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Decay of symmetry-protected quantum states
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We study the decay of bosonic many-body states in the triple-well Bose-Hubbard model where bosons in the
central well can escape into a reservoir. For vanishing interparticle interaction this system supports a nondecaying
many-body state which is the antisymmetric Bose-Einstein condensate with particles occupying only the edge
wells. In the classical approach this quantum state corresponds to a symmetry-protected nondecaying state which
is stable even at finite interaction below a certain intensity threshold. Here we demonstrate that despite the fact
that the classical counterpart is stable the antisymmetric Bose-Einstein condensate is always metastable at finite
interatomic interactions due to quantum fluctuations.
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I. INTRODUCTION

Dissipative quantum systems are of great importance as
they pave a way for manipulating quantum matter for prepa-
ration of pure [1] as well as highly entangled [2] states, and
implementation of quantum computations [3]. One partic-
ular example of dissipative quantum systems realized with
cold atoms are open systems which can exchange particles
with a reservoir [4–10], so, neither the energy nor the par-
ticle number is preserved. If an open system is coupled
with two reservoirs with different chemical potentials, it re-
alizes an atomtronic analog [11] of semiconductor devices
[7,9,10,12,13]. Alternatively a quantum lattice system can be
coupled with the environment only in a single lattice site as
experimentally demonstrated in [14].

Here we consider decay of Bose particles from a triple
quantum well with the central well coupled to the environ-
ment, i.e., the bosonic particles are drained into a reservoir
[15]. Despite its simplicity the three-site Bose-Hubbard (BH)
model does not allow for the exact analytic solution [15–19].
In this paper we employ the pseudoclassical approach [20–28]
which allows us to cast the problem into a form of coupled
driven nonlinear oscillators. From the pure classical perspec-
tive this system supports a nondecaying solution with equal
intensities but opposite phases on the edge sites. Such a so-
lution has a zero amplitude at the central site, and, therefore,
is not directly coupled to the reservoir. This kind of localized
solution, existing in the system despite the fact that loss chan-
nels are allowed, is known as a bound state in the continuum
(BIC) [29]. In particular, the BIC to be considered in the
present work is analogous to that supported by a pair of side
defects coupled to photonic crystalline waveguides [30,31].
From the quantum mechanical perspective the discussed BIC
is the antisymmetric Bose-Einstein condensate (BEC) with
particles occupying only the edge sites. The central problem
to be addressed in the work is the account of the interparticle
interaction. We shall examine the stability of nonlinear BIC
in the classical regime and investigate the link between the

classical and quantum solutions. It shall be demonstrated that
even a classically stable nonlinear BIC undergoes a slow rate
decay due to quantum fluctuations. Thus, the antisymmetric
BEC of interacting particles is always a metastable state.
We shall show that the quantum fluctuations can be accu-
rately described within the pseudoclassical framework by the
stochastic force emerging in the nonlinear coupled oscillator
model.

II. MASTER EQUATION AND
PSEUDOCLASSICAL APPROACH

We consider a linear trimer of three coupled potential
wells. The trimer is initially occupied by N0 bosons which can
tunnel between the wells as shown in Fig. 1. The tunneling
dynamics is controlled by the Bose-Hubbard Hamiltonian,

Ĥ = −J

2

2∑
�=1

(â†
�+1â� + H.c.) + U

2

3∑
�=1

n̂�(n̂� − 1), (1)

where â†
� (â�) is the creation (annihilation) operator at the �th

site, n̂� is the number operator at the �th site, J is the interwell
tunneling rate, and U is the interaction constant. By now
the BH model has grown into one of the seminal models in
physics of cold atoms which scopes quantum phase transitions
[32], the effects of Josephson oscillations [33,34], atomic
Bloch oscillations [35,36], refill dynamics in the presence of
induced losses [14,37], spontaneous breaking of the symmetry
[38], and quantized current in the engineered transport chan-
nel [7,9,10] to mention a few results relevant to the present
paper. Here, following [15], we assume that the central well is
attached to a particle sink as shown in Fig. 1. Then the system
dynamics is described by the density matrix R̂ which obeys
the master equation,

∂R̂
∂t

= −i[Ĥ, R̂] + L̂(R̂), (2)
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FIG. 1. Sketch of the system.

with the loss operator of a Lindblad form,

L̂(R̂) = −γ

2
(â†

2â2R̂ − 2â2R̂â†
2 + R̂â†

2â2), (3)

where γ is the loss rate.
The pseudoclassical approach is introduced by replacing

each operator Â by its Weyl symbol which is a function on the
phase space [39],

symb[Â] = A(a, a∗), (4)

with a, a∗ being the complex conjugated canonical variables
defined as the Weyl symbols of the annihilation and creation
operators,

symb[â] = a, symb[â†] = a∗, (5)

where we omitted the subindex � for simplicity. The Weyl
symbols of an operator product of two operators are computed
via the Moyal star product of the Weyl symbols of the two
operators,

A � B = A exp

[
h̄

2

(
∂←

∂a

∂→

∂a∗ − ∂←

∂a∗
∂→

∂a

)]
B. (6)

For instance, it is easy to see from Eq. (6) that the Weil symbol
of the number operator is

symb[n̂] = a∗ � a = |a|2 − 1
2 . (7)

The figure of merit in the pseudoclassical approach is the Weyl
symbol of the density matrix known as the Wigner function,

W = symb[R̂]. (8)

Applying Eq. (6) to the master equation, Eq. (2) one finds that
the Wigner function obeys the following equation [40,41]:

∂W
∂t

= − i
3∑

�=1

[
U

(
1 − ∣∣α2

�

∣∣)(α�

∂W
∂α�

− α∗
�

∂W
∂α∗

�

)
− . . .

− U

4

(
∂3α∗

�W
∂α�∂α∗

�
2 − ∂3α�W

∂α2
�∂α∗

�

)]
− i

J

2

2∑
�=1

(
α�+1

∂W
∂α�

+α�

∂W
∂α�+1

− α∗
�+1

∂W
∂α∗

�

− α∗
�

∂W
∂α∗

�+1

)

+ γ

2

(
α2

∂W
∂α2

+ 2W + α∗
2
∂W
∂α∗

2

)
+ γ

2

∂2W
∂α2∂α∗

2

. (9)

The above equation contains third-order derivatives which do
not allow one to interpret it as a Fokker-Plank equation with a
positive definite or positive semidefinite diffusion matrix [40].

The pseudoclassical limit of Eq. (9) is obtained by setting
N0 → ∞ while keeping g = UN0 = Const. In what follows
the quantity g will be referred to as the macroscopic interac-
tion constant. Let us apply the following substitution:

α� = √
N0a�, α∗

� = √
N0a∗

� . (10)

Then Eq. (9) transforms to

∂W
∂t

= −i
3∑

�=1

[
g

(
1

N0
− |a2

�|
)(

a�

∂W
∂a�

−a∗
�

∂W
∂a∗

�

)]
−i

J

2

2∑
�=1

×
(

a�+1
∂W
∂a�

+ a�

∂W
∂a�+1

− a∗
�+1

∂W
∂a∗

�

− a∗
�

∂W
∂a∗

�+1

)

+ γ

2

(
a2

∂W
∂a2

+ 2W + a∗
2
∂W
∂a∗

2

)
+ γ

2N0

∂2W
∂a2∂a∗

2

+ O
(
N−2

0

)
. (11)

Neglecting the O(N−2
0 ) term we arrive at a true Fokker-Plank

equation where the first term in the third line can be viewed as
dissipation while the second term in the same line is diffusion
[27,28].

The dynamics under the Fokker-Planck equation, Eq. (11)
can be unravelled into a set of dissipative Langevin equations,

ida1 =
(

− J

2
a2 + g|a1|2a1

)
dt,

ida2 =
[

− J

2

(
a1 + a3

)
+ g|a2|2a2 − i

γ

2
a2

]
dt +

√
γ

2N0
dξ,

ida3 =
(

− J

2
a2 + g|a3|2a3

)
dt, (12)

where dξ is the complex white noise,

dξ = 0, dξ ∗dξ = dt, dξdξ = 0. (13)

Notice that compared to Eq. (9) in Eq. (12) we omitted the
“self-energy” term proportional to g/N0. This can be done as
the oscillating factor exp(−igt/N0) can be absorbed into the
noise Eq. (13) without changing its correlation properties.

Let us assume for a moment that there is no noise term
in Eq. (12). Then Eq. (12) has an antisymmetric solution
decoupled from the lossy site,

aBIC(t ) = e−igIt

⎛
⎝

√
I

0
−√

I

⎞
⎠, (14)

where the intensity I can be linked to the mean population of
the edge sites n1,3 = IN0 + 1/2. By examination of Eq. (12)
one immediately identifies the three factors affecting the de-
cay dynamics of this state.

(i) The stability of the BIC. If solution (14) is unstable, it
can be destroyed by small perturbations.

(ii) The initial condition for solving Eq. (12). In more
detail, we expect that the decay rate is dependent on how
close the initial condition is to the symmetry-protected BIC,
Eq. (14). Moreover, in establishing quantum to classical cor-
respondence one cannot deal with a single trajectory but
with the ensemble of trajectories whose initial conditions are
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determined by the initial many-body quantum state of the
system [24].

(iii) The noise term in Eq. (12) inversely proportional to√
N0. The noise can perturb even an intrinsically stable state

driving it out of equilibrium. Notice that even though the
reservoir does not supply particles into the system a stochastic
driving force is still present in Eq. (12). Physically, this intrin-
sic noise is nothing but the quantum fluctuations arising from
the noncommutativity of creation and annihilation operators.
The noise term is important for the correct application of
the pseudoclassical approach. For example, in the paradigm

problem of the decaying quantum oscillator it ensures that the
oscillator does not decay below its ground energy.

In the next section we discuss each of these factors in more
detail.

III. DECAY OF THE ANTISYMMETRIC STATE

A. Stability analysis

First we analyze the stability of the solution aBIC(t ) for g �=
0. Using the standard stability analysis [42] the stability of this
solution can be examined by analyzing the matrix,

M̂ =

⎛
⎜⎜⎜⎜⎜⎝

gI −J/2 0 gI 0 0
−J/2 −iγ /2 − gI −J/2 0 0 0

0 −J/2 gI 0 0 gI
−gI 0 0 gI J/2 0

0 0 0 J/2 −iγ /2 + gI J/2
0 0 −gI 0 J/2 gI

⎞
⎟⎟⎟⎟⎟⎠. (15)

If the imaginary part of all eigenvalues of M̂ is nonpositive,
the BIC solution is stable. Figure 2(a) shows the imaginary
parts of the eigenvalues as the function of gI for J = 1 and
γ = 0.4. It is seen that in this case the stability threshold
corresponds to |gI| = 0.2 and is independent on the sign of
the interaction constant. Further on we shall only consider
repulsive interactions. Above the threshold any tiny imbalance
in the population of the edge sites will lead to excitation of the
symmetric modes and the BIC loses its intensity. This process
is exponential in time resulting in a rapid drop of intensity
at the initial stage. However, once the stability threshold is
crossed the solution aBIC(t ) stabilizes at a certain value of
intensity Ist,

Ist = Ist (γ , g). (16)

In what follows we shall refer to Eq. (16) as the stabilization
level. We mention that, as expected, the stabilization level
is approximately inversely proportional to g yet it is always
smaller than the stability threshold deduced from Eq. (15).
The described scenario is exemplified by thin solid lines in
Figs. 2(d) and 2(e) where, to provoke the symmetry breaking,
we introduced a tiny population imbalance ∼10−3 in the initial
BIC state. The exponential decrease of intensity for g above
the stability threshold and the effect of stabilization is clearly
seen in the figure.

B. Quantum ensemble

Before simulating the decay of truly quantum states we
have to introduce an ensemble of classical initial conditions
corresponding to a quantum state loaded into the system. This
can be done by using the Husimi Q function,

Q(α) = 1

π3
〈α|R̂|α〉, (17)

where |α〉 is the Glauber coherent state,

|α〉 = e− |α1 |2+|α2 |2+|α3 |2
2 eα1â†

1+α2 â†
2+α3â†

3 |vac〉, (18)

with α = {α1, α2, α3}. At first, for the initial state we choose
an antisymmetric N-particle BEC. However, for future conve-
nience below we present a single formula for both symmetric
|	 (+)

BEC〉 and antisymmetric |	 (−)
BEC〉 condensates,

|	 (±)
BEC〉 = 1√

2N N!
(â†

1 ± â†
3)N |vac〉. (19)

After applying the Husimi transformation Eq. (17) one finds

Q(±)
BEC(α) = |α1 ± α3|2N

π32N (N!)
e−|α1|2−|α2|2−|α3|2 . (20)

It is worth mentioning that in [24] the quantum ensem-
ble was generated by using the SU(L) coherent states which
specifically refer to the problems with conserved number of
particles. In case, since the number of particles is not con-
served, the application of the Glauber coherent states is more
appropriate. By applying the acception-rejection method [24]
we generate the ensembles of the initial conditions according
to the distribution function (20) for N0 = 20 and N0 = 100;
see Figs. 2(b) and 2(c). The width of the depicted distribution
scales as

√
N0 for the amplitudes and 1/

√
N0 for the relative

phases. Now, having the quantum ensemble at hand we can
simulate the system dynamics. The result is depicted by the
thick dashed lines in Figs. 2(d) and 2(e). Notice that according
to Eqs. (10) and (14) the initial intensity is always I = 1/2,
thus, the stability threshold gI = 0.20 in Fig. 2(a) corresponds
to g = 0.40 in the initial time. Remarkably, in the unstable
cases (g > 0.4) we get the same fraction of bosons which is
left in the system as it is predicted by the pure classical stabil-
ity analysis given in the previous subsection. In the stable case
g = 0.4, however, we observe essential deviations. These can
be understood by noticing that every initial condition a(t = 0)
from the quantum ensemble is a superposition of the system
linear eigenmodes,

b1 =
⎛
⎝

1√
2

0
−1√

2

⎞
⎠, b2 =

⎛
⎜⎝

1
2
1√
2

1
2

⎞
⎟⎠, b3 =

⎛
⎜⎝

1
2

−1√
2

1
2

⎞
⎟⎠, (21)
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FIG. 2. (a) Thick solid lines show the imaginary parts Im{λn} of the eigenvalues of matrix (15) for J = 1, γ = 0.4. Thin dashed lines show
the stability threshold. (b) and (c) Initial conditions for the antisymmetric BEC in the space of populations of the first, n1, and the third, n3,
sites for (b) N0 = 20 and (c) N0 = 100. (d) and (e) Decay dynamics of the antisymmetric state with (d) N0 = 20 and (e) N0 = 100. Thick lines
show the total number of particles against time for antisymmetric BEC initial conditions shown in subplot [(d) and (c)]. Thin lines show the
decay of the classical BIC state.

where the first eigenmode obviously corresponds to the
symmetry-protected BIC while the other two modes are cou-
pled to the reservoir and decay within the characteristic time
2π/γ . Thus, the solid and dashed lines in Figs. 2(d) and 2(e)
may coincide only in the limit N0 → ∞ where the quantum
ensemble shrinks to the single point.

C. The role of the noise

Now let us return to the Langevin dynamics governed
by Eq. (12) where one could expect that even a stable
antisymmetric BIC state Eq. (14) is subject to decay. To
test this conjecture we solve numerically both the Langeven
equation and the exact master equation, Eq. (2). The re-
sults are shown in Fig. 3. In Fig. 3(a) we depict the exact
quantum solution for the total population. One can see
that unlike the classical solutions in Fig. 2 the population
now continues to decay even after crossing the stabiliza-
tion level. This decay is still exponential, however, with
much smaller rate. In Fig. 3(b) we compare the popula-
tion dynamics for the first and the second sites obtained
by the pseudoclassical and quantum approaches. One can

see that the two results are in good agreement. This sup-
ports our conjecture that the noise destroys the classical
symmetry-protected BIC.

To look at the decay dynamics in more detail we compute
the single-particle density matrix ρ̂, whose matrix elements
are defined as

ρ�,�′ = Tr(â†
� â�′R̂). (22)

In the pseudoclassical framework this matrix corresponds to
the correlation functions,

ρ�,�′ = 〈a∗
�a�′ 〉 − 1

2δ�,�′ , (23)

where the pointy brackets designate the ensemble average
over Langevin trajectories. The single-particle density matrix
allows us to test whether the quantum state remains a BEC
during the decay [43]. Namely, if all but one eigenvalues are
zero the system is a condensate state. Another related quantity
is the correlation function [15],

C(t ) = ρ1,3√
ρ1,1ρ3,3

= 〈a∗
1a3〉√

〈|a1|2〉〈|a3|2〉
. (24)
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FIG. 3. Decay of the antisymmetric condensate for N0 = 20. (a) Thick lines are logarithmic plots of the total population against time
obtained by solving the master equation Eq. (2). Thin lines show the stabilization levels from Fig. 2(d). (b) Populations of the first and the
second sites against time. Here and in (c) and (d) thin lines are quantum simulations while thick gray lines are the results of the pseudoclassical
approach, g = 0.8. (c) Normalized eigenvalues of the single-particle density matrix Eq. (22), g = 0.8. (c) Correlation function Eq. (24), g = 0.8.

If C(t ) = −1 the system is an antisymmetric conden-
sate and if C(t ) = 1, then the condensate is symmetric.
In Fig. 3(c) we show the normalized eigenvalues of ρ̂,
while in Fig. 3(d) we plotted the correlation functions,

Eq. (24). Both subplots are consistent with the decay dy-
namics described above: First, the system rapidly departs
from antisymmetric BEC. Then, after the stabilization level
is crossed the system recoheres into antisymmetric BEC
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FIG. 4. Decay of symmetric condensate for g = 0.8 and N0 = 20; thin lines—quantum simulations, thick gray lines—pseudoclassical
approach. (a) The full population against time as obtained by solving the master equation Eq. (2). The inset shows the ensemble of initial
conditions. (b) Populations of the first and the second wells against time. (c) Normalized eigenvalues of the single-particle density matrix
Eq. (22). (d) Correlation function Eq. (24).
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FIG. 5. Decay of fragmented condensates, N0 = 20, T = 2π (p.d.u.); thick gray lines show the result by the pseudoclassical approach,
thin blue lines show the solutions of the master equations. (a)–(c) Dynamics of the full population. The insets show the ensembles of
initial conditions. (d)–(f) Normalized eigenvalues of the single-particle density matrix for (d) Fock state, (e) symmetric NOON state, and
(f) antisymmetric NOON state. (g)–(i) Correlation function, Eq. (24) for (g) Fock state, (h) symmetric NOON state, and (i) antisymmetric
NOON state.

again and slowly decays as the metastable antisymmetric
solution.

D. Symmetric BEC

To see the full picture in this section we also present results
on the decay of the symmetric BEC state, Eq. (19). One
can see from Fig. 4 that in the course of time the symmet-
ric BEC state rapidly drops intensity and decoheres into a
fragmented condensate with two nonzero eigenvalues of the
single-particle density matrix. Eventually, only a tiny fraction
of the initial population survives after the system transits into
a pure antisymmetric BEC well below the stability threshold.
Again we see a good coincidence between the quantum and
pseudoclassical results.

IV. DECAY OF FRAGMENTED CONDENSATES

Next we examine the decay dynamics of fragmented
condensate states. The fragmented condensate states are
defined as those having more than one nonzero eigen-
value of the single-particle density matrix [43]. The most
obvious example of a fragmented condensate is a Fock

state,

|	Fock〉 = 1

(N/2)!
(â†

1â†
3)(N/2)|vac〉, (25)

where N/2 particles occupy the first site and the rest N/2
particles are in the third site. Directly applying Eq. (17) one
finds

QFock(α) = |α1|N |α3|N
π3[(N/2)!]2

e−|α1|2−|α2|2−|α3|2 . (26)

Another, less trivial, example is the (anti-)symmetric
NOON state which is a Schrödinger cat state of N bosons in
two wells,

|	 (±)
NOON〉 = 1√

2(N!)
[(â†

1)N ± (â†
3)N ]|vac〉. (27)

This state has the following Q function,

Q(±)
NOON(α) = e−|α1|2−|α2|2−|α3|2

× |α1|2N + |α3|2N ± (α1α
∗
3 )N ± (α∗

1α3)N

π32(N!)
.

(28)
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In Fig. 5 we show the simulation results by both pure
quantum and pseudoclassical approaches. One can see that
despite the profound difference between the Fock state and
the (anti-)symmetric NOON states clearly seen in insets in
Fig. 5(a)–5(c), the decay dynamics is essentially identical. In
all cases we see a rapid decay of a fragmented state below
the stability threshold after which the system recoheres to the
antisymmetric BEC having lost the major part of the initial
population. As before we see a good accuracy of the pseudo-
classical approach.

V. SUMMARY AND CONCLUSIONS

We have examined the decay dynamics of quantum states
with a definite number of bosons in the three-well open Bose-
Hubbard model. It is demonstrated that the stability of the
quantum state can be predicted from the classical perspective.
The decay scenarios are drastically different depending on
whether the solution is stable in the pseudoclassical limit. In
particular, it is shown that in the pseudoclassical regime the
antisymmetric BEC state is mapped to a symmetry-protected
bound state in the continuum (BIC). The BIC is only stable be-
low a certain intensity threshold. Above the classical stability
threshold the antisymmetric BEC rapidly decays and deco-
heres due to interparticle interactions. Once the population has
dropped below the threshold, however, the system recoheres
to the antisymmetric BEC which decays at a much slower
rate due to the quantum fluctuations. It is demonstrated that
the quantum fluctuations can be accurately described in the
pseudoclassical framework by introducing a stochastic force
with amplitude inversely proportional to the square root of the
initial number of particles.

The pseudoclassical approach has been applied to several
types of initial states with initial population only at the edge
sites. Besides the antisymmetric BEC we have studied the
decay of symmetric BEC, Fock, (anti-) symmetric NOON
states. In all cases the initial bosonic cloud rapidly looses
population to the reservoir and the decay can only slow down
well below the classical stability threshold when the system
recoheres to the metastable antisymmetric BEC. In all cases
we observed a good coincidence between the numerical data
obtained by the pseudoclassical approach and exact quantum
simulations.

Recently, we have seen a surge of interest in decay dynam-
ics of two-photon states [44–47]. We believe that the approach
presented here provides the key to understanding the decay
dynamics in the other solvable limit, namely, pseudoclassical
regime. Finally, we would like to outline the future work
ensuing from the present paper. It remains a question whether
the asymptotic law of below threshold decay can be derived
from the Langevin equations, Eq. (12), or the corresponding
Fokker-Plank equation. We speculate that this problem may
pose an interesting topic for future research.
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