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1.  Introduction

At the dawn of nonlinear optics, it was established that high-
efficiency nonlinear frequency conversion in a transparent 
nonlinear medium requires the phase-matching condition to 
be met. The physical meaning of this condition is the con-
servation of full momentum of interacting waves. In general, 
this can be obtained by using angular phase-matching in 
birefringent nonlinear media [1] or quasi-phase-matching in 
artificially structured nonlinear media [2–5], also known as 
nonlinear photonic crystals (NPCs) [6]. The latter approach, 
which was proposed earlier, uses spatial structuring of media 
for compensating the phase mismatch. The conventional 
technique for fabricating NPCs is based on the electric field 
poling of ferroelectric crystals [7], which implies the rect-
angular spatial modulation of nonlinearity (bipolar rectangu-
lar lattice). As a result, the phase mismatch is periodically 
compensated each time the phase difference of interacting 
waves attains π. This means that the rate of conversion to the 
harmonic wave is not optimal and varies within a structure 

period. It limits the total conversion efficiency relative to 
the case of angular phase matching. At the same time, NPCs 
demonstrate wide capabilities for implementing nonlinear 
optical processes via choosing a proper structure period. In 
such structures, the choice of polarizations of interacting 
waves is not restricted, and, therefore, the maximum nonlin-
ear coefficients, like d33 in lithium niobate, can be employed. 
Until now, different NPC designs have been studied, which 
offer a binary spatial modulation of nonlinearity. Among 
them are deterministic structures, including Fibonacci [8], 
Thue–Morse [9], superimposed [10, 11], and random struc-
tures [12–14]. Recently, a new method for structuring the 
materials has been developed [15], which allows continuous 
nonlinearity distribution over the structure in accordance with 
a specified law. Therefore, it is of interest to consider new 
types of nonlinearity modulation that would yield the optimal 
conversion efficiency and combine the most advantages of 
uniformly poled and structured crystals. At the same time, 
much attention is focused upon the harmonic modulation of 
the physical quantity, which has been an object of numerous 
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studies in different fields of physics, including atomic, solid-
state and wave phenomena physics, acousto-optics etc. An 
exception is nonlinear frequency conversion, in which the 
harmonic modulation has not been employed yet. Recently, 
the first realizations of three-dimensional (3D) NPC struc-
tures in a core of lithium niobate waveguide were reported 
[16]. Among these are helical twisted structures that convert 
a fundamental Gaussian beam into a vortex second-harmonic 
beam. This approach [16] can be used for structuring NPCs 
with smooth, harmonic or arbitrary modulation of nonlin-
earity that represents a particular interest for conversion of 
radiation with the specific characteristics.

In this paper, we consider for the first time the second-
harmonic generation (SHG) in an NPC of the new type, the 
spatial lattice of which is a harmonic function of the propaga-
tion coordinate. In addition, possible experimental implemen-
tations of the arbitrarily structured NPCs are discussed.

2. Theoretical analysis and results

In the most general case, the harmonic spatial modulation of 
the quadratic nonlinear coefficient can be written as

d(z) = deff (a + f sinGz) .� (1)

Here, deff  is the effective nonlinear coefficient, f  is the ampl
itude of the nonlinearity modulation as compared with the 
average amplitude a (|a|+ |f | � 1), G = 2π/Λ is the primary 
reciprocal lattice vector (RLV), and Λ is the structure period. 
Note that |a| � f  corresponds to unipolar modulation (UPM) 
and |a| < f  corresponds to bipolar modulation (BPM). We 
will refer to the balanced modulation of nonlinearity if the 
average value is a  =  0. Examples of the unipolar and bipolar 
functions of the nonlinear coefficient modulation calculated 
using (1) are shown in figure 1.

In the undepleted fundamental amplitude approximation, 
the SHG process in a medium with an arbitrarily varying non-
linearity d(z) is governed by equation [1]:

A2 =
4πk2

n2
A2

1

∫
d(z)e−i∆kzdz,� (2)

where A1 is the fundamental frequency amplitude, 
∆k = k2 − 2k1 is the wavevector mismatch, and n2 is the sec-
ond-harmonic (SH) refractive index. Substituting the structure 
described by (1) into the integral in (2), we obtain

A2 = aΓ
∫

e−i∆kzdz + fΓ
∫

sinGze−i∆kzdz,� (3)

where Γ = 4πk2deffA2
1/n2 is the nonlinear coupling coeffi-

cient. Integrating (3) over [0, L], we arrive at the following 
expression:

A2 = − aΓ
i∆k

(
e−i∆kL − 1

)

+
fΓ

G2 −∆k2

[
G − e−i∆kL (G cosGL + i∆k sinGL)

]
.

� (4)

The dependence of SH intensity obtained using (4) ( I2 = |A2|2) 
on the effective coordinate z/Λ is presented in figure 2 for a 
uniformly poled nonlinear crystal (UPC) and for the structures 

shown in figure  1. Refractive indexes of n1  =  1.450 and 
n2  =  1.460 are taken for fused silica [17] at a fundamental fre-
quency wavelength of 1064 nm and for the SH, respectively. 
To avoid uncertainty in the calculations using (4), a small 
wavevector mismatch was introduced (G −∆k = 10−5). The 
first term in (4) (f   =  0) represents the field amplitude gener-
ated in the UPC with nonzero nonlinearity a  =  0.5 resulting 
in weak-intensity oscillations. The second term corresponding 
to the BPM (a  =  0, f   =  0.5) shows the nearly quadratic spatial 
dependence of the intensity modulated at the spatial frequency 
∆k. Taking into account both terms in (4) under the condition 
f < |a|, we arrive at the case of UPM and obtain the more 
complex spatial dependence of the SH intensity with large-
scale spatial oscillations. The respective spatial frequency is 
twice as low as in the case of BPM, G′ = ∆k/2. The scale 
of these oscillations depends on the fraction f /a. The lower 
the fraction f /a, the weaker the oscillations are. In the limit 
f � |a|, we obtain the case of non-phase-matched SHG 
in UPC and the regular SH-intensity oscillations are still 
observed (figure 2). Therefore, the amplitude of nonlinearity f  
makes the largest contribution to the SH intensity yield, while 
the average value a strengthens the intensity of oscillations. It 
can be seen in figure 2 that the unipolar and bipolar modula-
tions are equivalent with regard to the oscillations. Note that 
the balanced BPM (a  =  0) covers the full modulation range 
(2f  in (1)) resulting in a fourfold SH intensity gain. Hence, 
without loss of generality, we may consider the balanced BPM 
to be described as

d(z) = defff sinGz.� (5)

In this case, (4) reads

A2 =
fΓ

G2 −∆k2

[
G − e−i∆kL (G cosGL + i∆k sinGL)

]
.

� (6)
Alternatively, (6) can be presented in the form

A2 =
fΓG

G2 −∆k2

[
1 − 1

2

(
1 +

∆k
G

)
e−i(∆k−G)L−

1
2

(
1 − ∆k

G

)
e−i(∆k+G)L

]
.

�

(7)

If G ≈ ∆k , the third term can be omitted and (7) is reduced to 
the well-known form

A2 = − f iΓL
2

e−i(∆k−G)L/2 sinc[(∆k − G)L/2].� (8)

Here, sinc(x) ≡ sin(x)/x. If G −∆k ≈ 0, the SH intensity 
obeys the quadratic law, as shown in figure 2.

Figure 3 shows the dependence of the SH intensity on the 
effective coordinate calculated using (6) ( I2 = |A2|2). In this 
case, a significant increase in the SH intensity is observed. 
The SH intensity is nearly a quadratic function of the coordi-
nate, but the weak-residual-intensity oscillations still remain. 
A 1.6 times decrease in the SHG efficiency is observed in the 
harmonic NPC relative to the angular phase-matching in the 
UPC. However, the use of the maximal nonlinear coefficients 
would yield a higher conversion efficiency in the harmonic 
NPCs than in the uniformly poled crystals.

Laser Phys. 30 (2020) 045401
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It is especially interesting to compare the SH yield in the 
harmonic and rectangular structures with similar parameters. 
The rectangular modulation of the nonlinear coefficient is 
described by the formula

dr(z) = deff (a + f sgn[sinGz]) .� (9)

Here, sgn(x) ≡ x/|x| is a signum function. The spatially vary-
ing part of (9) can be presented as a Fourier series, i.e.

dr(z) = deff

(
a + f

∑
m

gme−imG(z+Λ/4)

)
,� (10)

where gm are the Fourier coefficients, such that gm  =  0 at the 
even m values and gm = (2/π)m at the odd m values. In (10), 
the term Λ/4 is introduced to account for the spatial shift of 
the rectangular lattice to adjust the maxima with those of the 
harmonic one. Thus, substituting (10) into (2), we obtain

A2 = − aΓ
i∆k

(
e−i∆kL − 1

)

+ fΓL
∑

m

gme−i(∆k′+Λ/2)L/2 sinc (∆k′L/2) ,
�

(11)

where ∆k′ = ∆k − mG.
We limit the consideration to the case of a rectangular BPM, 

i.e. a  =  0 in (9) and (11) (m ∈ [−30, 30]). The results of the 
calculations are presented in figure 3. It can be seen that the SH 
intensity grows faster than the SH intensity corresponding to 
the harmonic nonlinearity modulation. Comparison of (8) and 
(11) (a  =  0) showed that the SH conversion efficiency in the 
rectangular structure increased by a factor of (Gm/2)2, which 
is 16/π2 ≈ 1.6 for the first-order QPM. Thus, the rectangu-
lar nonlinearity modulation is optimal for the quasi-phase-
matched SHG and any changes in the modulation type result 
in a conversion efficiency drop. Moreover, the term ‘QPM-
order’ for a harmonic structure becomes insignificant, because 
an increase in the SH conversion efficiency is only possible 
when the phase mismatch is fully compensated by the primary 

RLV, i.e. at ∆k = G instead of ∆k = mG, which corresponds 
to the rectangular structure. In addition, comparison of (8) and 
(11) shows that the spectral bandwidth corresponds to that of 
the periodic structure with the rectangular nonlinearity modu-
lation [3] and takes the form

∆λ � 4
L

√
ln 2
γ

∣∣∣∣
d∆k
dλ

∣∣∣∣
−1

,� (12)

where γ ≈ 0.36, and λ is the fundamental wavelength.
The structure described by (1) can be fabricated on the basis 

of porous quartz filled with sodium nitride [15]. The nonlin-
ear coefficient is modulated by varying the volume fraction 
of the nonlinear material in porous quartz (filling factor). It 
is noteworthy that the sub-micrometer spatial periodicity can 
be obtained by this method. This approach greatly extends the 
range of materials suitable for efficient frequency conversion, 

Figure 1.  Examples of unipolar (a) and bipolar (b) modulation of nonlinear coefficient (f   =  0.5).

Figure 2.  SH intensity ( I2 = |A2|2) versus coordinate for uniformly 
poled crystals (f   =  0) and for nonlinear crystals with harmonic 
modulation of the nonlinear coupling coefficient.

Laser Phys. 30 (2020) 045401
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including non-ferroelectric crystals and low-birefringent 
materials. In particular, using this method, the efficiency of 
conversion to ultraviolet and vacuum ultraviolet [18–20] can 
be enhanced. The unipolar rectangular nonlinearity modu-
lation can be performed using the 60- or 90-degree domain 
structures in ferroelectrics or poled glasses.

3.  Conclusion

We studied SHG in media offering a new type of harmonic 
spatial nonlinearity modulation. This type of spatial modula-
tion is implemented to increase the conversion efficiency via 
the periodic compensation of phase mismatch. Periodic oscil-
lations of the SH intensity in a unipolar harmonic lattice were 
revealed. The unipolar and bipolar modulations were found 
to be equivalent with regard to the oscillations. A fourfold 
decrease in the SHG efficiency in harmonic lattices compared 
with the efficiency corresponding to the phase-matched SHG 
in uniformly poled crystals was found. Nevertheless, the con-
version efficiency typical of uniformly poled crystals can be 
attained in the investigated crystals using higher nonlinear 
coefficients. The harmonic nonlinearity modulation can be 
used to implement different parametrical interactions in a wide 
application range, including vacuum ultraviolet generation.
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