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Abstract
We consider the bound states in the continuum (BICs) or embedded trapped modes in an open
spherical acoustic resonator. The eigenfrequencies of closed resonator are +l2 1-fold
degenerated, where l is the orbital index. An attachment of two cylindrical waveguides lifts this
degeneracy and transforms the eigenfrequencies into resonances whose real parts depend on the
position of the waveguides. When the waveguides are angled by q p¹ , variation over that angle
gives rise to avoided crossings of resonant modes with different l to result in the Friedrich-
Wintgen BICs. For θ=π there might be only the symmetry protected BICs. When three
waveguides are connected to the spherical resonator the Friedrich-Wintgen BICs occur due to the
avoided crossings of resonant modes with the same l but different azimuthal
indices -  l m l.

Keywords: bound states in the continuum, effective non-Hermitian Hamiltonian, acoustic
resonator, trapped modes
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1. Introduction

Bound states in the continuum (BIC) also known as embed-
ded trapped modes are localized solutions which correspond
to discrete eigenvalues coexisting with extended modes of
continuous spectrum in resonator-waveguide configurations.
The existence of trapped solutions residing in the continuum
was first reported by von Neumann and Wigner [1] at the
dawn of quantum mechanics. In the field of fluid mechanics,
Parker [2, 3] is credited to be the first to encounter resonances
of pure acoustic nature in the air flow over a cascade of flat
parallel plates. Nowadays, the BICs are known to exist in
various waveguide structures ranging from quantum wires
[4–8], acoustic waveguides [9–13], and photonic crystals
[14–16]. The BICs are of immense interest, specifically, in
photonics due to experimental opportunity to confine light in
optical microcavities despite the fact that outgoing waves are
allowed in the surrounding radiation continuum [16–19]. At
the same time, in aerodynamics, trapped and nearly trapped
modes are known to cause severe vibrations and noise pro-
blems in gas and steam pipelines [20, 21].

The generic mechanism of full destructive interference
for the BICs was proposed by Friedrich and Wintgen in 1985

[22]. When two resonances avoid each other as a function of a
certain continuous parameter, the interaction between them
through the continuum may cause the width of one of
hybridized resonances to vanish exactly. An equivalent
explication of BICs is that under variation of the system
parameter the eigenmodes ψ1, ψ2 of the same symmetry
become degenerate. Then, the coupling of the superposed
state y y+a a1 1 2 2 with the continuum can be cancelled by a
proper choice of the superposition coefficients a1 and a2 [7].
This principle was later explored in open integrable rectan-
gular and cylindrical resonators where the BIC occurs in the
vicinity of the degeneracy point for variation of aspect ratio of
the resonators [12, 13].

The eigenmodes of closed spherical resonator are
+l2 1-fold degenerated spherical functions, where l is the

orbital index. The only parameter to vary is the resonator
radius which only scales the resonator eigenvalues by the
factor 1/R2. Therefore it seems that the FW mechanism for
the BICs due to an avoided crossing can not be applied here.
Let us open the spherical resonator by attaching of two
cylindrical waveguides, which lifts the degeneracy. The
continua of the waveguides in the form of propagating Bessel
modes transform the discrete eigenfrequencies of the closed
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resonator into the complex resonant frequencies the positions
of which depend on overlapping of the spherical functions
with the Bessel modes. In turn, if the waveguides are angled
by q p¹ , variation over that angle can give rise to avoided
crossings of resonant modes with different l to result in the
Friedrich-Wintgen BICs. The paper was inspired by a similar
case of the cylindrical resonator opened by non-coaxial
attachment of two waveguides. It was shown that a rotation of
one of the waveguides around the resonator axis gives rise to
numerous events of avoided crossing of open system reso-
nances with different azimuthal indices m, and respectively to
the FW BICs [23].

Furthermore, connection of three cylindrical waveguides
to the spherical resonator opens a way for the full destructive
interference of the resonator eigenfunctions with the same
indices l but different azimuthal indices-  l m l. For this
purpose one of the waveguides is connected to the pole of the
spherical resonator, the second one is deflected from the pole
by the angleΔθ1 and the third one is shifted by the two angles
Δθ2 and fD as schematically shown in the figure 1(b). Such a
connection makes it possible to use two variation parameters
—the polar angle Δθ and the azimuthal angle Δf
simultaneously.

2. Coupled mode theory

We use the acoustic coupled mode theory (CMT) which is
efficient both for calculating the transmittance through
acoustical waveguide-resonator systems and for searching of
BICs [24]. It is easy to find the solution of the Helmholtz

equation in spherical coordinates:
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where r, θ, f are the spherical coordinates, R is the spherical
resonator radius, Ylm are the spherical harmonics, qP coslm ( )
are the associated Legendre polynomials, +Jl 1 2 are the Bessel
functions, k +l n1 2, are the roots of the equation

k =+ + =dJ r R rd 0l n l n r R1 2, 1 2,( ) ∣ . Respective eigen-
frequencies of the closed spherical resonator are given:
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All the quantities are dimensionless and expressed in
terms of the cylindrical waveguides radius rw. The dimen-
sionless frequency ω is expressed through the dimensional
one w̃ as follows: w w= r sw˜ , where s is the sound velocity.

The eigenfunctions of the cylindrical waveguides are:
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where ρ, α are the polar coordinates in the x y0 -plane in the

Figure 1. Spherical resonator of radius R with two (a) and three (b) asymmetrically attached cylindrical waveguides of the same radii rw.
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waveguides reference system, Jp(x) are the cylindrical Bessel
functions of the first kind, μpq is the q-th root of equation

m r r =r=dJ d 0p pq rC( ) ∣ imposed by the Neumann boundary
condition on the walls of sound hard cylindrical waveguide, C
enumerates input and output waveguides, kpq

C( ) is the wave
number:

w m= -k r , 4pq
C

pq C
2 2 2 ( )( )

The CMT starts with a formulation of the non-Hermitian
effective Hamiltonian [23, 24]
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where HB is the Hamiltonian of the closed resonator whose
eigenmodes and eigenfrequencies are given by equations (1)
and (2) and the coupling matrices of the resonator eigenmodes
with the propagating modes are determined by the over-
lapping integrals [23, 24]:

ò

ò

f

r ry r f q r f f

= Y =

´

p
W r R

Y

d

d , , , 6

lmn pq ln

pq lm

, 0

2

0

1

( )

( ) ( ( ) ) ( )

where ρ is the radius in the cylindrical reference frame, f=α
is the azimuthal angle, θ is the polar angle in the spherical
reference frame. To perform this integration one has to
express the spherical coordinates in terms of the cylindrical
ones which could be done by a simple mathematical trans-
formation. Rigorously, the integration is carried out over an
interface between the sphere of the radius R and cylindrical
waveguides with the radius rw= 1. For R 1 the circular
interface can be approximated by the flat interface.

In order to calculate the coupling matrix elements for
asymmetrically connected waveguides we take that each
waveguide is attached to the pole of the spherical resonator
but rotate the resonator eigenfunctions by using the Wigner
D-matrix:

a b g a b g= - -D k d m, , exp i exp i , 7mk
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where α, β, γ are the Euler’s angles and bdmk
l ( ) is the small
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Then the rotated spherical harmonics can be expressed
through the non-rotated ones as follows:

åq f g a b q a= - - ¢ ¢
=-
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As a result the coupling matrix elements of the resonator with
asymmetrically connected waveguides are

åg a= - -
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The transmission coefficients from the channel pq of the
waveguide (C) to the channel ¢ ¢p q of the waveguide ¢C( ) are
given by the following equations [23, 24]:
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3. Two waveguides

Let the first waveguide be attached to the resonator at the pole
and the second one be attached at the angle Δθ as shown in
the figure 1(a). Such an attachment of the waveguides lifts the

+l2 1-fold degeneracy of the closed spherical resonator
eigenvalues. Indeed, one can see from figure 2 that rotation of
the second waveguide relative to the first waveguide splits
resonances with the angle Δθ where the positions of the
resonances are given by real parts of the complex eigenvalues
of the non Hermitian Hamiltonian [24, 25]. However it is
more remarkable that the rotation gives rise to avoided
crossings of resonances with different orbital indices l and
respectively to the FW BIC which is marked by large open
circle.

Figure 2 shows the transmittance versus the frequency of
the wave injected into the first waveguide and the angle Δθ.
One can see that the narrow transmission peaks follow to the
resonant frequencies marked by small open circles. Small
resonant widths are the result of that the three dimensional
resonator is weakly coupled with the waveguides if the radius
of the resonator substantially exceeds the waveguides radii
(R rw ) [23]. Indeed, the normalization coefficients of the
spherical resonator eigenmodes (3) are proportional to

R

1
3 2 .

The coupling matrix elements (6) preserve this factor. Then
the resonant widths given by squared coupling matrix ele-
ments are proportional to

R

1
3 while the distances between the

eigenfrequencies of the closed resonator are proportional
to

R

1
2 .
Wave transmission through resonators specified by

transmission peaks is related to the resonant states with
complex eigenfrequencies of the effective Hamiltonian
[24, 25]. In the one-dimensional case the neighboring reso-
nances differ by symmetry relative to inversion of one-
dimensional axis, therefore the transmission zeros are absent
[26, 27]. In other words, there is no destructive interference of
resonances in the one-dimensional wave transmission except,
however, the case of vector field transmission [28, 29]. In the
two- and three-dimensional cases this rule for symmetry of
neighboring resonances is not valid to give rise to destructive
interference of them and therefore to zeros of transmission
[26, 27]. A frequency dependence of the transmittance takes
asymmetric form similar to Fano resonance which is a result
of destructive interference of pathways [30, 31]. Therefore the
Friedrich-Wintgen BICs [22] resulted by avoided crossing of
resonances respectively are accompanied by convergence of
the transmission peak and transmission zero to result in the
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collapse of Fano resonance, which is a signature of the
BIC [5, 7].

Figure 2 shows several points of the BIC at certain fre-
quencies ω and rotation angles qD which also can be found
by vanishing of imaginary parts of the complex eigenvalues
of the non Hermitian effective Hamiltonian. The major part of
the BICs in the case of two waveguides are symmetry pro-
tected (SP) and are simply the rotated eigenfunctions of the
closed resonator orthogonal to the propagating waveguide
mode. Figure 3(a) shows the pressure field on the surface of
the resonator for one of the SP BICs. One can see that this SP

BIC coincides with the resonator eigenmode shown in
figure 3(b) which depicts a spherical harmonic with indices
l=4, m=1 rotated using the Wigner D-matrix.

Moreover as seen from figure 2 there is also a FW BIC at
the point Δθ=0.727π, ω=1.378 marked by the large open
circle. Figure 4(a) shows the wave function (the pressure
field) of this BIC on the resonator surface. One can see from
nodal lines (ΨBIC=0) that the coupling of this state with the
propagating mode of the waveguides with indices p=0,
q=1 equals zero. The modal expansion of this FW BIC is
shown in figure 4(b). The resonator eigenmodes with different

Figure 2. Transmittance of the spherical resonator versus the frequency of injected wave and displacement angle of the second waveguide.
Small open circles mark the real parts of complex open spherical resonator eigenfrequencies versus the second waveguide displacement
angle. Large open circle indicates the BIC point where the collapse of Fano resonance occurs.

Figure 3. (a) The pressure field of SP BIC on the surface of spherical resonator with ω=1.3748 and Δθ=0.5048π. (b) The rotated by the
same angle spherical harmonic with l=4, m=1.

4

Phys. Scr. 95 (2020) 085002 A S Pilipchuk et al



l contribute into the BIC in full agreement with figure 2. Thus,
the FW BIC is the result of full destructive interference of
resonant modes with different orbital indices, despite the fact

Figure 4. (a) The pressure field of of the FW BIC on the surface of spherical resonator with ω=1.3937 and Δθ=0.727π. The circles
indicate areas where the waveguides are connected. (b) The modal decomposition of the BIC. (c) Superradiant (low-Q) mode which exists
along with the BIC function.

Figure 5. Transmittance of the spherical resonator versus frequency and the displacement angleΔθ2 of the third waveguide forΔf=π/4 (a)
between waveguides input and output2; (b) between waveguides input and output1. The displacement angle of the second waveguide is
Δθ1=3π/4. The cross designates the position of BIC.

Figure 6. Transmittance of the spherical resonator versus frequency and the displacement angle Δf of the third waveguide for qD = 22 (a)
between waveguides input and output2; (b) between waveguides input and output1. The displacement angle of the second waveguide
is qD = 51 .
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that the eigenmodes of the closed spherical resonator have
different frequencies (2). Note that the BIC mode is always
complemented by the superradiant (low-Q) mode, that is
shown in figure 4(c). This mode has the maximal coupling
with the continuum [32].

4. Three waveguides

Although the position of the second waveguide relative to the
first one at the pole of a sphere is given by the two angles in
general, only the polar angle Δf is physically relevant for
resonances and, in particular, for BICs. The introduction of
the third waveguide as shown in figure 1(b) cardinally
changes effects of the continua onto the resonances because
of three relevant angles, two polar angles Δθ1, Δθ2 and one
azimuthal angle Δf.

Figures 5 and 6 show the transmittance versus the fre-
quency of the injected wave and rotation angles Δθ2 and Δf,
thus demonstrating evident importance of mutual orientations
of all the waveguides. The regions in which avoid crossing
phenomenon occurs, as well as the collapse of the Fano
resonance, are highlighted by frames. The circle in the
figure 6 marks the position of the FW BIC whose surface
pressure is shown in the figure 7(a). It is interesting that in this
case the resonator eigenlevels with the same orbital indices l
interfere, which is confirmed by figure 7(b), where the modal
decomposition of this BIC is shown.

5. Conclusion

The well-developed strategy for FW BICs based on full
destructive interference of two resonances for avoided
crossing in open resonators implies that waveguides support
only one continuum. In our case of cylindrical waveguides the
continua are given by propagating channels enumerated by
indices p, q according to equation (4). By proper choice of
frequency one can open these channels one by one. When the

frequency is below the second cutoff only the first channel
p=0, q=1 is opened while other channels of waveguide
are evanescent. They have imaginary wave vectors kpq and
contribute into the effective non hermitian Hamiltonian (5) by
means of real parts that modifies the Hamiltonian of the
resonator and respectively shifts its eigenfrequencies [23]. As
a result, the BIC points do not coincide exactly with the
degeneracy points of the closed resonator [7]. Also the eva-
nescent modes of waveguides give rise to exponential decay
of the BIC modes into the waveguides in the form

- k zexp pq( ∣ ∣ ) [33]. The above said was demonstrated in rec-
tangular and cylindrical waveguides.

For the first time the nontrivial role of the waveguides
evanescent modes was demonstrated in open cylindrical
resonators when cylindrical waveguides were shifted relative
to each other by some angleΔf [23]. Respectively the shifted
eigenfrequencies of the resonator become dependent on this
angle and numerous events of avoided crossings were
observed for rotation over Δf with formation of FW BICs in
addition to the FW BICs formed by degeneracy of the closed
cylindrical resonator eigenfrequencies for the variation of its
length. The spherical resonator is unique because there is no
accidental degeneracy for the variation of its radius. But
similar to the case of non-axisymmetric cylindrical waveguide
[23] attachment of at least two cylindrical waveguides to the
spherical resonator asymmetrically lifts the +l2 1-fold
degeneracy of the eigenfrequencies and what is more
important gives rise to avoided crossing of these splitted
eigenfrequencies from different multiplets. Indeed, in the
present paper we report the FW BICs in the spherical acoustic
resonator with two and three connected cylindrical
waveguides.
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Figure 7. (a) The pressure field on the surface of spherical resonator at the BIC point with w = 1.38575, qD = 51 , qD = 22 and
Δf=0.1222π. The circles indicate areas where the waveguides are connected. (b) The modal decomposition of the BIC.
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