
Laser Physics Letters
     

LETTER

General formula for the natural width of optical parametric oscillator
spectral lines
To cite this article: Anatoly S Chirkin 2020 Laser Phys. Lett. 17 115401

 

View the article online for updates and enhancements.

This content was downloaded from IP address 84.237.90.20 on 07/12/2020 at 12:03

https://doi.org/10.1088/1612-202X/abb6e6
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssPful1Gvw0Px_8wACOhw_iWt1UoOAVkiFNYBgUz9km-qE8lFPkJvvEDhM1NZ84mG1vxCnjIeLc2OVTMYIDLPnOhneVmrbuOoHw0PuREUYtJY6XTtyYb_vuvuDq9-YoFxY0XG6Bm_cBb9q6jK2DA3KtCaVLGbd404ISyMl5fcNCP8f5GA1XgCRAk8Ne94Q7TtX36sGtwM6zSk4i2oBzH9OXR0DrDWtyOI447C37WcWZkQm_eViX&sig=Cg0ArKJSzGQI6aG3C7k2&adurl=http://iopscience.org/books


Astro Ltd Laser Physics Letters

Laser Phys. Lett. 17 (2020) 115401 (5pp) https://doi.org/10.1088/1612-202X/abb6e6

Letter

General formula for the natural width of
optical parametric oscillator spectral
lines

Anatoly S Chirkin1,2

1 Faculty of Physics and International Laser Center, M.V. Lomonosov Moscow State University, Moscow,
119991, Russia
2 Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia

E-mail: aschirkin@physics.msu.ru

Received 9 August 2020
Accepted for publication 7 September 2020
Published 1 October 2020

Abstract
A new approach to the quantum analysis of the spectral linewidths of optical parametric
oscillators (OPOs) is proposed. The approach is based on introducing a Hermitian frequency
deviation operator. The spectral linewidths in the triply resonant OPO above-threshold regime
have been calculated. It has been found that the width of the generated spectral line depends on
the loss at all interacting frequencies, the photon number of frequency under study, and the
threshold photon number of pump. The formula obtained for the spectral width is general; in
particular cases, it yields the well-known results. The developed simple approach can be applied
to the quantum analysis of the spectra of various oscillatory systems, for example, the
multifrequency parametric and non-linear optomechanical interactions and lasers.

Keywords: optical parametric oscillator, phase fluctuation, frequency deviation operator,
natural spectrum width

1. Introduction

The width of the emission spectrum of optical parametric
oscillators (OPOs) is extremely important for their applica-
tion, for example, to the areas of high-sensitive interferometry
and coherent optical communications. The experimental and
theoretical study of this problem has attracted close attention
since the launch of the OPO (see reviews [1, 2]). Here, we
discuss the above-threshold regime of the OPO generation.
The subthreshold regime is, as is known, of particular interest
for obtaining quadrature-squeezed light (see review [3]) and is
beyond our consideration.

In the above-threshold excitation regime of both lasers and
parametric oscillators, the finite width of the emission spec-
trum is related to phase fluctuations [4]. The spectral linewidth
was theoretically studied in the OPOs with non-linear crystals
located both outside [5–7] and inside a laser resonator [8], the
radiation of which is used as pumping. In the calculation [6],

the phase fluctuations of the pump radiation were also taken
into account.

To analyze the phase fluctuations, some authors [9–11]
used a method of linearization with respect to the fluctu-
ations near the exitation threshold, while others [6, 7] used
an adiabatic approximation for the pump frequency and one
of the generated frequencies. In the latter case, the problem is
reduced to analyzing the fluctuations of the van der Pol oscil-
lator [4, 6, 7]. The linearization method has a clear physical
justification regarding the linearization by the intensity fluc-
tuations, which are small in the above-threshold generation
regime. As for the phase fluctuations, the oscillators do not
have a physical mechanism that would limit the phase incur-
sion, the variance of which obeys, as a rule, the diffusion law.

In this paper, the approach developed by us made it pos-
sible to get rid of the above-mentioned phase approximation
and take into account the quantum nature of broadening of
the OPO spectral lines. The introduced Hermitian operator of
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the frequency deviation allowed us to circumvent the difficulty
related to problem of the phase operator (see [12–14] and the
references cited there), the fluctuations of which cause a finite
width of the spectral lines. We obtained an general expression
for the triply resonant OPO spectral linewidths, the particular
cases of which were discussed in [6, 7].

In addition, it is shown that the spectral width of the phase
difference of the parametrically generated frequencies can be
narrower than the linewidth of a single frequency.

2. Basic equations

As in the available studies, we use the OPO model with
lumped parameters for analyzing the spectral linewidths. In
this approach, the study of the OPO dynamics is reduced
to solving time stochastic equations. The conditions for the
transition from the equations describing the non-linear-optical
interactions in a distributed system in partial derivatives to
the equations with ordinary derivatives were considered, for
example, in [4, 16].

We consider a triply-resonant OPO whose frequencies sat-
isfy the condition ω3 = ω1 +ω2, where ω3 is the frequency of
the monochromatic pump wave and ω1 and ω2 are the excited
frequencies. We assume that the phase matching condition is
fulfilled. Thus, the problem is reduced to calculating the spec-
tral widths of three coupled oscillators under the action of
vacuum fluctuations and thermal noise related to the loss in
a non-linear crystal and radiation from the resonator.

The Bose operators of the pump frequency and the gen-
erated frequencies are denoted by a3 and a1,a2, respectively.
The pump field entering the cavity contains a great number
of photons; its amplitude and phase fluctuations are ignored
and described in a classical manner by introducing the nota-
tion α3. In our formulation, the Heisenberg–Langevin equa-
tions describing the investigated three-frequency process have
the form (compare with [11])

da1(t)
dt

= ga3(t)a
†
2(t)− γ1a1(t)+ ξ̂1(t), (1)

da2(t)
dt

= ga3(t)a
†
1(t)− γ2a2(t)+ ξ̂2(t), (2)

da3(t)
dt

=−ga1a2 − γ3(a3 −α
(0)
3 )+ ξ̂p(t). (3)

Here, g is the non-linear wave coupling coefficient, the
coefficients γj = κj/Tc, Tc is the cavity round-trip time, the
coefficient κj takes into account the loss in the non-linear crys-

tal κ(cr)
j and the loss to reflection from mirrors κ(m)

j :

κj = κ
(cr)
j +κ

(m)
j . (4)

At the same time, we have

κ
(cr)
j = (1/2)δjL,κ

(m)
j = (1/2)(1−Rj), (5)

where δj is the coefficient of linear loss per crystal, L is the
crystal length, and Rj is the mirror reflection coefficients for
the intensity.

In equations (1)–(3), the random source operators are
determined by the relations

ξ̂j(t) =
√

2γ(cr)
j b̂j(t)+

√
2γ(m)

j ĉj(t). (6)

Operators b̂j(t), ĉj(t) satisfy the conventional commutation
relations

[b̂j(t),
ˆb†k(t1)] = [ĉj(t),

ˆc†k(t1)] = δjkδ(t1 − t),⟨
ˆb†k(t1)b̂j(t)

⟩
=
⟨
ˆc†k(t1)ĉj(t)

⟩
=

δjk ⟨nj(T)⟩δ(t1 − t). (7)

Here, ⟨nj(T)⟩ is the mean thermal photon number at the cor-
responding frequency:

⟨nj(T)⟩=
1

eℏωj/kT− 1
, (8)

where k is the Bolzmann constant, T is the temperature.

3. Frequency deviation operator

In the process under study, the width of the frequency spec-
trum is due to the phase fluctuations. However, as noted above,
introducing of a phase operator encounters some difficulties.
To solve our problem, we will proceed as follows. We intro-
duce the Hermitian operator

Ω̂j(t) =
i

2⟨n̂j(t)⟩
(ȧ†j (t)aj(t)− a†j (t)ȧj(t)), (9)

where dots indicate time derivatives, ⟨n̂j(t)⟩ is themean photon
number after a time t and n̂j(t) = a†j (t)aj(t) is the number
operator.

To clarify the physical meaning of the Hermitian oper-
ator Ω̂j(t), we consider the continuous-mode field Bose
operators aj(t),a

†
j (t) for the coherent state (see, e.g., [21]):

aj(t)|{αj}>= αj(t)|{αj}>. In the narrow-bandwidth approx-
imation used, the eigenvalue is αj(t) = |αj(t)|eiϕ(t), where
ϕj(t) is the phase. We assume that the characteristic scale of
the phase change ϕj(t) is much smaller than that of the envel-
ope |αj(t)|.

Therefore, we can put

ȧj(t)|{αj}>= iϕ̇(t)αj(t)|{αj}> . (10)

The mean value of the operator Ω̂j(t) (9) over the coherent
state is ⟨

< {αj}|Ω̂j(t))|{αj}>
⟩
= ϕ̇(t). (11)

It can be seen that the mean value
⟨
Ω̂j(t)

⟩
determines the time

derivative of the phase, i.e. the frequency deviation. It should
be noted that theHermitian property of the frequency deviation
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operator is consistent with the fact that observable is the phase
difference [13, 14], rather than the phase itself. The phase dif-
ference can be measured, for example, in heterodyning and
interferometry.

This conclusion forms a basis for further calculations of the
variance of the phase incursion fluctuations. In theOPO above-
threshold regime, the relative fluctuations of the photon num-
ber at the excited frequencies are much less than unity. There-
fore, in the above-threshold generation regime, we can replace

the mean value ⟨n̂j(t)⟩ by the stationary value
⟨
n̂(st)j

⟩
= nj. As

a result, the formula (9) is simplified:

Ω̂j(t) =
i
2nj

(ȧ†j (t)aj(t)− a†j (t)ȧj(t)). (12)

In order to obtain the relations for the photon numbers at
the interacting frequencies in the stationary regime, we omit
the fluctuation terms in the system of equations (1)–(3) [7]:

γ1n1 = γ2n2, n3 = n(thr)3 =
γ1γ2
g2

,

n1 =
γ2γ3
g2

(

√
n(0)3 /n(thr)3 − 1), (13)

where n(thr)3 is the pump threshold. The stationary phase rela-

tion is ϕ(st)
3 −ϕ

(st)
2 −ϕ

(st)
1 = 0 or 2π. As expected, the para-

metric generation process is implemented when the pump
photon number n(0)3 exceeds the threshold. Moreover, the
entire photon number excess over the generation threshold
goes to the excitation of parametric frequencies. The station-
ary value of the photon pump number remains at the threshold
level.

Using equations (1)–(3), for example, for the operator Ω̂1

at frequency ω1, we obtain the equation

Ω̂1(t) =
i
n1

(gΣ(t)+ a1(t)ξ̂
†
1(t)− a†1(t)ξ̂1)(t). (14)

The function Σ(t) = a†3a2a1 − a3a
†
2a

†
1 satisfies the equa-

tion

˙̂
Σ(t) =−Γ−1Σ̂(t)+ a†3a2ξ̂1 − a3a

†
2ξ̂

†
1 +

a†3a1ξ̂2 − a3a
†
1ξ̂

†
2 + a1a2ξ̂

†
3 − a†1a

†
2ξ̂3, (15)

where Γ = γ1 + γ2 + γ3. To simplify the notation, the tempor-
ary argument for the operators aj and ξ̂j is hereinafter omitted.

First of all, we note that, after averaging of equation (15)
over the state of random sources, we obtain the equation⟨

˙̂
Σ(t)

⟩
=−Γ−1

⟨
Σ̂(t)

⟩
, (16)

since the fluctuation part of the operators aj, a
†
j functionally

depends only on the fluctuations ξ̂j, ξ̂
†
j . The average

⟨
Σ̂(t)

⟩
→

0 at Γt→∞, actually in the stationary state. The Γ coefficient
in (15) limits the effect of the delta-correlated noise to the fre-
quency band∆Ω=Γ. Since the OPO generated spectral lines
are always narrower than the lines in the passive resonator

spectrum, the fluctuations Σ̂(t) can still be considered delta-
correlated and, for simplicity, we use the adiabatic approxim-
ation. As a result, we have

Σ̂(t) = Γ−1[a†3a2ξ̂1 − a3a
†
2ξ̂

†
1 +

a†3a1ξ̂2 − a3a
†
1ξ̂

†
2 + a1a1ξ̂

†
3 − a†1a

†
2ξ̂3]. (17)

We draw attention to the fact that, here, the adiabatic
approximation is used for the operator Σ̂(t) whose dynamics
depends on the loss at all the parametrically interacting fre-
quencies. In addition, it is worth noting that the solution of (17)
presented below can be made without the adiabatic approxim-
ation (see [15]) ; however, the results obtained are not quite
clear to compare them with the available ones.

4. Variance of the phase fluctuations and natural
spectrum width

Substituting (17) into (14) and integrating over the time inter-
val [t− τ , t], we arrive at the expression for the phase incursion
operator in this interval

∆ϕ̂1(τ) =

ˆ t

t−τ

Ω̂1(t
′
)dt

′
. (18)

When averaging over random forces ξ̂†j and ξ̂j, the operators

a†j and aj are replaced by stationary values (see the remark

above). Thus, we find
⟨
∆ϕ̂(τ)

⟩
= 0.

For the phase incursion variance⟨
(∆ϕ̂1(τ))

2
⟩
=

ˆ ˆ t

t−τ

⟨
Ω̂1(t

′′
)Ω̂1(t

′
)
⟩
dt

′′
dt

′
, (19)

we obtain ⟨
(∆ϕ̂1(τ))

2
⟩
= D1τ. (20)

Here, D1 is the so-called diffusion coefficient of the spectral
line phase at frequency ω1. It is determined as

D1 =
2(γ2 + γ3)

2

(γ1 + γ2 + γ3)2
γ1
n1

+
2γ2

1(γ2 + γ3)

(γ1 + γ2 + γ3)2
1

n(thr)3

. (21)

The expression for the diffusion coefficient D2 at the radi-
ation frequency ω2 is obtained from (21) via replacing index
1 by index 2 and vice versa. In (21), we ignored the contribu-
tion of the thermal fluctuations, the mean photon number of
which at the optical frequency is much less than unity at room
temperature (⟨nj(T)⟩, see (8) ).

The diffusion coefficients Dj(j= 1.2) determine the natural
width ∆ωj of the Lorentz spectral distribution,∆ωj = Dj.

According to formula (21), the width of the spectrum at
the parametrically excited frequencies depends not only on
the photon number of the generated radiation at the invest-
igated frequency and loss at the generated frequencies, but
also on the threshold photon number and loss on it. Near the
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generation threshold, i.e. at n1 ≪ n(thr)3 , the contribution of the
first term to the spectrum width will prevail. With an increase
in the pump photon number and, therefore, in the number of
generated photons, the contribution of the second term in (21)
to the spectrum width increases.

The formula (21) can be rewritten in terms of power Pj by
replacing the mean photon number: Pj = 0,5γjnj.

Let us estimate the spectral linewidth ∆ωj = Dj in order
of magnitude. Suppose that a parametrically generated power
equal to P1 = 30 mW is twice the pump threshold. Let the gen-
erated frequency be equal ν1 = ω1/2π = 3× 1014 Hz and and
close to the degenerate regime. For estimation, we take the
coefficients γj the same γj ∼= 1× 108 c−1. We obtain ∆ω1

∼=
1 Hz. It should be noted that two-thirds of this quantity is asso-
ciated with the second term in (21).

5. Difference frequency spectrum

Let us now consider the spectral width of the difference
between the frequencies ω2 and ω1 generated in the OPO. Due
to the symmetry of the problem, the frequency deviation oper-
ator for a wave with the frequency ω2 is determined by the
expression similar to (14).

Ω̂2(t) =
i
n2

(gΣ(t)+ a2(t)ξ̂
†
2(t)− a†2(t)ξ̂2)(t). (22)

The operator of the frequency deviation difference is
∆Ω̂(t) = Ω̂2(t)− Ω̂1(t). The variance of the phase differ-
ence incursion at the difference frequency ωd = ω2 −ω1 is
expressed as⟨

(∆ϕ̂d(τ))
2
⟩
=

ˆ ˆ t

t−τ

⟨
∆Ω̂(t

′′
)∆Ω̂(t

′
)
⟩
dt

′′
dt

′
. (23)

If we make the assumption γ1 ∼= γ2, expression (23) yields
the simple result⟨

(∆ϕ̂d(τ))
2
⟩
= Ddτ,Dd = 2(

γ1
n1

+
γ2
n2

)∼= 4
γ1
n1

. (24)

In the investigated case, the spectral width of the difference
frequency is only determined by the intrinsic loss at the OPO
generated frequencies and independent of the loss at the pump
frequency and the threshold value. Obviously, this width can
be smaller than the width of a single spectral line, since the
correlated phase fluctuations at the difference frequency are
subtracted.

6. Conclusion

In conclusion, to solve the problem of the spectral linewidth of
OPOs outside the limitations of previous works, we introduced
the Hermitian frequency deviation operator. The resulting
expression (21) obtained for the triply resonant OPO natural
linewidth is more general from the viewpoint of the influence
on it of various sources of quantum fluctuations during para-
metric generation.

First, the available theories lack the second term. There-
fore, the width of the spectral line is determined not only by
the generated power at the frequency under consideration, but
also by the threshold pump power. Moreover, if the generated
power exceeds several times the threshold power, the latter can
mainly determine the spectral linewidth.

Second, according to (21) the OPO spectral linewidth
depends on loss at all the interacting frequencies (coefficients
γj). In special cases, formula (21) yields the known results.

In (21), the first term leads to the result of study [5] at
γ3 ≫ γ1,γ2. At γ3 and/or γ2 ≫ γ1, we obtain the formula from
study [7].

The simple approach developed in this work is in progress
of an application for quantum spectral analysis of coupled
multifrequency parametric interactions [17, 18] and paramet-
ric self-frequency conversion [19]. This approach can also be
used in spectral analysis of non-linear optomechanical inter-
actions [20] and other vibrational quantum systems.
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