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Doping and temperature evolution of pseudogap and spin-spin correlations in the two-dimensional
Hubbard model

V. I. Kuz’min ,1,* M. A. Visotin ,1 S. V. Nikolaev ,1,2 and S. G. Ovchinnikov 1,2

1Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036 Russia
2Siberian Federal University, Krasnoyarsk, 660041 Russia

(Received 16 January 2020; revised manuscript received 2 March 2020; accepted 3 March 2020;
published 25 March 2020)

Cluster perturbation theory is applied to the two-dimensional Hubbard t − t ′ − t ′′ − U model to obtain doping
and temperature-dependent electronic spectral function with 4 × 4 and 12-site clusters. It is shown that evolution
of the pseudogap and electronic dispersion with doping and temperature is similar and in both cases it is
significantly influenced by spin-spin short-range correlations. When short-range magnetic order is weakened
by doping or temperature and Hubbard-I-like electronic dispersion becomes more pronounced, the Fermi arc
turns into a large Fermi surface and the pseudogap closes. It is demonstrated how static spin correlations impact
the overall dispersion’s shape and how accounting for dynamic contributions leads to momentum-dependent
spectral weight at the Fermi surface and broadening effects.
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I. INTRODUCTION

Revealing the nature of high-Tc superconductivity in
cuprates is one of the major challenges in condensed-matter
physics. One step towards solution of the high-Tc problem
is to understand the behavior of the normal-state electronic
structure. Thus, the pseudogap [1] phase located below the
temperature T ∗(p) decreasing with doping p and its relation
with high-Tc superconductivity have gained a lot of attention.
A pseudogap metal is considerably different from weakly
correlated metals described by weak-coupling perturbation
theory [2]. The primary nature of the pseudogap, if there exists
one, is a highly debated topic with many candidates [3–8].

The two-dimensional (2D) Hubbard model [9] is believed
to possess the main ingredients of the cuprate layer low-
energy properties. Due to growing precision of experimental
data, such as electronic spectra obtained by angle-resolved
photoemission spectroscopy (ARPES) [6,7,10,11], measure-
ments of quantum oscillations in cuprates [12–14], and other
techniques [15–21], new peculiarities of the pseudogap come
to knowledge over time. This way, the electronic structure and
the pseudogap behavior in the Hubbard model and its low-
energy t-J models [22] have been revisited many times and
studied by a number of different numerical approaches, such
as quantum Monte Carlo (QMC) [23–27], cluster perturba-
tion theory (CPT) [28,29], variational cluster approximation
(VCA) [30], dynamical mean-field theory (DMFT) [31], its
cluster (CDMFT) [32,33], diagram [34,35] extensions, and
other techniques designed for dealing with strongly correlated
systems [36–40]. A large body of theoretical work is concen-
trated on the doping evolution of the pseudogap, whereas its
temperature dependance still lacks a systematic investigation.

*kuz@iph.krasn.ru

From the studies of the pseudogap within the 2D Hubbard
and the t-J models, we know that short-range antiferromag-
netic (AFM) correlations, which are their distinctive proper-
ties, should be the main origin of the pseudogap within these
models. It is of interest to make a qualitative comparison of
the temperature evolution of the electronic spectral function
in the 2D Hubbard model with the main trends in recent
experimental data obtained by ARPES in order to clarify the
role of electronic correlations in the physics of the pseudogap
observed in real compounds. ARPES results show that a
clear nodal-antinodal distinction exists at low temperatures
and doping and that the Fermi surface is arclike due to an
influence of the dramatic change in electronic self-energy
from nodal to antinodal directions [41]. A growth of the arc
with temperature has been reported [42–44], which is similar
to its well-known growth with doping. Recent ARPES results
lead to an intriguing conclusion that, at least, one critical
temperature exists above Tc within the pseudogap phase [6,7].
It is fascinating to investigate whether the electronic corre-
lation physics of the Hubbard model can be relevant to this
nonmonotonous behavior.

In this paper, we study doping and temperature evolution
of the electronic spectrum in the 2D Hubbard model using
CPT. The spectral function is examined along with intracluster
static spin-spin correlation functions, which influence the
spectrum significantly and, thus, provide information about
the relationship of short-range magnetic order with the elec-
tronic spectral properties. First, in agreement with several
previous studies, we observe that the evolution of the low-
energy electronic structure from low to high doping proceeds
through three regions. Within the pseudogap state, we identify
a strong pseudogap (SPG) state at very low doping and a
weak pseudogap (WPG) state at higher doping. These terms
have been previously used in the literature [45] with different
meaning but seem appropriate in our case. At larger doping
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compared to the WPG, the pseudogap is closed, and the state
similar to a normal Fermi liquid (NFL) is observed. Second,
we show that the temperature evolution of the electronic
structure and the pseudogap in the 2D Hubbard model has a
great similarity to its evolution with doping. When spin-spin
correlations are weakened by temperature, a Hubbard-I-like
dispersion develops in agreement with QMC results [25,26]
(see also Ref. [46] for the dependence of this feature on
doping and superexchange within CPT) similarly as it does
with doping. As a consequence, the nodal-antinodal distinc-
tion diminishes around the Fermi level, and the Fermi arc
turns into a large Fermi surface. We find that, in this case,
the evolution of the electronic stucture goes through the same
three stages.

Since CPT has been applied mainly for the case of zero
temperature, we hope that our result will provide a new
and useful reference for future studies at finite tempera-
tures. As will be presented below, our temperature-dependent
spectra reveal some qualitative similarities with temperature-
dependent ARPES spectra, pointing again at the important
role played by short-range AFM in the physics of the pseu-
dogap. We bring attention that, here, no attempt is made to
draw a phase diagram of cuprates since the electron-phonon
interaction is not taken into account. Thus, we do not obtain
charge-density waves (CDW), which have been realized to be
an important part of physics of cuprates [47].

The rest of this paper is organized as follows. In Sec. II,
we briefly discuss the method. Section III is devoted to the
presentation of results. In Sec. IV, we discuss the results
obtained. In Sec. V, concluding remarks are given. The details
about the calculations can be found in Appendices A–C.

II. MODEL AND METHOD

The Hubbard model [9] is given by the Hamiltonian,

H =
∑
i,σ

{
(ε − μ)ni,σ + U

2
ni,σ ni,σ̄

}
−

∑
i j,σ

ti ja
†
i,σ a j,σ , (1)

where ai,σ denotes the annihilation operator of an electron
on a site i with spin σ , the particle number operator is
niσ = a†

iσ aiσ , ti j is the hopping integral, and U is the on-site
Coulomb interaction.

One of the approaches used to study the electronic structure
of the Hubbard model is CPT. The idea behind it is to
incorporate long-range interactions by means of perturbation
theory into the data obtained exactly within an isolated cluster.
The CPT approximation can be obtained by accounting for
the first-order hopping process within the strong-coupling
perturbation theory [28,29,48] or shown to be the generalized
Hubbard-I approximation within the X -operator perturbation
theory [49,50] with Hubbard X -operators constructed on the
basis of the exact eigenstates of a finite cluster including
all intracluster correlations. Within CPT, ARPES-like spectra
are obtained with continuous momentum resolution. Another
virtue of the method is that it enables treating larger clusters
than more sophisticated cluster approaches when using exact
diagonalization technique, which gives access to the Green’s
functions defined in real frequency space and provides cal-
culations complexity independence on non-nearest hopping

FIG. 1. The electronic spectral function at half-filling at (a) β =
10/t and (b) β = 3/t obtained with a 12-site cluster. The chemical
potential is at zero energy here and below.

parameters and doping. Whereas CPT has been extensively
used to study the doping-dependent electronic structure of
models of strong electronic correlations at zero temperature
[28,29,46,51–58] and applied several times at finite temper-
atures [59,60], a detailed investigation of the temperature
dependence of the pseudogap within CPT is presented here.
Although CPT is not a self-consistent method (contrary to
VCA or CDMFT) and, thus, cannot be used by itself to
study ordered phases since the pseudogap is a normal state
phenomenon, CPT is fully applicable in our case.

In this paper, we study the doping evolution of the elec-
tronic spectral function using a 4 × 4 cluster at zero tempera-
ture. We confine ourselves to the doping range of 0.03 � p �
0.25 due to significant influence of finite-size effects at large
doping levels from the one side and since all our calculations
are carried out for the paramagnetic state not capable of
describing a very low doping state adequately enough from
the other side. The temperature dependence is studied using
a 12-site cluster that preserves point symmetry of a square.
The details concerning our implementation of CPT are given
in Appendix A.

III. RESULTS

A. Case of zero doping and non-nearest-neighbor hoppings

First of all, we consider the case p = 0, t ′ = 0, and t ′′ = 0
since it gives us an opportunity to compare the results with
quantum Monte Carlo data, available for these parameters
at low temperatures [26] and estimate the adequacy of our
calculations. The temperature dependence of the spectrum is
seen by comparing Figs. 1(a) and 1(b) for the inverse temper-
ature β = 10/t and β = 3/t . A characteristic feature is that,
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at β = 10/t , in the lower Hubbard band, the major spectral
weight residing at point (π, π ) is concentrated at high-energy
ω ≈ −6t , and significant amount of the low-energy ω ≈ −2t
spectral weight is concentrated near (π/2, π/2), thus, the
spectrum contains the influence of strong AFM fluctuations.
The redistribution of (π, π )-point spectral weight to lower
energies with heating is seen at β = 3/t meaning that the
Hubbard-I-like dispersion becomes pronounced in accordance
with Ref. [26]. At quite low temperature β = 10/t , the short-
range AFM gives a qualitatively similar picture to the QMC
results where quasi-long-range order is present, at β = 3/t ,
the qualitative agreement between these two methods be-
comes even better, meaning that the CPT results improve with
increasing temperature. The spectral map at β = 3/t is very
similar to the result obtained by the variational approximation
in the paramagnetic phase [61,62] at the same temperature.

B. Case of finite doping and non-nearest-neighbor hoppings

Here, we consider the case of more realistic parameters
for cuprates when the influence of the second and the third
neighbors is included. Our main set of hopping parameters
will be t ′ = −0.2t, t ′′ = 0.15t .

Figure 2 shows the dispersion of the lower Hubbard band
of electrons that corresponds to the valence band of a hole-
doped cuprate. One can see that a feature similar to the
Hubbard-I dispersion emerges with doping. A pronounced
signature of this behavior is that the spectral weight at
(π, π ) disappears below the Fermi level and the dispersion
above it gains coherence in accordance with Ref. [46]. As
a consequence, the Fermi surface gradually turns from the
small Fermi arc in Fig. 3(a) into the large full Fermi surface
in Fig. 3(d). The pseudogap is seen as a dip in spectral
weight around the Fermi level in the (π, 0)-(π, π ) direction
in Fig. 2(b), whereas, at large doping in Fig. 2(c), such a dip is
absent. Note that there are further dips of the spectral weight,
clearly seen in Fig. 3(d) along the Fermi surface. These are not
associated with the pseudogap but result from artificial density
wave formation due to scattering by the reciprocal vectors of
the cluster superlattice, which is inherent in cluster methods
(see Ref. [63] for more details).

In Fig. 4, we show the doping evolution of intracluster spin-
spin correlation functions,

Ci = 〈(n↑a − n↓a)(n↑b − n↓b)〉|Ra−Rb|∈i, (2)

where 〈· · · 〉|Ra−Rb|∈i denotes that the correlation functions are
additionally averaged among sites a and b, the distance be-
tween which |Ra − Rb| belongs to the ith coordination sphere.
We stress that the correlation functions in this paper are calcu-
lated not within CPT but within a cluster with open boundary
conditions (as in CPT), thus, their influence is contained in the
CPT spectra. The dispersion in Fig. 2 and the doping evolution
of the Fermi contours in Fig. 3 should be considered together
with the doping dependence of the spin correlation functions.
Analysis of spin correlators Ci in Fig. 4 as a function of
distance in terms of coordination sphere number i for different
doping levels up to p = 0.25 indicates that AFM short-range
order that has C1 < 0, C2 and C3 > 0, C4 < 0, C5 > 0 takes
place for doping p = 0; 0.0625; 0.125. At zero doping, a
strong short-range AFM ordering with tendency to long range,

FIG. 2. The electronic spectral function at T = 0 obtained using
a 4 × 4 cluster for different values of doping: (a) p = 0, (b) p =
0.0625, and (c) p = 0.25.

which is violated by a finite size of a cluster, is observed. For
small doping, the influence of AFM is clearly pronounced
in the dispersion shape presented in Figs. 2(a) and 2(b). If
one considers the antinodal/nodal spectral weight ratio at
the Fermi level R = AAN (kF , ω = 0)/AN (kF , ω = 0), one can
conclude from Figs. 3 and 5(a) that, for p � 0.125, the value
of R is rather small and practically constant. Possibly, the
nonzero value of this ratio is a consequence of CPT artifacts.
For convenience of the following discussion, we call this state
at low doping SPG. In ARPES, it is quite common to study
the change in the pseudogap using the symmetrized spectral
function As(ω, kF ):

As(ω, kF ) = f (ω, β )A(ω, kF ) + f (−ω, β )A(−ω, kF ), (3)

where kF is defined as a point of the maximal spectral weight
in the antinode and f (ω, β ) is the Fermi-Dirac distribution
function. Indeed, the antinodal spectra in Fig. 5(b) shows a
pronounced pseudogap behavior at low doping, so SPG is an
adequate term in this case.

For large doping p = 0.1875, the short-range order is
already changed to C1 < 0, C2 > 0, C3 < 0 and more distant
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FIG. 3. The electronic spectral function map at the Fermi level at
T = 0 obtained using a 4 × 4 cluster. The value of doping is (a) p =
0.0625, (b) p = 0.125, (c) p = 0.1875, and (d) p = 0.25.

practically zero: The third correlations change sign, which
may be a manifestation of the Nagaoka ferromagnetism [64].
This type of correlations violates the short-range AFM order.
At the same time, a noticeable growth of R is seen starting
from p = 0.125 in Fig. 5(a). However, Fig. 5(b) shows that,
for doping p � 0.2, the pseudogap state is realized. Note
that, already for p = 0.1875, the Fermi surface seems to be
close to Fermi liquid, damping in the antinodal direction
is not very strong. Thus, the spectral weight distribution
and short-range order are qualitatively different from SPG.
We will use the term WPG for this doping region. In our
calculations, the crossover between SPG and WPG appears
as a smooth transition between p = 0.125 and p = 0.1875.
Finally, at p � 0.2, the pseudogap is closed [see Fig. 5(b)],
and for p = 0.25, a remnant of short-range AFM is seen
only for the first coordination sphere in Fig. 4, and the large
Fermi surface is observed in Fig. 3(d). Such behavior is
typical for a Fermi liquid, so we will call the doping region

FIG. 4. Spin-spin correlation function defined in Eq. (2) for
different values of doping at T = 0.

FIG. 5. (a) The antinodal/nodal ratio R for the spectral weight
at the Fermi level, defined in the text for different doping levels; the
two dashed lines are linear fits to data within the SPG doping range
and outside; smooth transitions between background colors illustrate
different doping regimes discussed in the text, (b) the symmetrized
spectral function defined by Eq. (3) for a wave-vector kF in the
antinodal direction for different values of doping at zero temperature
[finite temperature β = 12/t was substituted into the Fermi-Dirac
function in Eq. (3) to produce smooth ARPES-like curves].

at p � 0.2 the NFL. Similar evolution of the Fermi arcs
has been obtained earlier within cluster DMFT [65–70], the
composite operators’ approach [71], it is in general agreement
with the doping dependence of the electronic structure within
dynamical cluster approximation (DCA) [72–74]; the growth
of the Fermi arc with doping is well known from ARPES data
[75–77].

We also investigate the doping evolution of the electronic
structure for a different set of parameters by setting t ′′ = 0
since third-neighbor hopping processes influence the spec-
trum significantly by stabilizing the dispersion in the nodal di-
rection. The case described above (t ′′ = 0.15) is qualitatively
reminiscent of the electronic structure of such compounds as
Tl2Ba2CuO6+δ and YBa2Cu3O7−δ where no transition from
a holelike Fermi surface around (π, π ) to an electronlike
around (0,0) is observed even at large doping [78–80] as
opposed to the case of zero third-neighbor hoppings: In Fig. 6,
at p = 0.0625 and p = 0.125, the zero-frequency spectral
weight is very similar to the previously considered but at
larger doping differs significantly. At p = 0.25, the spectral
weight constitutes a feature very similar to the electronlike
pocket observed in La2−xSrxCuO4 [76,81,82].

Spin correlations at t ′′ = 0 are almost the same as for
the previously used parameters up to p = 0.125. At larger
doping, the short-range AFM within a cluster is destroyed
very quickly (see Fig. 7). Similar to the case of t ′′ = 0.15,
the onset of rapid growth of antinodal/nodal spectral weight
ratio in Fig. 8(a) coincides approximately with the doping
region where the short-range AFM fades. We conclude that,
at p < 0.125, the SPG is observed: The Fermi level is in the
vicinity of the bottom of the pseudogap, and the minimum
in Fig. 8(a) is approximately its lower point. The pseudo-
gap now closes at much lower doping [see Fig. 8(b)], so
the WPG is in the narrow range of 0.125 � p � 0.15. In
general, the evolution of the electronic structure in this case
is in agreement with the previously considered. The AFM
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FIG. 6. The same as in Fig. 3 for t ′′ = 0.

short-range order is destroyed more quickly outside the SPG
range: Already, for p = 0.1875, the second-neighbor spins are
not aligned antiferromagnetically. The pseudogap closes at
smaller doping as well.

Let us turn to the investigation of temperature evolution
of spectral function studied with a 12-site cluster at doping
p = 0.167 (more precisely, p = 1/6 with ten electrons per
cluster). For the following, we use the main set of parameters
t ′ = −0.2, t ′′ = 0.15. In Appendix B, we present a compar-
ison of the results obtained at this value of doping and zero
temperature with 16-site and 12-site clusters to show that a
12-site cluster does not introduce major discrepancies with
respect to the results obtained with a 4 × 4 cluster and that
SPG is still observed for this value of doping for a 12-site
cluster. The main trends of transformation of the spectral
function with increasing temperature are seen in Fig. 9. The
region around point (π, π ) above the Fermi level becomes
more coherent, and the feature similar to a bare dispersion
becomes more pronounced. However, the waterfall-like fea-
ture at high energies is stable at high temperatures. The

FIG. 7. The same as in Fig. 4 for t ′′ = 0.

FIG. 8. The same as in Fig. 5 for t ′′ = 0.

pseudogap gradually closes as seen from the antinodal cut:
It is well pronounced at β = 24/t , and its signature is still
visible at β = 8/t , whereas it is absent at β = 4/t .

Let us consider the electronic structure evolution with heat-
ing in Figs. 9 and 10 together with spin correlators in Fig. 11.
In Fig. 10, the growth of the Fermi arc with temperature is

FIG. 9. The electronic spectral function at p = 0.167 obtained
using a 12-site cluster at (a) β = 24/t , (b) β = 8/t , and (c) β = 4/t .
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FIG. 10. The electronic spectral function map at the Fermi
level at p = 0.167 obtained using a 12-site cluster at (a) β =
104/t , (b) β = 24/t , (c) β = 12/t , (d) β = 8/t , (e) β = 6/t , and
(f) β = 4/t .

seen in qualitative agreement with ARPES [42–44]. Similar
reconstruction of Fermi arcs has been also obtained within the
large-N mean-field theory of the t-J model due to short-range
d-CDW fluctuations [83]. With heating, spin correlations are
decreasing similarly to the case of doping. For β = 10 000/t
and β = 24/t , the similar type of AFM short-range order with
C1 < 0, C2 and C3 > 0, C4 < 0, and C5 > 0 takes place. The
antinodal/nodal spectral ratio in Fig. 12(a) is quite close at
both temperatures. Thus, the SPG state is observed. At β =
12/t , the AFM correlations are seen only for the first and the
second neighbors. For the third, they change sign and become
practically zero further. The spectral function shows WPG
behavior with small finite AAN (kF , ω = 0) 
 AN (kF , ω = 0),
similar to β = 8/t . We conclude that transformation from
SPG to WPG goes between β = 24/t and β = 12/t as is also
seen from the growth of the antinodal/nodal spectral ratio in
this temperature region. A transformation to the NFL seems
to occur close to β = 6/t . These conclusions are in agree-
ment with the temperature dependence of the symmetrized
antinodal spectral function in Fig. 12, discussed below. Note
also that, due to a very similar behavior of spin correlations
with doping and temperature, the overall dispersion shape,
which is affected a lot by static spin correlations at p = 0.167

FIG. 11. Spin-spin correlation function defined in Eq. (2) for
different values of temperature at p = 0.167.

FIG. 12. (a) The antinodal/nodal ratio R for the spectral weight
at the Fermi level, defined in the text for different temperatures,
(b) the symmetrized spectral function defined by Eq. (3) for a wave-
vector kF in the antinodal direction at different values of temperature.
Both are shown for p = 0.167.

and β = 4/t [Fig. 9(c)] is very similar to the one obtained
at p = 0.25 and zero temperature [Fig. 2(c)]. However, at
p = 0.167 and β = 4/t , the spectrum is significantly broader
due to different behaviors of dynamical contribution to the
correlation functions, which introduces effects of finite quasi-
particle lifetime (see Ref. [37]).

Considering the change in the symmetrized spectral func-
tion with temperature, for β = 4/t , a single peak typical for
NFL is seen. The dip at ω = 0 almost disappears at β = 6/t ,
which is a sign of the pseudogap formation temperature T ∗
[42,43]. For β = 8/t and β = 12/t , the pseudogap deep at the
Fermi level is clear but small, the value of As(ω = 0, kF ) is
still smaller than the NFL maximum, so the term WPG seems
to be appropriate. With a further temperature decrease (for
β = 24/t and β = 10 000/t), the PG deep is sharp, and, for
these temperatures, the SPG may be considered.

IV. DISCUSSION

Summarizing our results, we compare the doping and
temperature evolution of the Fermi arcs in Figs. 13(b) and
13(c) with the old picture of the Lifshitz transitions with
doping obtained within the generalized mean field for strongly
correlated systems [39,84,85]. Within the static approxima-
tion for the spin correlation function, the imaginary part of
the electronic self-energy within the t-J model is absent,
whereas the real part results in the doping-dependent elec-
tronic structure. The doping evolution of the Fermi surface in
the static approximation is schematically given in Fig. 13(a):
Three doping regions have been obtained. At low doping, the
Fermi surface is given by four small Fermi-surface pockets
centered near (π/2, π/2), these pockets increase their volume
and touch the Brillouin-zone boundary at some critical doping
value pc1 (pc1 = 0.16 for the parameters chosen in that study)
where the Lifshitz transition with the topology change in the
Fermi surface occurs. Above pc1, two Fermi-surface pock-
ets are centered around (π, π ), and the inner small pocket
disappears at the second Lifshitz transition point pc2 = 0.24.
Above pc2, there is one large Fermi surface around (π, π )
that corresponds to the NFL [85]. In this approximation, all
points along the Fermi contour have equal spectral weight.
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FIG. 13. (a) The schematic of the Fermi surface within the static approximation for three values of doping divided by two Liphsitz
transitions, (b) the CPT result using a 4 × 4 cluster at T = 0 for similar doping values, (c) the CPT result using a 12-site cluster at p = 0.167
for different temperatures, (d) sketch of the phase diagram where arrows denote two directions of evolution of the electronic structure studied
in this paper, TN is the AFM Néel temperature, TC is the superconducting transition temperature, T ∗ is the pseudogap transition line (WPG to
NFL transition), and T ∗1 is the SPG to WPG crossover line.

A similar approach within the Hubbard model provides some
nonuniform distribution of the spectral weight along the Fermi
contour due to the quasiparticle scattering between two Hub-
bard subbands [86].

Nevertheless, this nonuniform spectral weight distribution
does not change the closed pocket to the Fermi arc. This
picture contradicts the ARPES data where only arcs have
been found with different lengths dependent on doping and
temperature. This transformation occurs only when the elec-
tronic self-energy removes the spectral weight at the large
part of a Fermi-surface contour as has been shown within
CDMFT and CPT [50,66,68,87] in terms of poles and zeros
of the Green’s function. Similarly, in our calculations, the
Fermi arc growing with doping and temperature is observed.
We consider the doping dependence in Fig. 13(b) to show
also three concentration regions, the SPG, the WPG, and the
NFL with two transitions between them. The borders between
these regions correspond to the critical concentrations of the
Lifshitz transitions. We note that the conclusion about SPG-
WPG and WPG-NFL transitions with doping is in qualitative
agreement with the DCA studies of the electronic structure in
the 2D Hubbard model performed for the value of interaction
similar to ours [73,74]: The WPG-SPG transition should
roughly correspond to the transition between the momentum
space differentiated region and the sector selective phase
(in terms of Ref. [74]), whereas WPG-NFL corresponds to
the transition when the system enters the isotropic Fermi-
liquid regime. The same type of Fermi-surface evolution with

heating is shown in Fig. 13(c). Probably, a transformation of
the SPG to the WPG at T ∗1 and from WPG into NFL at T ∗,
schematically depicted in Fig. 13(d), are smooth crossovers
due to dynamical damping of the quasiparticles at the Fermi
level.

V. CONCLUSION

In conclusion, we have studied the doping and temperature
evolution of the electronic spectral function in the 2D Hub-
bard model on a square lattice using CPT, focusing on the
pseudogap. The doping evolution has been studied at fixed
temperature T = 0, the temperature evolution has been inves-
tigated at fixed doping p = 0.167. Together with the spectral
function, we have considered the doping and temperature
dependence of the spin correlation function as a function
of the intersite distance. In support of the previous studies
performed within the static approximation for the self-energy
[39,84,85], we see that short-range spin correlations provide
a decisive influence on the shape of electronic dispersion
in the 2D Hubbard model. However, due to the exact ac-
count for intracluster correlations, we are beyond the static
approximation, which leads to manifestations of damping of
excitations. We should note that, in the Hubbard model where
an electron-phonon interaction is absent, we find the intra-
cluster charge correlation functions to demonstrate a sharp de-
crease with distance without any special features as shown in
Appendix C.
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FIG. 14. Cluster coverings used for (a) a 4 × 4 cluster, (b) and
(c) a 12-site cluster. In the case of a 12-site cluster, the hopping
matrix was averaged among two coverings (b) and (c) similar to
calculations of Ref. [50].

First, we have shown that, in our CPT calculations, the
evolution of the Fermi surface from small to high doping
proceeds through three stages as within the generalized mean-
field approximation [39,84,85] and the DCA studies [73,74].
At low doping, SPG is observed accompanied by short-range
AFM. As doping increases, we observe a transition to WPG
and destruction of short-range AFM. With further doping, the
pseudogap closes, and the large Fermi surface is observed,
the spin correlations are very weak in this case and restricted
mainly to the first neighbors, which is typical for a paramag-
netic noncorrelated state.

Next, we obtained the temperature-dependent k- and ω-
resolved spectral function within CPT and, thus, compared
the doping and temperature evolutions of the pseudogap with
each other within the same framework. Thus, we are able
to draw the main conclusion: The electronic structure with
temperature goes through the same stages as with doping due
to a very similar behavior of spin correlations. This result
is schematically depicted in Fig. 13(d) where we used two
lines T ∗ and T ∗1. We note that conclusions about, at least,
two critical temperatures above Tc follow from the analysis of
recent experimental data [6,7].
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APPENDIX A: DETAILS OF CPT IMPLEMENTATION

To implement CPT in this paper, we follow the general
logic of the X -operator perturbation theory [88–90]. The
lattice is covered by translations of a cluster (see Fig. 14), and
Eq. (1) is rewritten as

H = Hc + Hcc, (A1)

where Hc is the intracluster part and Hcc is the intercluster part,

Hcc =
∑

f,r,i, j

T r
i, ja

†
f,iaf+r, j, (A2)

where f runs over clusters, r labels neighbor clusters, i and
j are indices of sites within a cluster, and the spin index is
omitted here and below. We define the Green’s functions,

Dα,β (k̃, ω) = 〈〈X α|X β†〉〉k̃,ω, (A3)

where k̃ is the wave vector defined in the reduced Brillouin
zone. The fermionic Hubbard operators in Eq. (A3),

X α = X p,q = |p〉〈q| (A4)

are supposed to be built on the full basis of cluster eigenstates
denoted as |p〉 and |q〉 so that if |p〉 is a state with n − 1
particles then |q〉 is a state with n particles. Using the fact that
an annihilation operator of an electron on a site i belonging to
a cluster f is a linear combination of X operators,

af,i =
∑

α

γi(α)X α
f , (A5)

where γi(α) are the annihilation operator’s matrix elements,
the Hamiltonian given by Eq. (A1) can now be written in
terms of the Hubbard operators,

H =
∑
f,m

EmX mm
f +

∑
f,r

∑
α,β

V r
α,βX α

f
†X β

f+r, (A6)

where m runs over all cluster eigenstates, the intercluster
coefficients are

V r
α,β =

∑
i, j

γ ∗
i (α)γ j (β )T r

i, j . (A7)

The Dyson equation in terms of the Hubbard operators
reads [90]

D̂(k̃, ω) = [D̂0(ω)
−1 − P̂(k̃, ω)V̂ (k̃)

+ 
̂(k̃, ω)]−1P̂(k̃, ω), (A8)

where all the matrices are defined in terms of band indices α

and β,

Vαβ (k̃) =
∑

r

V r
αβeik̃r (A9)

is the element of the hopping matrix and

D0
α,β (ω) = δα,β

ω − Eα + μ
(A10)

is the exact local propagator, Eα = Eq − Ep, and μ is the
chemical potential. In Eq. (A8), 
̂(q, ω) is the interclus-
ter self-energy, and P̂(k̃, ω) is the strength operator. In the
Hubbard-I approximation for the intercluster hopping, one has

̂(k̃, ω) = 0 and Pαβ (k̃, ω) = δαβFα , where

Fα = 〈X pp〉 + 〈X qq〉 = np + nq, (A11)

where the diagonal averages 〈X pp〉 and 〈X qq〉 are the occupan-
cies np and nq of cluster energy levels. Thus, the electronic
structure in this approximation is defined by the equation,

D̂(k̃, ω)−1 = [F̂ D̂0(ω)]−1 − V̂ (k̃). (A12)
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FIG. 15. The electronic spectral function obtained at T = 0 and
p = 0.167 with (a) a 4 × 4 cluster and (b) a 12-site cluster.

The diagonal matrix F̂ in Eq. (A12), which consists of all
levels’ occupancies, ideally should be calculated via Eq. (A3),
but, since it is an extremely cumbersome task, we use the
following approximation to work with a fixed particle number.
We set a number of electrons per cluster ne by assuming
nonzero occupations 1 − x and x for only two sectors of the
Hilbert space with n and n − 1 electrons, respectively, so that

ne = (1 − x)n + x(n − 1), (A13)

where n is the integer number of electrons allowed by a
finite cluster such that n − 1 < ne < n. For example, doping
p = 0.0625 = 1/16 or p = 1/6 for a 4 × 4 cluster is obtained
by choosing n = 15 and x = 0 or n = 14 and x = 2/3, re-
spectively. Then, we calculate the occupation numbers np for
the sector with n − 1 electrons and nq for the sector with n
electrons within a canonical ensemble for each of them,

np = x

Zn−1
exp (−βEp),

nq = 1 − x

Zn
exp (−βEq), (A14)

where Zn is a canonical partition function for a cluster with n
electrons.

For practical calculations with relatively large clusters used
in this paper, using Eq. (A5), one can obtain from Eq. (A12)
an analogous equation written in terms of matrices defined in
cluster sites’ indices as in Ref. [28],

Ĝ(k̃, ω)−1 = Ĝc(ω)−1 − T̂ (k̃), (A15)

where

Gc
i, j (ω) =

∑
α,β

γi(α)γ ∗
j (β )FαD0

α,β (ω), (A16)

FIG. 16. Spin-spin correlation functions [Eq. (2)] obtained with
two types of cluster at T = 0 and p = 0.167.

and T̂ (k̃) = ∑
r T̂ reik̃r.

There exists a number of methods designed to calculate
efficiently finite-temperature properties of a cluster. For exam-
ple, finite-temperature Lanczos extensions [59,91–93] or ther-
mal pure quantum state methods [93–95]. In this paper, the
matrix elements defined in Eq. (A5), which enter Eq. (A16),
were calculated explicitly from the (quite large) set of the
lowest-lying eigenstates (typically, 6400 for each subsector of
the Hilbert space with a given particle number and spin pro-
jection) obtained using a numerically robust Lanczos method
modification [96] realized in the SCALABLE LIBRARY FOR

EIGENVALUE PROBLEM COMPUTATIONS [97]. This approach is
quite expensive numerically but affordable in CPT where no
iterative diagonalization of the cluster Hamiltonian is needed
and possesses no statistical or systematical errors apart from
controllable neglecting the highest-energy excitations with
minor spectral weight. At zero temperature, Eq. (A16) is
equivalent to a linear combination of cluster Green’s func-
tions calculated using the Lanczos method starting from the
ground-state eigenvector of each subsector multiplied by the
corresponding occupation number. Each of the eigenvectors
of the ground state served as a starting vector in the Lanczos
procedure to contribute to the cluster Green’s function. A
finite Lorentzian broadening δ = 0.16t was used to calculate
the Green’s function.

APPENDIX B: COMPARISON OF RESULTS WITH
16-SITE AND 12-SITE CLUSTERS

In the main section we discussed results obtained at T =
0 with a 4 × 4 cluster. When discussing finite-temperature
results we have to restrict ourselves by a 12-site cluster. In
this Appendix, we compare the results on electronic spectrum
and spin-spin correlation functions obtained with 16-site and
12-site clusters at T = 0, p = 0.167.

From Fig. 15, a qualitative agreement in dispersion shape
between the spectra obtained with 12-site and 16-site clusters
is seen. However, although the most general features agree, on
the finer scale, there are some disagreements. The pseudogap
is clearly more pronounced in the case of a 12-site cluster.
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FIG. 17. Charge correlation functions [Eq. (C1)] obtained within
a 4 × 4 cluster for different doping values as indicated in the inset
for U = 8, t ′ = −0.2, and t ′′ = 0.

The analysis of spin correlations in Fig. 16 shows that, for the
chosen value of doping, the short-range AFM is still present,
at least, until the fourth coordination sphere within a 12-site
cluster, but it is violated at the third and further within a

16-site one. For the first two coordination spheres, the quanti-
tative agreement is observed. We note that, for p = 0.167, the
values of Ci on a 16-site cluster were estimated in the same
manner as we did for the cluster Green’s function in CPT by
choosing the weight factors. Qualitatively, we conclude from
spin correlations and spectral function that cluster shape and
size effect leads to SPG for a 12-site cluster and a WPG for
16-site cluster at this doping and temperature.

APPENDIX C: SHORT-RANGE CHARGE CORRELATIONS

In the main part of the paper, the dependance of the
electronic structure on spin correlations was discussed since,
in the absence of phonons, there is no tendency to a CDW
formation within a cluster that has been observed. This is
demonstrated in Fig. 17 where the charge correlations,

Cnn
i = 〈(na − 〈na〉)(nb − 〈nb〉)〉|Ra−Rb|∈i (C1)

are shown in analogy with spin correlations. These charge
correlations have the same sign for all coordination spheres,
and, only for the first sphere, their value is significantly
different from zero.

[1] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[2] A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of

Quantum Field Theory in Statistical Physics (Dover, New York,
1963).

[3] M. R. Norman, D. Pines, and C. Kallin, Adv. Phys. 54, 715
(2005).

[4] L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010).
[5] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.

Zaanen, Nature (London) 518, 179 (2015).
[6] A. A. Kordyuk, Low Temp. Phys. 41, 319 (2015).
[7] I. M. Vishik, Rep. Prog. Phys. 81, 062501 (2018).
[8] L. Fratino, P. Sémon, G. Sordi, and A.-M. S. Tremblay, Sci.

Rep. 6, 2045 (2016).
[9] J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).

[10] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys.
75, 473 (2003).

[11] T. Yoshida, M. Hashimoto, I. M. Vishik, Z.-X. Shen, and A.
Fujimori, J. Phys. Soc. Jpn. 81, 011006 (2012).

[12] N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B.
Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L.
Taillefer, Nature (London) 447, 565 (2007).
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