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Optical bistability with bound states in the continuum in dielectric gratings
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We consider light scattering by dielectric gratings supporting optical bound states in the continuum. Due to the
presence of instantaneous Kerr nonlinearity critical field enhancement in the spectral vicinity of the bound state
triggers the effect of optical bistability. The onset of bistability is explained theoretically in the framework of
the temporal coupled-mode theory. As the central result we cast the problem in the form of a single field-driven
nonlinear oscillator. The theoretical results are verified in comparison with numerical simulations.

DOI: 10.1103/PhysRevA.102.033511

I. INTRODUCTION

Engineering high-quality resonances which provide
access to tightly localized optical fields has become a topic
of paramount importance in electromagnetism [1—4]. In that
context, dielectric gratings are a useful optical instrument with
numerous applications relying on high-quality resonances
[3,5], which occur in the spectral vicinity of avoided crossings
of the dielectric grating modes [6]. The utmost case of light
localization is a bound state in the continuum (BIC)—an
embedded state with an infinite quality factor coexisting with
the scattering solutions [4,7]. Since the seminal paper by
Marinica, Borisov, and Shabanov [8] BICs in all-dielectric
gratings have been extensively studied both theoretically
[9-14] and experimentally [15,16]. Recently, optical BICs
have also been reported in hybrid photonic-plasmonic gratings
[17,18].

BICs are spectrally surrounded by a leaky band of high-
quality resonances which can be excited from the far zone
[19]. The excitation of the strong resonances leads to criti-
cal field enhancement [20,21] with the near-field amplitude
controlled by the frequency and the angle of incidence of the
incoming monochromatic wave. The critical field enhance-
ment allows for activating nonlinear optical effects even with a
low amplitude of the incident waves. Such resonant enhance-
ment of nonlinear effects may lead to the effects of symmetry
breaking [22] and channel dropping [23].

Among various potential applications in nonlinear optics
BICs have been used for second harmonic (SH) generation.
In particular, giant conversion efficiency into the SH (up to
40%) was predicted for an array of parallel dielectric cylinders
[24]. A more practical design of an AlGaAs metasurface on a
quartz substrate supporting BICs was analyzed in [25], where
the efficiency of SH generation Ps,,/P2 ~ 1072 W is predicted
in the vicinity of a BIC. Recently, it was shown theoreti-
cally that BICs can enhance the SH convention efficiency
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in transition-metal dichalcogenide monolayers by more than
four orders of magnitude [26]. The BIC is a dark (optically
inactive) resonance which cannot be excited from the far field,
however, it was shown in [27] that BICs in periodic dielectric
structures can be excited by nonlinear polarization at the SH
frequency induced by the incident field. The same mechanism
of destructive interference underlying BICs can result in the
appearance of high-quality modes in subwavelength dielectric
resonators [28,29], which also demonstrate giant SH genera-
tion efficiency [30,31].

In this paper we consider the effect of critical field en-
hancement on the optical bistability induced by instantaneous
Kerr nonlinearity. Such optical bistability emerges in the
scattering spectra in the form of nonlinear Fano resonances
[32,33]. Previously studies of optical bistability with BICs
relied solely on either brute force numerical modeling [19,34]
or the phenomenological coupled-mode approach [35]. Re-
cently, having considered an array of nonlinear cylinders,
we combined the two approaches into a single theory [36]
that reduces the problem of finding the nonlinear response
to solving a nonlinear coupled-mode equation for a single
variable. Herewith all the parameters of the coupled-mode
equation are known from solving the linear scattering problem
in the spectral vicinity of the BIC, which is a far easier task
than numerical modeling of nonlinear Maxwell’s equation. In
this paper, we present a generic theory applicable to planar
structure with no mirror symmetry with respect to reflection in
the plane of the structure. The theory is verified in comparison
to numerical solutions of the wave equation.

II. BOUND STATES IN THE CONTINUUM

The system under consideration is shown in Fig. 1(a).
It is a dielectric grating assembled of rectangular dielectric
bars made of Si. The bars are periodically placed on the
glass substrate. Here we only consider the scattering of TE
polarized waves with the electric vector aligned with the Si
bars as shown in Fig. 1. Under such conditions the propaga-
tion of electromagnetic waves is controlled by the Helmholtz
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FIG. 1. (a) Dielectric grating of Si bars on a glass substrate. The plane of incidence y0z is shaded gray. The magenta arrow shows the electric
vector of the incident wave. The parameters are w = 0.5k, b = 0.5k, L = 1.25h. (b, c) Electric-field profiles of two symmetry-protected BICs

visualized as E, in the yOz plane.

equation for the x component of the electric field,

82 82
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where k is the vacuum wave number and ng, are linear and
nonlinear refractive indices, respectively. In what follows the
refractive index of Si is taken as ng = 3.575, and the refractive
index of the substrate ng = 1.5.

Our numerical simulations using the Dirichlet-to-Neumann
map method [37] have demonstrated that for the set of param-
eters specified in the caption to Fig. 1 the system supports
two in-I" BICs coexisting with the zeroth diffraction order.
The eigenmode profiles of the BICs are shown in Figs. 1(b)
and 1(c). Note the striking difference between BIC 1 and BIC
2 in Fig. 1(b) and Fig. 1(c): the field of BIC 1 is mostly
localized in the Si bars, whereas the field of BIC 2 is spread
across the whole grating. This difference is due to the higher
eigenfrequency of BIC 2, allowing the first diffraction order
in the glass substrate.

One important property of BICs is the emergence of a col-
lapsing Fano feature in its parametric vicinity [38—42]. In this
paper, we consider light scattering near the normal incidence
so that the incident light couples to the band of resonant modes
with a diverging Q factor as & — 0. In Fig. 2(a) and Fig. 2(b)
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we show the transmittance spectra in the spectral vicinity of
BIC 1 and BIC 2, correspondingly. One can see that in both
cases one observes a narrow Fano feature which collapses at
the exact normal incidence. There is also a difference between
the two cases. Namely, there is more than a single Fano
resonance at BIC 2. The transmittance exhibits two zeros and
an extra peak which does not vanish at the normal incidence.
This difference can be explained through the different natures
of BIC 1 and BIC 2 One can see in Fig. 2 that BIC 1 occurs
as an isolated resonance, while BIC 2 emerges as a result
of hybridization of two resonant modes, with one of them
acquiring an infinite lifetime. The latter mechanism of the BIC
has been demonstrated for dielectric gratings in [11]. In the
next section we provide a theoretical description of the line
shapes of the Fano anomalies induced by the BICs extended
to the effects of Kerr nonlinearity triggered by critical field
enhancement.

III. SCATTERING THEORY

The aim of this section is to formulate the equation for
the amplitude of the quasi-BIC resonant mode in the frame-
work of the temporal coupled-mode theory (TCMT) [43]. We
mention in passing that recently the TCMT approach has been
revisited on mathematically rigorous grounds with application

4.35

FIG. 2. (a) Transmittance spectrum in the vicinity of BIC 1 at three angles of incidence specified in the inset. (b) Transmittance spectrum
in the vicinity of BIC 2 at three angles of incidence specified in the inset.
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of the Feshbach projection technique [44]. The generic case of
a TCMT applied to a two-dimensional structure is considered
in [45]. It has been demonstrated that in the absence of mirror
symmetry with respect to y — —y the application of TCMT
requires consideration of four scattering channels. However,
as the above symmetry holds in our case, we apply a two-
channel TCMT in this paper. Following [36] we only consider
the effect of a single resonant mode, mentioning in passing
that a generalization of the TCMT to the multimodal case is
possible [46].

A. Coupled-mode approach

Let us start with the TCMT equation for an isolated reso-
nance [43],

da(t)
dt

where a(t) is the time-dependent amplitude of the resonant
mode, w is the resonant frequency, I is the inverse lifetime
of the resonance, |d) is the vector of coupling constants to
the scattering channels, and |s") is the vector of incident
amplitudes. In general the system under scrutiny allows for
reflection at multiple Bragg’s angles. The BICs in Fig. 1,
however, have frequencies below the first cutoff near the
normal incidence kh < 2. In the chosen frequency range all
but the zeroth diffraction channels are evanescent. So, as we
stay in the domain where only specular reflection is allowed,
both |sP)) = (SE-H, s(2+))T and |d) = (d;, d»)T are 2 x 1 vec-
tors. The subscripts 1 and 2 are applied to the upper and
lower half-spaces, correspondingly. Let us, e.g., assume that
a monochromatic plane wave with frequency w is incident
onto the grating from the upper half-space. The vector of the
incident amplitudes is written as

Is) = (VIp, 0)7, 3)

where [ is the flux density supported by the incident wave.

= i(wo — D)a + (d*|s'7), (2)

After the time-harmonic substitution a(t) = ae'®" one finds
/Ty
“4)

a=——"—""".
[i(w — wp) +T']

Finally, the outgoing amplitudes can be found from the fol-
lowing equation:

1)y = C + ald). 5)

Here, C is the matrix of the direct (nonresonant) process. In
the case of the symmetry-protected BIC, matrix C can be
easily obtained numerically by solving the scattering problem
at the normal incidence with the incident frequency equal to
the BIC frequency: in other words, exactly at the point of the
Fano resonance collapse [36].

The general solution of the linear scattering problem can
be written through the scattering matrix S(w), which links the
vectors of incident and outgoing amplitudes:

57) = S(w)s™). (6)

Since the system under consideration is both energy preserv-
ing and symmetric with respect to time reversal, matrices S(w)
and C are simultaneously unitary and symmetric [47]. The

most generic form of C can be parameterized as

R ) —in :

c=et(" " ), @)
it pe'l

where the real-valued p and 7 are the absolute values of the

reflection and transmission amplitudes, which have to satisfy
the equation

ot 4i=1. (8)

Thus, taking the above into account we are left with only three
independent parameters, 8, i, and p, which can be analytically
derived from Eq. (7).

The quantities C and |d) are linked through the equation
[43]

Cld*) = —|d), 9)

which is a consequence of both energy conservation and time-
reversal symmetry. Equation (9) constitutes a homogeneous
algebraic equation for unknown |d). Since the complex con-
jugation is involved in Eq. (9) it has to be solved for four
independent variables, i.e., the real and imaginary parts of |d).
This results in a system of four equations of rank 2. Therefore
the general solution of Eq. (9) can be written as a function of
two independent parameters, « and S:

. i@
) = ([r(x — z.(l + ,0),3]6'¢;]>. (10)
[t8 —i(1 4+ p)ale' >

Note that in general d| # d,. Thus, Eq. (10) takes into account
the asymmetry of the coupling to the upper and lower half-
spaces due to the lack of mirror symmetry in the plane of the
structure [see Fig. 1(a)].

Another important relationship [43] is also a consequence
of energy conservation:

2T = (d|d). (11)

The above equation is derived by considering the decay dy-
namics of the system with no impinging wave. Assume that a
certain amount of energy E is loaded into the resonant mode;
then the solution of Eq. (2) is a(t) = a(0)e’ T, Given that
the eigenmode stores a unit energy, the energy dissipation rate
can be found as

d&
dt
where £ is the energy stored in the resonant eigenmode. On
the other hand, if each scattering channel attenuates a unit of
energy per unit of time, Eq. (6) yields
d&€
— = —(d|d)lao|*. 13
o (d|d)aol (13)
Combining Egs. (12) and (13) we find Eq. (11). Note that
normalization of both the eigenmode and the decay channels
is important for deriving Eq. (11). Application of Eq. (11) to
Eq. (10) yields

= —2Tao|?, (12)

2r
2+ (1+p)7
Let us summarize the findings of this subsection. First, as
seen from Eq. (4) the resonant response is due to the vanishing

o’ + g2 = (14)
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I' in the denominator. Note that both I" and wy are known
from the eigenmode spectrum of the grating; they can be
determined as the real and imaginary parts of the resonant
frequency of the leaky band host of the BIC, as done in [36].
Second, the coupling vector |d) is defined from the matrix of
the direct process Eq. (7) via Eq. (10) up to two unknown real-
valued parameters. Quite remarkable is that the presence of a
symmetry-protected BIC gives easy access to the matrix of
the direct process by simply computing the scattering solution
at the BIC frequency and the normal incidence [36]. Finally,
Eq. (14) allows for elimination of one of the free parameters,
say « in Eq. (10). The remaining parameter B can be easily
found by fitting the transmittance spectrum found by solving
the scattering problem numerically.

B. Green’s function

Let us now generalize the above result to the system with
Kerr nonlinearity. In this subsection we apply the resonant-
state expansion method [48] for deriving the TCMT equation
taking account of nonlinearity. The key figure of merit in
the resonant-state expansion method is the Green’s function
of the Maxwell’s equations. According to [48] the spectral
representation of the Green’s function can be written as

G(r',r, ko, ky) =i B LR k) (15)
4 2klk — ko(ky)]

where E((r, k) is the field profile of the nth resonant
eigenmode and k, (k) is the dispersion of the resonant eigen-
frequency of the leaky band in terms of the vacuum wave
number, k = w/c, where c is the speed of light. The symbol
X, is used for the combined contribution of a discrete sum
and integration along the cuts. For the spectral representation
of Eq. (15) to be valid the eigenfields Ex(”)(r, ky) must obey
the normalization condition

v SE)V
1+ 8ok, =1, + klg(l [EpyE (16)
with
1 = / dVE™(r, —k,)EM (', ky) (17)
\%4
and

sV = 7§ dS[E"(x, —ky)IsE(Y, ky, k)
v

—E™(r, —ky, K)ISE (X, k)], (18)

where dg is used for the normal derivative with respect to
the boundary of the elementary cell and E{(r, ky, ko) is the
analytic continuation of the eigenfield in the vicinity of its
resonant eigenfrequency such that

EMI, k) = len; EM, ky, k). (19)

C. Resonant approximation

To establish a link between the resonant-state expansion
and the single-mode TCMT we apply the resonant approxima-
tion, i.e., in Eq. (15) we retain only the term with k — k,,(k,)
in the denominator. All the other terms are assumed to be

independent of the frequency on the scale of the narrow
Fano feature induced by the BIC. In terms of the TCMT the
nonresonant terms are accumulated in the direct process. The
resulting resonant Green’s function is simply

. E;O)(ra k_V)E)EO)(r/v _ky)

(1€S) 34/ 3o/
=" ke Y

where E((r, ky) is the profile of the resonant eigenmode.
Above we have omitted the band index of the dispersion
k(k,) bearing in mind that the resonant approximation uses
the dispersion and the mode profiles of the BIC host band.

First, let us again consider the linear scattering problem.
As before we assume that a TE polarized plane wave with
intensity /y impinges onto the structure at the near-normal
incidence. Then, solving Eq. (1) with the resonant Green’s
function, Eq. (20), one finds

_ VGEL(r k)

Oy _ /
t T 2k[k — k(ky)] AVETWE, —k)I (o), (2

where the source term can be expressed through the incident
field E( as
02 02 A 2 i
J = _(a_yz + a—ZZ>E;‘“) —ngE™, (22)
where E{™ is normalized to carry a unit of energy per unit of
time across the boundary of the scattering domain. Thus, the
amplitude of the physical incident wave is only controlled by
b.
To be consistent with the resonant approximation we also

assume that the near-field response is dominated by the quasi-
BIC eigenmode

E, = LaE“” (23)
VAT
where A is the normalization constant. Substituting the above
equation into Eq. (21) one finds

V1A

= 0y _ ’
a= 2k[k — k(ko)] Jv dVEx (r’, ky)J(r ). 24)

Comparing Egs. (4) and (24) one finds

in/Ac

d =
YT Tk

/ dVEL (r', —k,)J (¥, (25)
v

where c is the speed of light. The above equation is difficult
to apply in computations, since it requires the explicit ana-
lytic form of the leaky mode profiles under the normalization
condition, Eq. (16). We, however, know from the previous
subsection how d; can be found from the scattering spectra
with the use of Egs. (10) and (14).

D. Nonlinear case

Now let us generalize the above result to the nonlinear case.
After taking the same route we end up with the equation for a

ook o, Vhd
T k(ky)] lalfa = 2o~ k()] (26)
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where

J=| aVEQ (—k)EQ()|EQ k)|,

Valin

27)

and the integration is performed only over the domain with a
nonlinear refractive index Vyj;,. Finally, note that 7 must be
parabolic in k,, since the problem is symmetric with respect
to the angle of incidence. Therefore we drop the dependence
on ky, using the field profile at the I' point, i.e., the BIC

J=[ av|E®O" +o(k2) (28)
anin
since the BIC profile is a well-behaved function decaying with
the distance from the grating. Following [49] one easily finds
that Eq. (16) is equivalent to the integration over z from 400
to —oo:

oo
1= / dVnl|E®O. (29)
—00

Importantly, Eq. (29) does not contain surface terms and, thus,
can be easily implemented in simulations taking into account
that the BIC decays exponentially with |z| — oo. Finally, note
that the integral in Eq. (29) is equal to twice the electromag-
netic energy stored in the BIC. Thus, to be consistent with
Eq. (11) we set A = 2.

E. Nonlinear temporal coupled-mode equation

Now, in accordance with Eq. (26) the final result reads

[i(w — wo) + [la + i%non2w|a|2a = JIod,. (30)

Equation (30) differs from Eq. (4) only by the presence of the
nonlinear term proportional to J. This means that to describe
the nonlinear response in the spectral vicinity of a BIC it is
sufficient to know the solution of the linear problem including
the field profile of the BIC. Once the BIC field profile is
known it can be substituted into Eq. (28) to find J. The
nonlinear Eq. (30) can then be solved for the response in the
frequency domain.

It is remarkable that the nonlinear correction in Eq. (30)
exactly coincides with that obtained previously with the per-
turbation theory [50]. Note, however, that the results reported
in [50] were obtained under the assumption of smallness of the
nonlinear term. Another issue with straightforward applica-
tion of the perturbation theory is the normalization condition
of the unperturbed eigenmodes. The formal solution presented
in [50] involves integration across the whole space which is
impossible due to divergence of the resonant eigenmodes in
the far zone [51]. As one can see from the previous subsection
the normalization issue can only be easily resolved in the
spectral vicinity of a BIC.

Finally, in the time domain Eq. (30) can be replaced by

d .
- (a + %n0n2|a|2a> = (iwg — Da + VIydi . (31)
The time-harmonic solutions of the above equations can be
tested for stability by series expansions with respect to small
perturbations as explained in [36].

IV. NUMERICAL VALIDATION

In this section we apply our previous findings to the scat-
tering spectra. To obtain the matrices of the direct process we
numerically solved the linear scattering problem at exact nor-
mal incidence with the vacuum wave number of the incident
wave equal to that of the BIC. For BIC 1 the matrix of the
direct process has been found as

N —0.3753 4+ 0.0494i
Cgic1 =

—0.8834 + 0.2765i
—0.8833 + 0.2765i ’

0.3365 — 0.1734i

(32)
while for BIC 2 the numbers are
Corcs = <—0.9333 — 0.1121.i 0.0768 — 0.3323; )
0.0768 — 0.3323i  —0.8879 — 0.3086i
(33)

In the next step the numerical values of the three remaining
parameters, wp, I', and o, were evaluated by fitting to the
scattering spectra in Fig. 2 at different angles of incidence.
The effective nonlinearity coefficient was found with Eq. (28)
by integrating the BIC profiles shown in Figs. 1(b) and 1(c).
The results are listed in Table 1. In Table I we also present
the ratio of the absolute values of the coupling constants d;
and d,. One can see that in both cases the coupling to the
lower half-space is somewhat larger than that to the upper
half-space, |d;| < |d>|.

To obtain the nonlinear scattering spectra, Eq. (1) was
solved numerically using the pseudospectral method [52]. In
our simulations we took ny = 5 x 10~'8 m? /W, which cor-
responds to silicon at 1.8 um [53]. The results are plotted in
Fig. 3 in comparison with the numerical solution of Eq. (30).
The intensities of the incident waves are given in the caption
to Fig. 3. First, one can see in Figs. 3(a) and 3(b) that there
is a reasonably good agreement between the TCM and the
numerical spectra for BIC 1. The agreement can be made
perfect by slightly tuning « and/or J. For BIC 2, however,
the agreement is not that good and our theory can only provide
a rough estimate of the parameter values leading to optical
bistability. The discrepancy is due to the single-mode approx-
imation, which is not capable of accounting for all features of
the BIC emerging with an avoided crossing. To highlight the

TABLE I. List of the TCMT parameters.

0 hawo/c T /c a (p.d.u.) \d, /d>| T (p.d.u.)
BIC 1 1° 2.5670 0.065 x 1073 6.24 x 1073 0.907 3.04 x 1072
BIC 1 20 2.5689 0.031 x 103 1.23 x 102 0.914 3.04 x 102
BIC 2 0.2° 4.39074 1.59 x 103 9.05 x 102 0.717 3.79 x 10~
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FIG. 3. Bistability in transmittance spectra. (a) BIC 1, 6 = 1°, I = 1.82 x 10° MW /m?. (b) BIC 1, 6§ = 2°, I, = 8.39 x 10° MW /m?.
(c) BIC 2,6 =0.2°, Iy = 3.92 x 108 MW /m?. Thin magenta lines demonstrate Fano resonances unperturbed by the nonlinearity. Blue dots
represent numerical solutions obtained with the pseudospectral method. Stable solutions of Eq. (30) are shown by thick gray lines. Thin red
lines show unstable solutions of Eq. (30). The dashed black line in (c) shows the transmittance at exact normal incidence.

limitations of the single-mode TCMT in Fig. 3(c) we plotted
the transmittance at the normal incidence. One can easily see
that the transmittance at the normal incidence is dependent
on the frequency, whereas the single-mode TCMT assumes
that it is constant. On the other hand, even the single-mode
approximation manages to grasp the major feature of BIC 2
with respect to initiating bistability. One can see in Table I
that the effective nonlinearity coefficient 7 is two orders of
magnitude smaller with BIC 2 than with BIC 1. The reason for
this is clearly shown in Figs. 1(b) and 1(c): the field of BIC 1 is
concentrated about the nonlinear medium (silicon bars), while
for BIC 2 the field is evenly spread across the whole grating.
The small value of 7 results in very high intensities needed
to trigger optical bistability. This rules out the application of
BIC 2 in a realistic experiment.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the effect of optical
bistability induced by bound states in the continuum (BICs)
in dielectric gratings. We proposed a coupled-mode approach
which leads to a single nonlinear equation for the amplitude
of the resonant eigenmode of the BIC host band. It is shown
how all parameters entering the nonlinear coupled-mode
equation can be evaluated from the solution of the linear
scattering problem.

We believe that the approach presented here can be of use
in engineering photonic systems with a resonantly enhanced

nonlinear response, as the coupled-mode equation is much
easier to solve than nonlinear Maxwell’s equations. At the
same time our approach provides a clue for choosing the type
of BIC in order to maximize the nonlinear effect. Namely, it
has been shown that BICs with a frequency lower than the
first diffraction order in the substrate are better for activating
nonlinearity.

On the other hand, from the fundamental viewpoint we
have seen that the scattering of light in the spectral vicinity
of a BIC can be handled by the resonant-state expansion
method [48]. This naturally prompts us to extend the theory
for the two-mode case, which potentially leads to an intri-
cate interplay between the BICs and the other mode with a
finite lifetime that can be excited from the far zone even at
the normal incidence [35]. The application of resonant-state
expansion to finite-lived states would, however, require in-
troducing the analytical continuation normalization condition,
Eq. (19), to eigenmodes that are known only numerically. We
speculate that the above problem would be an interesting topic
for future studies.
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