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Abstract
The time-dependence of the field distribution on the surface of YBa2Cu3Ox (YBCO) foam
samples after field trapping is analysed. The foam samples were magnetised using a bulk
permanent magnet at 77 K, and the trapped fields (TFs) were recorded with a scanning Hall
probe 1 mm above the sample surface. Besides a large TF peak, several small peaks are
observed. The time dependence of the local fields of these peaks and of the large peak are clearly
different, which points to a different origin. In this way, the time-dependent TF measurements
reveal important information about the current flow in the foam samples. A non-logarithmic
relaxation process takes place in the foam samples. Furthermore, we compare these results with
classic creep measurements performed on an individual foam strut removed from the bulk. The
creep rate for the TF distribution is found to be ∼8%, whereas the creep rate of the foam strut is
about 4% in a large temperature and field range (20–60 K, 0–2 T).
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(Some figures may appear in colour only in the online journal)

1. Introduction

Superconducting YBa2Cu3Ox (YBCO) foams exhibit several
advantages over common bulk samples, such as the reduced
sample weight, the scalability, the short oxygenation time
required, the optimum cooling behaviour and the mechanical
stability, which are important issues for several types of
applications [1–4]. The superconducting foams may have use
as bulk trapped field (TF) magnets as proposed in [5, 6],
especially in situations where the reduced weight counts, such
as in space applications, for example, for flux-pinning dock-
ing interfaces in satellites [7]. Even though the present TF
values at 77K, achieved using permanent magnets to provide
the field, are still relatively small, the situation may change
drastically when applying lower temperatures (for example,

50 K) using modern cryocoolers [8] and magnetic fields
provided by electromagnets.

Previous magnetisation measurements [9, 10] have
shown that foam struts exhibit very high irreversibility fields,
Hirr, being larger than 7T already at T=77 K. The reason for
this behaviour was found in the specific microstructure of the
foam struts, which has already been characterised using SEM,
electron backscatter diffraction (EBSD) and atomic force
microscopy in previous experiments [6, 11]. It was found that
the microstructure observed on various foam struts shares
certain features with bulk infiltration-growth (IG)-processed
samples, but also has a distinct, unique character as the very
tiny (20–50 nm diameter) Y2BaCuO5 (211) particles are
arranged in a stripe-like fashion. However, the information
concerning the flux creep properties of such samples is still
missing, which can provide more details about flux pinning.
Thus, this motivated the present investigation on the flux
creep effects of superconducting foams.

TF measurements are currently the only non-destructive
way to analyse the superconducting properties of large, bulk
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superconductors, so we also applied this method to the YBCO
foams. The obtained TFs are of the order of 40 mT when
magnetizing the samples at 77 K using a large Nd–Fe–B
permanent magnet. These TF values are not spectacular as
compared with conventional bulk samples [12–15], but at
77K the bulk samples also do not show TF values higher than
300–400 mT when being magnetized with a permanent
magnet. Here, it is important to note that neither the sample
size nor the magnetization process were properly optimized to
achieve higher TF values. Nevertheless, the TF data obtained
on the various sides of the foam sample yield important
information on field trapping and the linked current flow
within the sample. This provides valuable input for modelling
the superconducting properties of a foam sample, required for
the design of possible applications. Such modelling may
make use of already existing modelling attempts of metallic
foams [16, 17], but requires detailed input of the local var-
iation of the superconducting properties of the foam samples.

Another issue for the TF measurements is the waiting
time applied between magnetising and measuring the TF data.
The flux creep behaviour, which is also present in the clas-
sical bulk samples, normally demands a waiting time of about
10–15 min before starting a Hall probe scan [18]. The dif-
ferent microstructure of the foam samples may have an
influence on the flux creep behaviour, so the time dependence
of the local induction, Bi z, , was measured as a function of
time. The possibility to obtain spatially-resolved flux creep
data enables us to analyse the flux creep behaviour of dif-
ferent features obtained in the B x y,i z, ( )-data of the foam
sample. The analysis of the time-dependence of the
B x y,i z, ( )-data obtained was performed using the approach
presented in [19], where the flux creep behaviour of the local
fields in the superconducting samples was measured using
magneto-optic imaging.

Finally, the present experiments enable a direct com-
parison of the obtained TF(t)-data on two sides (3), (4) of the
bulk foam sample with the flux creep data obtained using
SQUID magnetometry on an individual foam strut, which was
broken out from the bulk sample. In this way, it is possible to
study the time-dependence of the various contributions to the
overall current flow in a superconducting foam sample.

2. Experimental procedures

2.1. Sample preparation and surfaces selected

Open-cell superconducting foams were produced originally at
RWTH Aachen (Germany) on the base of polyurethane
foams, which were converted in a first step to 211 foams by
coating them with a 211 slurry followed by sintering. Then
the 211 foams were converted to YBCO using an IG-process
—see the review in [20]. More details of the preparation of
the foam samples can be found in [1, 2, 21, 22]. In this
investigation, a YBCO foam of dimensions 5×2×2 cm3

with a porosity of 40 PPI (pores per inch) was employed. The
sample investigated is the same one as shown in [6], stem-
ming from RWTH Aachen. Figure 1 presents the selected

sample sides (4, foam side) and (3, foam bottom), together
with a schematic drawing to explain the naming of the sample
sides. Single foam struts were broken off mechanically from
the big foam sample for comparison measurements, yielding a
sample size of ∼1.4×1.2×0.1 mm3. The magnetization
hysteresis loops of the foam struts taken from various loca-
tions in a bulk foam sample have already been presented
in [10].

2.2. Magnetic measurements

TF measurements of the large foam piece were carried out
using a homemade set-up with a scanning Hall probe oper-
ating at 77 K. The foam sample was field cooled (FC) in a
field of a commercial, Nd–Fe–B permanent magnet (dimen-
sions of 60×30×15 mm3) in a liquid nitrogen bath. The
TF values were recorded using a Hall probe (size of the active
element 100×100 μm2, sensitivity >5 mV/T) connected to
a Gauss meter (MAGNA model MG-601). The step size in
x y, -directions is 1 mm. A view of this setup is presented in
figure 2(a), together with the field distribution produced by
the permanent magnet (b). For each measurement in this
paper, the permanent magnet was placed above the side
analyzed. TF flux density profiles were recorded after 15 min
waiting time at 1.5–2 mm height above the foam surface as
the surface of the foam was not fully flat, and no surface
treatment was carried out. Therefore, the obtained TF values
are slightly smaller than that of the other melt-textured bulk
samples, which were measured at a distance of 1 mm. Critical
current densities were obtained from the TF data with an
approximation of Chen’s formula [23].

For the time-dependent recording of the flux profiles, the
measurements of B x y,i z, ( ) have to be repeated several times.
Each time stems from a separate experimental run. This

Figure 1. (a)–(c) Schematic sketch of the foam sample defining the
various sample sides (a) and photographs of the investigated foam
sides. (b) The bottom of the foam sample (3), and (c) the right side of
the foam, labelled (4). Note some remaining parts of the liquid phase
at the bottom of the sample (b).
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requires a good reproducibility of the starting point of the
measurement. The experimental sequence is as follows:

(i) The foam sample is placed beneath the magnet and left
for some time in order to penetrate the flux.

(ii) Then, the entire assembly is cooled with LN2, and kept
for some time to ensure that the entire assembly is
cooled down properly.

(iii) In the meantime, the LN2 container of the (x,y)-
measurement set-up is properly filled with LN2. We
always take care that the sample is completely
immersed in LN2 to maintain the temperature. Before
bringing the FC sample to the measurement system, the
bowl is again refilled with LN2.

(iv) After the desired FC time, the sample is quickly moved
to the measurement system and the TF profile scan is
started.

Measurements were taken at four different times: 5 min,
8 min, 12 min and 15 min. All experiments were repeated at
least twice; for t=5 min and 15 min, three runs were per-
formed in order to check the reproducibility and accuracy.
These experimental problems are also a reason why such
experiments have not often been performed in the literature—
the time-dependence of the local fields are very often inves-
tigated only via simulations [24–28].

Magnetisation data of the foam struts in the temperature
range 5 K�T�86 K were collected using a SQUID

Figure 2. (a) The x,y-positioning measurement set-up equipped with a Hall probe, and (b) the field distribution of the permanent magnet
(Nd–Fe–B) employed for the magnetization of the foam sample.

Figure 3. (a)–(d) TF distributions, B x y,i z, ( ), for the foam sides (3) and (4) as contour plots (a, c) and 3D-graphs (b, d). The field distributions
were recorded after a waiting time of 15 min.
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magnetometer (Quantum Design MPMS3) with±7 T magn-
etic field applied perpendicular to the foam strut surface. In
order to avoid field inhomogeneities, the scan length is set to
be 15 mm. The induced current densities are calculated using
the extended Bean model [29]. The magnetic relaxation rate is
obtained by measuring the time decay of the magnetic
moment for 1 h with the magnet in persistent mode. The first
data-point was taken after t=200 s to avoid deviations from
pure logarithmic decay.

2.3. Flux creep analysis

To analyse the time-dependence of the field profiles, we
employ the total flux F = B A* as a measure (B denotes the
local field and A is the investigated area), and accordingly, the
flux creep rate, S, is defined as
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Here, Φ0=Φ(t=0) is the starting point of the experiment,
f (T) is a temperature-dependent function, kB is the Boltzmann
constant, á ñE T( ) denotes an effective activation energy and τ0
represents a characteristic relaxation time. This equation is
valid for a chosen region as well as for an overview mea-
surement of the entire sample. To obtain the creep rate, S,
from the data collected, we employ the relation
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where tstart is the starting point of the observation. The
parameter τ0 is of the order of 10−12 s�τ0�10−6s for

Figure 4. (a)–(d) Time-evolution of the TF distribution measured at t=5 min, 8 min, 12 min and 15 min (from top to bottom) waiting time
on the foam side (4).
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high-Tc materials [31]. The locally measured data (local
induction Bi or intensity) are then summed up yielding a
measure for Φ, and the resulting data are plotted in a nor-
malized way (Φ/Φ0) to give the creep rate, S.

This procedure was successfully employed to analyse
magneto-optic flux creep data [19, 32]. As the Hall probes
measure only the z-component of Bi, the present case of a
bulk foam sample is better suited for this analysis than the

thin single crystals analysed in [19, 32]. A possible recon-
struction of the current flow via inversion of the Biot–Savart
law [33] assumes a homogeneous sample with a regular
current flow, which is certainly not the case for the present
foam samples, so we decided to stay with the analysis of the
total flux, Φ.

3. Results and discussion

3.1. Time-dependence of the TF distribution of bulk foam
samples

Firstly, we have a look at the field distributions obtained on
the foam sample sides (3) and (4), presented in figure 3(a)-(d)
as 3D plots and contour plots. Foam sample side (4) was
found in [6] to exhibit the best TF properties. As already
noticed in previous publications [6, 34, 35], the foam sample
exhibits a large TF peak, but also several sharp, small peaks.
The presence of these peaks is characteristic for the foam
samples, and is not seen in conventional, melt-textured bulk
samples. These peaks with a specific flux distribution give
important information regarding the currents flowing in the
foam sample: the broad peak is due to currents running
through the entire sample perimeter, such as in the case of
conventional buk samples. Of course, these currents are
influenced by the presence of pores and are confined to flow
within the foam struts. This also implies that these currents
are not flowing solely in (a,b)-planes like in a conventional
sample, but face the various orientations of the 3D structure
of the foam struts, which can vary by±30◦ as revealed by
EBSD analysis [11]. The sharp, small peaks are caused by
current loops which encircle some pores on well-super-
conducting current paths, and are compressed due to the
currents circulating through the entire sample. Also, these
currents have to follow the 3D orientation of the respective
foam struts. Here, it is important to note that the foam struts
are building up a true 3D structure, and the orientation of the
foam struts to the external magnetic field varies considerably.
Both types of currents are percolative using all possible
superconducting paths in the sample. Therefore, the recorded
TFs of these small, sharp peaks may be different and at
diverse locations due to the differences in the local micro-
structure when repeating the experiments. Furthermore, the
resulting TF fields can vary when repeating the experiments,
as seen in the present investigation.

Now, we look at the time dependence of the TF dis-
tribution on side (3) of the foam sample. Figure 4 shows the
TF field distribution after a waiting time of (a) 5 min, (b)
8 min, (c) 12 min and, finally, (d) 15 min as contour plots
(left) and as 3D-plots (right). From these plots we see that the
big TF cone is clearly affected by the flux creep process. The
peak value decreases from ∼20 mT to about 16 mT after
15 min waiting time, which corresponds to a reduction of
20%. Consequently, the currents flowing in the sample are
redistributing. Also, the sharp, tiny peaks shrink with time,
but the time characteristics are different, which points again to

Figure 5. Time dependence of the full grid measured (40×40
points) on (a) sample side (3) and (b) sample side (4). Selected small
areas (3×3 points) around the sharp peaks are presented in (c).
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the different origin. This will be investigated by the time-
dependence of the total flux in figure 5 below.

Figures 5(a), (b) present the time-dependence of the total
flux Φ for the full 40×40-grids measured on sample sides (3)
and (4). All data points were repeated at least twice. The time
decay of the total local field is obvious, and at first glance, the
resulting behaviour looks quite linear. Fitting a linear function
to ln(Φ) yields a creep rate S=∼8%. The relaxation of the
sharp peaks was evaluated using a 3×3 grid, which has the
advantage that the central point of the grid can be placed on
the maximum of the peak to account for possible shifts. In this
way, we can properly analyse the time-dependent decay of the
flux on the specific peak. The results of this procedure are
shown in figure 5(c). Here, we clearly see a non-linear beha-
viour, as the time decay is at first slow, but then considerably
increases. This observation is valid for all the sharp, small
peaks found in the foam sample. An explantion for this
behaviour is as follows: firstly, the compression of the current
loops remains unchanged, and only a small relaxation takes
place. When the currents flowing through the entire sample
perimeter are rearranged, the compression on these small loops
releases, and then these current loops are allowed to relax.
Thus, there is a characteristic time which indicates the release
of the current loop compression. All this causes a non-loga-
rithmic relaxation process, as seen in figure 5(c). Overall, the
analysis of the total flux, Φ, reveals a strong relaxation of the
TFs, reaching a maximum of about 20% in the case of the peak
value of the large peak. Other regions of the TF distribution
show a much smaller relaxation, so an overall flux creep rate of

approximately 8% results from our analysis for all TF dis-
tributions studied here.

The present flux creep data reveal that a 15 min waiting
time before starting the Hall probe scan is also justified for the
bulk foam samples.

3.2. Flux creep analysis of a single foam strut

For comparison with the bulk sample data, we examine here
the flux creep behaviour measured by SQUID magnetometry
on an individual foam strut. In such a strut, the current flow is
limited to the circumference of this strut, so the percolative
current flow through the bulk sample caused by the presence
of the pores is eliminated here.

Figures 6(a)–(d) present the flux creep data on a broken-
out foam strut. Figure 6(a) gives a magnetisation loop of the
foam strut at T=60 K. In figure 6(b), the typical time-
decay of the M(T, t) signal is shown for T=60 K and an
applied magnetic field of 0.5 T. The inset shows the loga-
rithmic plot of the magnetisation versus time, together with
a linear fit to the data. All flux creep data recorded show a
well-developed logarithmic behaviour, except at the highest
temperatures measured (86 K). The resulting data for S at
various temperatures and magnetic fields are presented in
figure 6(c), and figure 6(d) shows the relation of T/S versus
T for various applied fields. A typical creep rate of 4% is
observed, which is similar or even lower than those seen in
melt-textured NdBCO [36] or in YBCO films [37]. As the
magnetisation loops of the foam struts do not exhibit a
fishtail shape, the resulting S(T, B) curves are dominantly

Figure 6. Flux creep data obtained on an individual foam strut piece, recorded by SQUID magnetometry. (a) The magnetisation loops of the
foam strut taken at T=60 K, (b) the time evolution of the magnetisation at T=60 K for a field of 0.5 T. The inset shows the logarithmic
behaviour of S and a linear fit to the data (red line). (c) S as a function of T for various applied magnetic fields, and (d) T/S versus T for
various applied magnetic fields.
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flat in a large field region. These flux creep data of the foam
strut piece directly reveals the strong flux pinning contrib-
ution of the tiny Y-211 particles which were found in
electron backscatter diffraction analysis [6, 11, 38]. Fur-
thermore, it must be remarked here that the field is not
oriented parallel to the c-axis of the material, but about 30◦

off. The YBCO matrix of the foam strut is also not com-
pletely homogeneous but consists of several well-aligned
YBCO grains, as observed in our previous EBSD investi-
gations [6, 11, 38]. Thus, even though the currents within a
foam strut may face several grain boundaries, the overall
current strength is very high due to the improved flux pin-
ning properties provided by the tiny 211 particles embedded
within the YBCO matrix, which is common for all IG-pro-
cessed YBCO superconductors.

The well-developed flux-pinning properties within the
individual foam struts give rise to the hope that the overall TF
behaviour of the foam samples will considerably improve
when moving towards lower temperatures such as 77 K, for
example, 50 K could be an interesting target temperature
located right on the plateau of S(T), as seen in figure 6(c).
Then, also the critical currents will be much stronger, thus we
may expect to measure much larger TFs in the foam samples.

4. Conclusions

The flux creep behaviour of bulk foam samples is investigated
using time-dependent TF measurements. From these data, we
obtain important information on the current flow in a bulk
foam sample as the time-dependence of the broad peak and
that of the small, sharp peak is distinctly different, pointing to
a different origin. An overall flux creep rate of ∼8% is
obtained from our analysis of the time-dependent TF data, so
these data demonstrate that a waiting time of 15 min before
starting the Hall probe measurement is also required for the
bulk foam samples. The flux creep analysis performed on an
individual foam strut piece reveals relatively strong flux
pinning as the flux creep rates obtained from SQUID mag-
netometry (typical value of S=4%) are similar or even lower
than those of the melt-textured NdBCO samples or even the
YBCO thin film samples.
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