighboring layers. To calculate the equilibrium atomic struc-
tures the Brillouin zone was sampled according to the Mon-
khorst–Pack scheme [37] with a 6×6×1 grid in the k-space.
The structural relaxation was performed until the forces acting

on each atom became less than 10−4 eV/Å. NEXAFS spectra
were calculated with the electron spectroscopy analysis (ElSA)
code [38, 39] under the assumption of the final-state one-
electron approximation. The differential charge density maps
were obtained with VESTA code [40].

3. Results and discussion

Figure 2 shows the B 1s, N 1s, Cu 2p, and F 1s core level
XPS spectra of pristine h-BN/Cu (black), ion-irradiated LiF/
h-BN/Cu (red) and h-BN/Cu (grey) with the fluence of
1014 ions cm−2. It is found that the full-width at the half
maximum (FWHM) of the B 1s and N 1s peaks is broadened
after the ion irradiation: the FWHM of the B 1s peak is 1.9 eV
in pristine h-BN/Cu, 2.5 eV in ion-irradiated LiF/h-BN/Cu
and 2.1 eV in ion-irradiated h-BN/Cu. The FWHM of the N
1s peak is 1.9 eV in pristine h-BN/Cu, 2.7 eV in ion-irra-
diated LiF/h-BN/Cu and 2.8 eV in ion-irradiated h-BN/Cu.
It is also found that the peak position of B 1s in ion-irradiated
LiF/h-BN/Cu is 0.3 eV higher compared with those of
pristine h-BN/Cu and ion-irradiated h-BN/Cu. These chan-
ges indicate a modification of the chemical states of h-BN by
the ion irradiation. The ion irradiation of h-BN/Cu leads to
another impact on h-BN. The B 1s peak intensity of the ion-
irradiated h-BN/Cu is approximately 0.8 times smaller than
that of pristine h-BN/Cu, indicating a preferential desorption
of B atoms by the bond breaking induced by the ion
irradiation. In contrast, the B 1s peak intensity of the

Figure 2. (a) B 1s, (b) N 1s, (c) Cu 2p and (d) F 1s core level XPS spectra of pristine h-BN (black), 1014 ions cm−2 irradiated LiF/h-BN (red)
and 1014 ions cm−2 irradiated h-BN (gray). The LiF layer was removed by water-rinsing before XPS measurements.
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ion-irradiated LiF/h-BN/Cu shows no significant change
compared with that of pristine h-BN/Cu, but the peak is
broadened as described above. Differences also arise in the
Cu 2p core level spectra after the ion irradiation. In the Cu 2p
spectra of ion-irradiated LiF/h-BN/Cu and h-BN/Cu, addi-
tional peaks appear around 943 eV. Also, the FWHM of the
Cu 2p3/2 peak is broadened from 2.0 eV in pristine h-BN/Cu
to 2.6 eV and 3.4 eV in ion-irradiated LiF/h-BN/Cu and
h-BN/Cu, respectively. The broadening of the Cu 2p3/2 peak
can be attributed to the superposition of the peaks due to
metallic Cu and Cu oxidized, such as Cu2O and CuO, with
slightly different binding energies [41]. The small peak at 943
eV is also attributed to Cu oxides [41]. Since these changes
are remarkable in ion-irradiated h-BN/Cu as compared with
ion-irradiated LiF/h-BN/Cu, it can be considered that in
the h-BN/Cu specimens without the LiF layer the Cu foil
underlying h-BN is easily oxidized after the ion irradiation
due to the introduction of a considerable amount of vacancies
in h-BN by the desorption of B atoms under the irradiation. In
LiF/h-BN/Cu, the impact of the ion irradiation is different
from that in h-BN/Cu. Figure 2(d) shows the F 1s core level
spectrum of ion-irradiated LiF/h-BN/Cu after the removal of
the LiF layer by water rinsing. The F 1s emission is seen in
the spectrum and the peak is located at 686.7 eV, which is
different from that of LiF (684.9 eV) [42]. It is also found that
the B 1s and N 1s peaks in figures 2(a) and (b) become
asymmetric towards higher binding energies. The similar
additional feature has been observed in the C 1s spectrum of
fluorinated graphene [25]. These results suggest the fluor-
ination of h-BN in LiF/h-BN/Cu by the high-energy ion
irradiation. It is calculated that the 1014 ions cm−2 irradiation
of LiF/h-BN/Cu causes 6±2% fluorination from the ana-
lysis of the peak intensity ratio between N 1s and F 1s. The F
1s peak position in ion-irradiated LiF/h-BN/Cu (686.7 eV) is
rather comparable with that in fluorinated BN (687.5 eV)
fabricated by the chemical route [26]. This also supports the
fluorination of h-BN in ion-irradiated LiF/h-BN/Cu. In
contrast to ion-irradiated h-BN/Cu without the LiF layer,
the introduction of vacancies is restricted in ion-irradiated
LiF/h-BN/Cu, since no decrease in the peak intensity of the
B 1s spectrum and no change in the shape of the Cu 2p
spectra are observed in the figures.

After the determination of the presence of fluorinated
h-BN in LiF/h-BN/Cu, we proceed to discuss its atomic
structure. Figure 3 shows the B ((a) and (b)) and N ((c) and
(d)) K-edge NEXAFS spectra of ion-irradiated h-BN/Cu and
LiF/h-BN/Cu. The incidence angles of x-ray beams to the
surface are set to 30° ((a) and (c)) and 90° ((b) and (d)),
respectively. The peak α is assigned to the excitations of B 1s
and N 1s→π*, respectively. The peak β and γ are assigned
to the excitations of B 1s and N 1s→σ*, respectively. It is
found that the intensity of the peak α is larger at the grazing
incidence (30°), while the intensities of the peaks β and γ are
larger at the normal incidence (90°). This indicates that h-BN
is oriented along the surface plane. In ion-irradiated h-BN/Cu
(orange), a small peak at around 192.2 eV (peak i) and an
intense peak at 398.2 eV (peak ii) arise in the B and N K-edge
spectra, respectively. Although the appearance of the intense

peak such as peak ii in the N K-edge spectrum has not been
experimentally reported for h-BN and its derivatives, the
above spectral features are similar to those of the calculated
NEXAFS based on ab initio modeling of h-BN which con-
tains point defects with H passivation of O at the B site [43].
Since the structure of their theoretical model is different from
that of our specimens (monolayer h-BN/Cu), we have
carried out ab initio calculations of NEXAFS spectra based
on the modified h-BN/Cu by replacing B atom with O atom
(figure S1 is available online at stacks.iop.org/NANO/31/
125705/mmedia). The calculated NEXAFS spectra in figure
S1 reproduce well the following spectral characteristics; the
energy positions of the peaks α, β and γ, the intensity
decrease of the peaks β and γ and the presence of peak i as
shown in figure 3(a). In contrast, the intense peak ii in the N
K-edge spectrum of ion-irradiated h-BN/Cu is not reproduced
in the calculation. This is presumably due to the much lower
concentration of the substituted O atom at the B site in h-BN
in the theoretical model than in the experimental sample,
which is deduced from the correlation between the ion flu-
ence and the intensity of peak ii (see figure S2). The
decrease of the amount of B atoms with the increasing of the
ion fluence obtained by the XPS measurements (figure 2(a))
supports the above consideration, whereas the incorporation
of O atoms is unable to be detected by XPS due to the
superimposition of the several intense emissions from the
oxidized Cu substrate in the O 1s spectrum (not shown). It is
also found that the incident angle dependence of the inten-
sity of peak ii in the N K-edge spectrum is much weaker
compared with that of the peaks α, β and γ. This may be
attributed to the deviation of the O atom positions from the
basal plane of h-BN. From these results, it can be said that
the ion irradiation of h-BN/Cu without the LiF layer causes
the efficient introduction of defects at the B site in h-BN.

NEXAFS spectra of ion-irradiated LiF/h-BN/Cu in
figure 3 show the different features from those of ion-irradiated
h-BN/Cu. In the B K-edge spectrum, a peak (iii; 192.2 eV)
appears at higher photon energies than the peak α (figure 3(a)
inset). In the N K-edge spectrum, an intense peak (iv;
398.5 eV) appears at lower photon energies than the peak α,
which resembles to the NEXAFS spectrum of ion-irradiated
h-BN/Cu. However, the peak position and the peak intensity
are lower compared to the spectrum of ion-irradiated h-BN/Cu
(figure 3(c) inset). In addition to these features, the peaks β and
γ are broadened in the spectra of ion-irradiated LiF/h-BN/Cu
with the fluence higher than 5×1013 ions cm−2. The features
of the NEXAFS spectrum in ion-irradiated LiF/h-BN/Cu are
inconsistent with those of the experimentally and theoretically
obtained NEXAFS spectra in h-BN with various types of
defects, such as C and introduced vacancies [43–45]. It can be
considered that peaks iii and iv in the B and N K-edge spectra
are caused by the transition from sp2 to sp3 bonding in h-BN
based on the analogy from the similar spectral features in h-BN
containing a mixture of sp2 and sp3 bonding [45]. One may
suppose that the ion-irradiation of LiF/h-BN/Cu causes the
similar changes in the atomic structure of h-BN as ion-irra-
diated h-BN/Cu. However, the atomic structure of h-BN in
ion-irradiated LiF/h-BN/Cu is considered to be different from
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that in ion-irradiated h-BN/Cu because differences are seen
between the intensity ratios of peak i to peak ii and peak iii to
peak iv, and between the energy positions of peak ii and peak
iv. In the similar way, the intensity ratio between the B 1s and

N 1s peaks is also different for ion-irradiated LiF/h-BN/Cu
and ion-irradiated h-BN/Cu (figure 2). With further con-
sideration of the adsorption of F atoms observed by XPS
(figure 2(d)), it can be considered that the sp3 bonding state is
originated from the formation of chemical bonding of F atoms
to h-BN (formation of fluorinated BN). It is also found that the
strong incident angle dependence of the intensity of the peak α
is seen even after the 1014 ions cm−2 ion irradiation, which
indicates a scarce change in the orientation of h-BN on a Cu
substrate by the ion irradiation.

In order to represent the experimental samples computa-
tionally, the atomic structures of pristine h-BN and fluorinated
h-BN on the Cu substrate were designed with a similar fluorine
concentration (7%), as can be seen in figure 4. We suppose that
the ion irradiation finally leads to the adsorption of F atoms to
the h-BN surface with the formation of the fluorinated

Figure 3. (a), (b) B K-edge and (c), (d) N K-edge NEXAFS spectra of pristine h-BN (black), 1013 (red), 5×1013 (green) and 1014 ions cm−2

irradiated LiF/h-BN (blue). For comparison, spectra of 1014 ions cm−2 irradiated h-BN (orange) are shown in the same figures. The incident
angle of x-ray beams to the surface is set to 30° (a), (c) and 90° (b), (d). The insets in (a) and (c) show the energy region at the absorption
edge of the B and N K-edge spectra.

Figure 4. Top and side views of the proposed atomic structure of
partially fluorinated h-BN monolayer on Cu(111) substrate. F atoms
are bonded to B atoms on the irradiation side of h-BN. Boron,
nitrogen, fluorine and copper atoms are marked by white, blue,
yellow and dark green, respectively.
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sp3-hybridized BN. Such hybridized system could appear in
h-BN by the nucleation mechanism as was predicted before for
fluorinated graphene [46]. Being similar to the transformation
of the hybridized host C atom from sp2 to sp3 in the adsorption
of an F atom to graphene, a model with partially transformed
h-BN from the sp2 to sp3 state is proposed. The essential dif-
ference between the usually considered fluorinated h-BN
model and the structure considered in this work is the presence
of the Cu substrate. It is found that the Cu substrate plays an
important role in the stabilization of the one side fluorinated

structure. Indeed, the adsorption of an F atom transforms the
hybridization state of the host atoms from sp2 to sp3, which
leads to the elongation of the bonds between the sp3 and sp2

hybridized atoms in the basal plane of h-BN and buckling of
the fluorinated region. The induced local strain in the one side
fluorinated BN is compensated by its bonding with the Cu
substrate on the opposite side.

In order to confirm the validity of the proposed model,
we compare the experimentally measured (figure 3) and
theoretically calculated NEXAFS spectra of fluorinated

Figure 5. Simulated (a), (b) B K-edge and (c), (d) N K-edge NEXAFS spectra of pristine h-BN (black) and partially fluorinated h-BN (blue)
on Cu substrate. The labeling of the peaks and features in simulated NEXAFS spectra (α-γ, iii and iv) corresponds to that in experimentally
obtained NEXAFS spectra shown in figure 3. The angle between the polarization vector of the x-ray electric field and the normal to the
sample surface was set to 30° (a), (c) and 90° (b), (d) according to experimental data.
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h-BN/Cu (figure 5). The simulated spectra are well consistent
with the experimental ones: the appearance of peak iii and the
broadening of the peaks β and γ are reproduced. The obtained
data are also supported by the perfect correspondence of the
theoretically derived and experimentally measured pristine
h-BN/Cu spectra as well as the reference data [47–49]. It has
been reported that the fluorinated h-BN obtained by the
chemical route has no site preference of F atoms to the B and
N sites of h-BN [17], although theoretical calculations point
out a strong site preference of the B site due to the large
difference in electronegativity between B and N [16, 18, 50].
On the other hand, it can be said that our fluorinated h-BN/
Cu has B–F bonds on the single side of h-BN in agreement
with the theoretical prediction because the experimentally
obtained NEXAFS spectrum is inconsistent with the simu-
lated NEXAFS spectra of any fluorinated h-BN models other
than the single side fluorinated variant. It is also worth noting
that the B site has higher reactivity than the N site as revealed
through the ion irradiation of h-BN/Cu without the LiF layer.
This is consistent with the preferential formation of B–F
bonds by the ion irradiation.

From the above discussion, it is evident that peaks iii and
iv in the NEXAFS spectra appear due to the formation of
fluorinated BN. Peak iv can be attributed to the hybridization
of the pz orbitals of BN with the d orbitals of Cu (see
figure S3(a)) judging from the presence of the corresponding
peak in the simulated NEXAFS spectra of pristine h-BN/Cu,
where h-BN and Cu are forced to approach to a close distance
for forming chemical bonding as in the case of fluorinated h-
BN/Cu. In hydrogenated h-BN/Ni(111), we also find the
appearance of the similar peak in the N K-edge spectrum,
which has been enhanced by hydrogenation of h-BN [51]. In
the NEXAFS spectrum of ion-irradiated h-BN/Cu without
the LiF layer, we see the appearance of the intense peak ii
which is 0.2 eV of photon energy lower than peak iv

(figure 3(c)). As discussed above, the intense peak ii can be
attributed to the introduction of substitutional defects, indi-
cating that peaks ii and iv have different attributions. In
contrast to peak iv, peak iii can be reproduced only in the
calculated spectra of fluorinated h-BN on the Cu substrate.
One can suggest that peak iii occurs as a consequence of the
electron density redistribution in h-BN due to the greater
electronegativity of fluorine that attracts the electron cloud
from h-BN. Therefore, the good correspondence between the
simulated and experimentally obtained NEXAFS spectra
suggests that the atomic structure of ion-irradiated LiF/h-
BN/Cu is characterized by the presence of the locally
fluorinated region bonded with the Cu atoms on the substrate
under a c-BN like coordination.

Figure 6 shows LEELS spectra of pristine h-BN/Cu
(black), 1013 (blue) and 1014 (red) ions/cm2 ion-irradiated
LiF/h-BN/Cu. The incident electron energy was set to 60 eV,
which guarantees the shallow probing depth less than 0.5 nm.
The obtained LEELS spectra reflect mainly the electronic
structure of h-BN on the sample surface, although the slight
contribution of the Cu substrate cannot be ignored. An intense
peak at 7.3 eV and a broad structure at around 15.8 eV are
assigned to the π and π+σ plasmon excitations, respectively
[47, 52]. In the spectrum of pristine h-BN/Cu (black), the
weak-intensity spectral features (4–6 eV) within the bandgap
may be derived from the Cu substrate. After the ion irradia-
tion, new features arise in the spectra; the peak at 2.6 eV and
the broad structure at around 5 eV. It has been theoretically
demonstrated that h-BN with point defects possesses optical
absorption states within the bandgap [53]. However, the XPS
and NEXAFS measurements indicate that such formation of
defects with significant amounts can be ruled out in ion-
irradiated LiF/h-BN/Cu. Therefore, it can be considered that
these new structures in LEELS are originated from the mid-
gap states of fluorinated BN which are related to peaks ii and
iv in the NEXAFS spectra (figure 3). In addition, no change in
the tail of the elastic peak (0.5–1.5 eV) with the ion fluence in
the LEELS spectra is observed. This indicates the absence of
inelastically scattered electrons with small energy-loss and
also the preservation of the insulating nature of h-BN even
under the fluorination.

4. Conclusion

We have studied fluorination of h-BN by high-energy ion
irradiation of the LiF/h-BN/Cu heterostructure. Chemical
composition and electronic structure analysed by means of
XPS and NEXAFS revealed that the high-energy ion irra-
diation of h-BN without the LiF layer induces point defects at
the B site. In contrast, the ion irradiation of LiF/h-BN leads to
the adsorption of F atoms to the h-BN surface through the
formation of the fluorinated sp3-hybridized BN. It was also
found that 6%±2% fluorinated h-BN is obtained superior to
the defect formation with the fluence up to 1014 ions cm−2. In
addition, the LEELS measurements indicate the introduction
of the fluorination-induced midgap states. Both experimental
and theoretical analyses made clear that the ion-irradiated BN

Figure 6. LEELS spectra of pristine h-BN (black), 1013 (blue) and
1014 ions cm−2 irradiated LiF/h-BN (red). The incident electron
energy is set to 60 eV. The inset shows the LEELS spectra near the
bandgap region. Solid lines show the second derivatives of pristine
h-BN (black), 1013 (blue) and 1014 ions cm−2 irradiated LiF/h-BN
(red) LEELS spectra.
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layer displays mixed sp2 (h-BN) and sp3 (fluorinated BN)
hybridized states, which suggests the formation of new
monolayered sp3-hybridized film that has not been obtained
by chemical routes. By utilizing this non-chemical method,
the non-equilibrium processing, which helps dope diverse
kinds of heteroatoms as well as the high directionality and
low divergence of ion beams, allows patterned doping in
h-BN and other 2D materials.
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