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Strong Coulomb interactions in the problem of Majorana modes
in a wire of the nontrivial topological class BDI
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In this study, the problem of strong Coulomb interactions in topological superconducting wire is analyzed by
means of the density-matrix-renormalization-group (DMRG) approach. To analyze properties of edge states in
the BDI-class structure, a quantity called Majorana polarization is used. From its dependence on wire length and
an entanglement-spectrum degeneracy, topological phase diagrams are obtained. The DMRG calculations for the
Shubin-Vonsovsky–type model of the wire show the transformation of phases with Majorana single and double
modes (MSMs and MDMs, respectively) under the increase of onsite and intersite correlations. In particular,
we demonstrate different scenarios including the possibilities of both induction and suppression of the MSMs
and MDMs. It is shown that in the strongly correlated regime, the contributions of single-particle excitations to
the Majorana-type states significantly decrease at low magnetic fxields. Moreover, the t-J∗-V model is derived
allowing to study the effective interactions and improve the DMRG numerics. It is found out that in the limiting
case of the effective Hamiltonian with infinitely strong onsite repulsion, t model, the topological phases are
destroyed. Finally, the ways to probe the MSMs and MDMs via the features of caloric functions are discussed.
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I. INTRODUCTION

Starting from studies [1,2] the properties of topological
superconductors (TSCs) attract considerable attention. Under
open boundary conditions, such systems host the zero-energy
Majorana modes (MMs) which are edge states. MMs are
being considered as perspective basic elements for topological
quantum computing since they are stable against local pertur-
bations and obey non-Abelian exchange statistics [3,4].

Among the systems proposed to observe MMs semicon-
ducting wires, where SC pairing is induced by the proximity
effect (in the following, we will call them “SC wires”), are
ones of the most intensively investigated [5,6]. To probe
the appearance of MMs, InAs and InSb wires characterized
by strong spin-orbit interaction and large g-factor values are
utilized [7]. In turn, the SC pairing can be provided by a
substrate or Al layer that partly covers the wire [7,8].

The advances in epitaxial growth of such low-dimensional
hybrid nanostructures allowed to study ballistic transport in
tunnel-spectroscopy experiments. The measurements revealed
zero-bias conductance peak with the height of 2G0 (G0 =
e2/h, conductance quantum) remaining in a wide range of
magnetic fields and gate voltages [9]. This feature can be
accounted for resonant local Andreev reflection on MM when
the TSC phase settles down. However, alternative explana-
tions exist such as resonant transport mediated by the Andreev
bound state predominantly localized in a normal quantum-dot
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region between the SC wire and metallic contact or by the
one emerging in the SC wire where a spatially varying in-
homogeneous potential is present [10–13]. Thus, the ongoing
disagreements leave room for further investigations of MM
features [14,15].

The majority of studies analyzing the MM formation in
the SC wires use the quadratic Hamiltonians without the
consideration of Coulomb interactions between fermions. In
this approach, the classification of topological phases was
obtained [16,17] as well as the quantum-calculation algo-
rithms based on MMs were developed [4,18]. Simultaneously,
it was supposed that the Coulomb correlations in the SC
wires are weak. Hence, the stability of these issues against
interaction effects is still insufficiently studied. However, it
was shown recently that the InAs wires can be driven into the
regime of strong electron-electron interactions as the system
becomes more depleted due to gate electric field [19]. Thus, it
emphasizes the necessity to revisit the problem of description
of topological phases and MM detection in the regime of
strong Coulomb correlations.

It is worth to note that taking into account strong electron
interactions meets fundamental theoretical difficulties related
to the significant renormalizations of effective interactions
and change of topological classification [20,21]. Additionally,
single-particle excitations possessing the features analogous
to the ones of MMs in the system of noninteracting (or weakly
“mean-field” interacting) fermions have to be unambiguously
defined [22–24].

To address these problems, we study the impact
of strong Coulomb correlations on the one-dimensional
(1D) wire belonging to the BDI Hamiltonian-symmetry
class with extended s-wave SC pairing mainly by the
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density-matrix-renormalization-group (DMRG) tool [25,26].
That is in contrast to the vast majority of works con-
cerning 1D and quasi-1D systems with conventional s-
wave superconductivity where the interaction factor was al-
ready investigated using DMRG [27–30]. As it has been
shown in [31], the BDI symmetry of the SC wire can be
achieved by the presence of SC pairings between near-
est neighbors. We consider a BDI-type model of the SC
wire with both onsite and intersite s-wave pairings. Such
a scenario is able to be achieved if the extended s-wave
symmetry in the neighboring d-wave superconductor is re-
alized due to (1) effective onsite and intersite attraction
between electrons leading to Cooper instability [32,33];
(2) inner inhomogeneities [34,35].

Many theoretical studies concerning the interaction prob-
lem in the 1D and quasi-1D topological systems are based on
bosonization and renormalization-group methods [27,36–38].
In this paper we propose an alternative analytical approach
utilizing the atomic representation and Hubbard operator
formalism [39–42] to treat the regime of strong electron
correlations in the wire. According to [43], the use of unitary
transformation method for the Shubin-Vonsovsky–type model
allows to obtain the effective Hamiltonian of the t-J∗-V
model. In addition to the well-known superexchange [44] in
this work we also derive the effective interactions induced
by the Rashba spin-orbit coupling. As a result, the DMRG
algorithm is extended to this situation, demonstrating higher
computation speed and better convergence due to the exclu-
sion of all two-particle states. The DMRG calculations permit
to show the transformation of topological phase diagrams in
the strong-interaction regime unveiling both the MM survival
and induction of these states by electron-electron correlations.
The problem of MM normalization is discussed as well.

It is important to stress that from a fundamental point
of view, here we suggest an approach based on the atomic
representation to analyze the MM features in the 1D system
with substantial influence of Coulomb interactions leading to
formation of Hubbard fermions. To the best of our knowledge,
it was not done earlier.

One of the possibilities to probe the MMs in the wire
is to measure magnetocaloric or electrocaloric effect (MCE
or ECE, respectively) [45]. The features of caloric functions
in the 1D system with conventional s-wave SC pairing are
related to the oscillations of ground-state fermionic parity
which are caused by the hybridization of Majorana wave
functions. As a result, the set of quantum transitions emerges
as some parameter, e.g., magnetic field or chemical potential,
is swept. In turn, one can observe them via extremely strong
changes of the MCE and ECE which diverge exactly at the
transition points. We show here that in the BDI-class wire in
addition to this behavior, that points out to the TSC phase with
one MM at each edge, the caloric functions can oscillate with
finite amplitude, indicating the appearance of TSC phase with
two MMs and the preserved ground-state parity. Based on the
DMRG data, we argue that these features are able to persist in
the strongly correlated regime.

The paper has been organized in five sections. The model
Hamiltonian and methods used to analyze the TSC phases in
the BDI-class system taking into account Coulomb correla-
tions are described in Sec. II. The numerical results obtained

by the DMRG algorithm and effective model derivation are
presented in Sec. III. The possibility of MM experimental
probe in the BDI-class wire utilizing the caloric effects is
discussed in Sec. IV. Conclusions are given in Sec. V.

II. MODEL AND METHODS

Let us consider a model of one-dimensional quantum wire
with the Rashba spin-orbit coupling in external magnetic
field. Carriers in the wire experience both onsite and intersite
spin-singlet pairing due to the proximity effect with a bulk
superconductor. The main goal of the work is to analyze the
effects of electron-electron interactions, namely, the onsite
Hubbard repulsion and Coulomb interaction within the first
coordination sphere. The tight-binding Hamiltonian of the
described system reads as

H =
∑

f σ

ξσ a†
f σ a f σ − t

2

∑
f σ

(a†
f σ a f +1σ + a†

f +1σ
a f σ )

− α

2

∑
f σ

ησ (a†
f σ a f +1σ̄ + a†

f +1σ̄
a f σ )

+
∑

f

[�a f ↑a f ↓ + �1(a f ↑a f +1↓ + a f +1↑a f ↓) + H.c.]

+U
∑

f

n f ↑n f ↓ + V
∑

f

n f n f +1, (1)

where ξσ = ξ − ησ h, ξ = ε0 − μ; ε0 is a bare electron energy,
μ is a chemical potential, and h is the Zeeman splitting;
η↑(↓) = ±1; parameters t and α describe hoppings and the
Rashba spin-orbit coupling between nearest neighbors, re-
spectively; �, �1 are parameters of onsite and intersite SC
pairing, respectively (which are supposed to be real through-
out the paper); U is an intensity of onsite Coulomb interaction;
V is a parameter characterizing intersite Coulomb interaction.
Henceforth, we consider all energy variables in units of t
and t = 1. In general, the t-U -V model (1) is the Shubin-
Vonsovsky–type one [46,47] supplemented by the Rashba
spin-orbit couping and s-wave pairings.

The Hamiltonian (1) with U = V = 0 and � = 0 has
been studied in [31]. In particular, it was shown that in the
strictly one-dimensional system along with the electron-hole
symmetry the additional time-reversal-like symmetry takes
place leading to the BDI class of the corresponding Hamil-
tonian. It implies a richer picture of topological phases in
comparison with the popular D-class wire. In particular, aside
from the Majorana single modes (MSMs), the formation of
two Majorana bound states, Majorana double modes (MDMs),
localized at each edge of the open BDI wire is possible.
Note that since the subsequent calculations include h = 0 and
h �= 0 cases the MDM term means both the Majorana Kramers
pairs [16,17,48] and modes with the lifted degeneracy,
respectively.

These features remain valid in the case of nonzero onsite
SC pairing, � �= 0, and U = V = 0. To show it, we gener-
alize the analytical results obtained in [31]. Then, assuming
periodic boundary conditions the Hamiltonian (1) in k space
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FIG. 1. Topological phase diagrams of noninteracting BDI-class
wire. The invariant NBDI as function of chemical potential and mag-
netic field at � = −0.5 (a) and � = −0.3 (b). Other parameters are
�1 = 0.2, α = 1.5. The numbers on the diagrams are values of NBDI.
The dashed line corresponds to the magnetic-field dependencies on
Fig. 11.

has the following Bogoliubov–de Gennes (BdG) form

H (k) =
(

A(k) B(k)
B+(−k) −AT (−k)

)
, (2)

where A(k) = ξkσ0 + hσz + αkσy, B(k) = i�kσy, ξk =
−t cos k − μ, αk = α sin k, �k = � + 2�1 cos k; σ0 is
the unity matrix; σx,y,z are the Pauli matrices acting in spin
space. Under the unitary transformation H (k) → H̃ (k) =
USH (k)U +

S , where US = (σ0 ⊗ σx − iσy ⊗ σx )/
√

2, the BdG
matrix transforms to

H̃ (k) =
(

0 Q(k)
QT (−k) 0

)
,

Q(k) = ξkσ0 − hσz − (αk + i�k )σy. (3)

It allows us to introduce a topological (winding) number

NBDI = −i

π

∫ k=π

k=0

dz(k)

z(k)
, z(k) = det (Q(k))

| det (Q(k))| . (4)

The topological phase diagrams representing the invariant
NBDI as a function of μ and h are shown in Fig. 1. Each
region located between two boundary lines is characterized

by an individual value of the topological index indicated
on the diagram, NBDI = 0, ±1, ±2. The parametric region
where NBDI = 0 (NBDI �= 0) corresponds to the topologically
trivial (nontrivial) phase. In the case of nontrivial topology,
the absolute value of NBDI points out the number of Majorana
bound states in the open wire. The solid lines in Fig. 1 are
obtained from the condition of presence of gapless excitations
in the bulk energy spectrum. These lines for the condition
|�| < 2|�1| are defined as

h2
1 = (t + μ)2 + (� + 2�1)2,

h2
2 = (t − μ)2 + (� − 2�1)2,

h2
3 = Re[(μ − �̃)2 − α2 sin2 φ], (5)

where �̃ = �/2�1, φ = arccos(�̃). Then, nonzero values of
NBDI occur under the conditions

NBDI = sgn(�1) if |h2 (1)|, |h3| < |h| < |h1 (2)|,
NBDI = −sgn(�1) if |h2 (1)| < |h| < |h1 (2)|, |h3|,
NBDI = 2 sgn(�1) if |h3| < |h| < |h1|, |h2|. (6)

Thus, there are the MDMs in the open wire if |�| < 2|�1| due
to the bulk-boundary correspondence [see Fig. 1(b)]. When
|�| � 2|�1| the topological phase transitions are determined
only by the expressions h2

1(2) = (t ± μ)2 + (� ± 2�1)2. In
this case, the topological invariant equals NBDI = −sgn(�)
if |h1| < |h| < |h2| or NBDI = sgn(�) if |h2| < |h| < |h1|. In
the variables μ and h, these relations result in two parabola-
shaped regions in Fig. 1(a). For simplicity, we will use the
notations “left parabola” and “right parabola” with regard to
them.

It is necessary to stress two features. First, as it follows
from the analysis of [31], the BDI-symmetry class is realized
only for strictly one-dimensional system. If several electronic
subbands are taken into account, the system drops into the
D-symmetry class. Second, the condition |�| < 2|�1| for the
MDM realization is equivalent to the presence of nodal points
of SC order parameter �k . This inequality is violated in the
interacting system. In the next section we will show that the
similar single-particle excitations emerge even under |�| >

2|�1| if U, V �= 0.
The main approach used here to study the topological

phases in 1D system under the presence of electron cor-
relations is the DMRG method. This tool is powerful to
investigate the properties of lowest-energy many-body states
of 1D and quasi-1D systems taking into account interac-
tions [49]. In this work the DMRG tool is used to study
both the initial Hamiltonian (1) as well as effective models
in strongly correlated regime. It turned out that consideration
of the effective Hamiltonians made it possible to increase the
speed and accuracy of DMRG calculations that additionally
underline the necessity to develop the atomic-representation
description of interacting TSC structures.

For both initial and effective models, the many-body
Hilbert space has been divided into sectors with an even
and odd number of fermions. In each sector, the quantum
states |
ev(od )

1,2 〉 and corresponding energy levels Eev(od )
1,2 have

been calculated. Since the many-body density matrix is also
obtained, one can investigate the behavior of different equi-
librium averages.
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For finite-size systems the NBDI index can only approxi-
mately describe the conditions of MM existence. A convenient
approach to analyze these states in the wire with finite length
is based on the Majorana polarization (MP) quantity intro-
duced earlier in [50,51] as a measure of the Majorana spatial
distribution of a single-particle wave function. We consider a
direct generalization of the MP for many-body states. Then,
the MP definition is

MP j =
∑

f σ
′(w2

j f σ − z2
j f σ

)
∑

f σ
′(w2

j f σ + z2
j f σ

) , j = 1, 2 (7)

w j f σ = 〈
 j |(a f σ + a+
f σ )|
0〉,

z j f σ = 〈
 j |(a f σ − a+
f σ )|
0〉, (8)

where |
0〉 = |
ev/od
1 〉 is a ground even- or odd-parity state;

|
 j〉 = |
od/ev
j 〉 are first ( j = 1) and second ( j = 2) excited

many-body states from the dual-parity sector of the Hilbert
space. The prime indicates that the summation over l is carried
out for the half of wire sites. It is seen that the value of MP j

determines the overlap between Majorana-type coefficients
w j f σ and z j f σ .

In the absence of Coulomb interactions (U = V = 0) the
definition (7) coincides with the one introduced in [50,51].
As we mentioned above, MP j just partly agrees with NBDI

in the finite-length wire. However, a clear correspondence is
obtained when the number of sites N → ∞: MP j → 0 for a
bulk excitation and MP j → 1 in case of the MM. Therefore,
it is assumed that if N → ∞, the MSMs appear with MP =
MP1 + MP2 = 1 in the topological phases characterized by
NBDI = ±1. The MDMs are realized having MP = 2 in the
phase with NBDI = 2. Finally, MP = 0 is in the trivial phase
where NBDI = 0. In the wire with finite N the spatial dis-
tribution of particular excitation changes continuously from
bulklike to edgelike, especially in the vicinity of topological
phase boundaries. Hence, MP also varies between 0 and 1.
For simplicity, we will assume that the edgelike excitation is
dominant and MMs are formed if at least MP j > 0.8.

For interacting systems, the topological classification can
be carried out by analyzing the entanglement spectrum of
the reduced density matrix H = − ln trN/2 ρ, where ρ is the
many-body density matrix [27,30,52]. For the system under
consideration, an entanglement spectrum degeneracy d =
d[H] can be onefold, twofold, and fourfold. In the limit N →
∞ the correspondence between MP and d is as follows: MP =
0 ↔ d = 1; MP = 1 ↔ d = 2; MP = 2 ↔ d = 4. These re-
lations are relevant also in the strongly correlated regime. As
before, MP has no topological origin. Nevertheless, it allows
to identify the MMs as well as their hybridization, therefore,
describing edge effects. The boundaries of topological phases
obtained using the invariant d and the wire-length dependence
of MP in the presence of Coulomb interactions will be pre-
sented in Sec. III E.

The second approach utilized in the paper is the general-
ized mean-field description (GMF). Technically, it is based on
the Bogoliubov transformation of four-fermion operators with
consequent renormalization of the operator terms [53,54]. In
such an approach, the equations for the transformation coeffi-
cients become nonlinear since the effective quadratic form of
Hamiltonian depends on the transformation parameters. This

approach was used to study the D-class wires in [45,55]. Com-
parison of the GMF with the exact-diagonalization (DMRG)
results for the short (long) BDI wires shows qualitative
agreement at U � 1, V � 0.5 and considerable deviation in
the strongly correlated regime. The GMF details for the BDI
system (1) are presented in Appendix A.

III. RESULTS AND DISCUSSION

For the subsequent numerical simulations we fix some of
the BDI-nanowire parameters: N = 100, ε0 = 0, � = −0.5,
�1 = 0.2, α = 1.5. We will provide a semiquantitative analy-
sis. Therefore, 64 (27) quantum states for the basic (effective)
model are kept. The truncation error in both cases did not
exceed 10−5.

A. General findings

Let us proceed to the numerical results obtained by the
DMRG method to analyze the interaction influence on topo-
logical phases in the BDI-class wire (1). DMRG has been
already utilized earlier to study this issue in the D-class
wire [27]. In particular, considering the left parabola with
the MSMs inside at low U , Stoudenmire et al. showed that
its right border moves to the right and the minimum shifts
right and down while U is rising. The left border remains
approximately at the same place because of the low-electron
concentration. In other words, the nontrivial phase emerges
at the lower magnetic fields and higher chemical potentials
in comparison with the U = 0 case. This behavior can be
qualitatively explained by effective enhancement of the Zee-
man splitting and suppression of the onsite SC pairing. Such
features are distinctly manifested already in the GMF descrip-
tion [see the expressions for (Aσσ ) f , f and (B↑↓) f , f in (A3)].
Additionally, the trivial-phase gap appears between the MSM
areas. Finally, starting from the regime of intermediate elec-
tron correlations, U > 2, the left and right parabolas settle
down in the lower and upper Hubbard subbands, respectively.

Similar effects occur in the BDI-class wire. Next, accord-
ing to the relations (5) and (6), if �, �1 �= 0 the phase dia-
gram becomes asymmetric (for U = 0 in the D-class system
the bottoms of both parabolas are at h = �). Consequently,
when � < 0, �1 > 0, and |�| < 2|�1|, the area with the
MDMs in the μ-h parametric space is located around the left
parabola. In turn, its width is defined by α.

B. Correlation-induced Majorana modes

One can see from the above-discussed results that the
control of relation between � and �1 leads to the different
topological-phase diagrams. In particular, the MDMs vanish
under the � increase. On the contrary, the onsite Coulomb
interaction has to suppress the corresponding SC pairing and
we expect the MDM phase to recover. This assumption is
confirmed by the numerical calculations. In Fig. 2(a) such a
phenomenon is displayed in a chemical-potential dependence
of two lowest-excitation energies E1,2 for the small value of
magnetic field h = 0.1. When U = 0 and μ ≈ −1 the system
is in the parametric region of left-parabola bottom and close
to the topological phase transition [see Fig. 1(a)]. The last
is additionally supported by the data in Fig. 2(a) where the
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FIG. 2. Occurrence of the Majorana double modes due to the strong onsite Coulomb correlations. (a) The chemical-potential dependence of
the first two excitation energies. (b), (c) The dependence of average onsite anomalous correlator and Majorana polarization on U , respectively.
(d) Two graphs in the left (right) column represent the spatial distributions of probability densities of the first two excitations, PD1 and PD2, at
μ = 0.5, U = 3 (U = 7). Parameters: h = 0.1, V = 0.

energies E1,2 are split around μ ≈ −1 even though E1 is
nonzero yet (see blue and red circle-marked curves). When
U increases, the topological phases with the MSMs can be
reached at weaker magnetic fields as it was discussed above.
As a result, E1 ≈ 0 and E2 �= 0 at μ ≈ −0.5–0.2 for U = 3
(see blue and red cross-marked curves). In addition, the MDM
phase emerges to the left and right of this area where both E1

and E2 approximately equal zero in spite of |�| > 2|�1|.
The MDM induction at strong U for |�| > 2|�1| can

be qualitatively accounted to the considerable reduction of
effective onsite pairing which is clearly seen via the behav-
ior of corresponding average anomalous correlator 〈a+

↑ a+
↓ 〉 =∑

f 〈a+
f ↑a+

f ↓〉/N . Its dependence on U is shown in Fig. 2(b),
displaying about two-time attenuation at U = 2.

The edgelike character of both excitations in the left and
right MDM areas is proved by the MP values which equal
1 for μ = −1 and 0.5 [see all the curves at point U = 3 in
Fig. 2(c)]. Significantly, these states are mainly localized at
the wire ends (MPi � 0.9) only for U � 1, where the mean-
field description becomes invalid [27,45]. It is remarkable
that the left MDMs survive even at the high intensities of
onsite correlations. In contrast, the right MDMs transform
into the MSMs as MP2 significantly deviates from 1 for
U > 5 [see red solid curve in Fig. 2(c)] that can be explained
by the continuing movement of the MSM area to the right

on the phase diagram. Simultaneously, since the gap be-
tween Hubbard subbands develops at half-filling, μ ≈ 1.5, it
gradually shrinks the right MDMs around this point. Note that
the many-body-interaction mechanism of MDM formation
was also analyzed for quasi-1D DIII-class wire by means of
DMRG and for the BDI-class one using the Hartree-Fock
approximation [29].

To display the transition from the MDM to MSM phase
evidently and show direct relation between the MP and prob-
ability densities of excitations PD j ( f ) ( j = 1, 2), we plot
the spatial distributions of the latter in Fig. 2(d). In general,
PD j ( f ) can be expressed in terms of the Bogoliubov coeffi-
cients as follows:

PD j ( f ) =
∑

σ

(|u j f σ |2 + |v j f σ |2), (9)

where u j f σ = (w j f σ + z j f σ )/2, v j f σ = (w j f σ − z j f σ )/2 and
the coefficients w j f σ , z j f σ are defined in (8). The left column
corresponds to the case of μ = 0.5, U = 3. There are two
MMs (see top blue and bottom red dependencies). Whereas
the right column describes the point μ = 0.5, U = 7 where
the second state becomes bulklike (see bottom red distribu-
tion). Since the Kramers degeneracy is absent at h �= 0 the
second state in the MDM is earlier affected by the bulk-
gap closing while U increases. Hence, it is expected that at
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Inset: MP1,2 versus h at U = 10. Parameters: μ = −1.4, V = 0.

sufficiently high magnetic fields the MDMs can be trans-
formed into the MSMs. The described picture is shown in
Fig. 3. For U = 3 the blue and red circle-marked curves
correspond to E1(h) and E2(h), respectively. At h ≈ 0.6 the
topological phase transition emerges. The phase with two
(one) MMs is realized to the left (right) of this point. If
the intensity of onsite repulsion grows to U = 10, then the
MSM phase at h � 0.6 is fully suppressed (see blue and red
cross-marked curves). However, a part of the MDM area is
turned into the MSM one at 0.55 � h � 0.6 which is also
confirmed by the MP calculations (see the inset of Fig. 3).

The MP definition (7) provides data about overlapping of
the wave functions of Majorana single-particle excitations and
does not give information about partial contribution of such
excitations to the general structure of many-body quantum
transitions. The last can be estimated via the norm of jth
excitation, norm j . If it tends to 1, the MMs form a well-
defined quasiparticle excitation that is suitable for quantum-
computation purposes. Otherwise, when norm j < 1, the role
of quasiparticle dissipation grows. This issue is analyzed in
the following section.

C. Dependence of Majorana-mode norm on the onsite Coulomb
interaction and electron concentration

To clarify deeper the influence of strong onsite Coulomb
interaction on the Majorana-type excitations, let us consider
the behavior of their norms, norm j = ∑

f PD j ( f ). The cases
of low and high magnetic fields are depicted in Figs. 4(a)
and 4(b), respectively. As it was mentioned above, the MDMs
occur at h = 0.1, μ = −1, and U � 1. In turn, their norms
dramatically reduce while U increases [see red and blue solid
curves in Fig. 4(a)] signalizing that the three- and more-
fermion terms have to be taken into account to properly char-
acterize the excitations. There is also necessary to remark that
the slight exceeding 1 by both norms is related to not enough
basis states kept. Obviously, the essential factor influencing
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n
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n

n

norm1
norm2
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n

(b) h=1: MSM n

n
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FIG. 4. The impact of onsite interaction and average spin-
dependent concentrations on the norm of Majorana single-particle
excitations at the low (a) and high (b) magnetic fields, h = 0.1 and
h = 1, respectively; μ = −1. The other parameters are the same as
in Fig. 2.

on the norms at strong U regime is spin-dependent onsite
concentrations. One can see it in Fig. 4(a) where average
spin-up and -down occupation numbers nσ = ∑

f 〈a+
f σ a f σ 〉/N

are shown as well (see red and blue circle-marked curves). The
norms considerably decrease since n↑ and n↓ are commensu-
rable quantities.

The effect of onsite correlations on the Majorana excitation
becomes much weaker at high magnetic fields. The corre-
sponding case is depicted in Fig. 4(b). For used parameters
h = 1 and μ = −1, the MSMs realize. In this situation the
wire is in a spin-polarized regime as the difference between
n↑ and n↓ becomes significant (see red and blue circle-marked
curves). While U enhances the minority-spin occupation n↓
decreases faster than the majority-spin one n↑, leading to
n↑/n↓ ≈ 10. As a result, even for the large values of onsite
Coulomb interaction the norm deviation is still about 10% (see
blue solid curve). The established correspondence between
norm j and nσ might be useful for the experimental analysis
of the MM properties in interacting quantum wires.
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D. Effective Hamiltonian in the limit U � α, t, h, �, �1

When performing DMRG calculations the diagonalization
of large sparse matrices is carried out by the Lanczos algo-
rithm. Its convergence significantly decreases in the strongly
correlated regime U > 3, that becomes especially prominent
at U ∼ 10, V ∼ 1. The reason is an appearance of large
number of matrix elements which values substantially deviate
from zero. Such an effect is qualitatively observed even in the
GMF description [see the elements (A↑↓) f , f and (Bσσ ) f +1, f
in (A3)] [45,55]. In order to overcome this obstacle, we derive
here the effective model employing the atomic representation.

The second advantage of the DMRG extension to the case
of effective strong-interaction Hamiltonian is considerable,
enhancing of numerics speed. It becomes possible since all
the states with two electrons on one site are integrated out the-
oretically due to projection-operator technique. The DMRG
algorithm for the final model operates faster in comparison
with the one for the model (1) since the number of used
eigenstates decreases from 4N0 to 3N0 , where N0 is a number of
sites in the cluster. Additionally, the biggest size of matrices
for the corresponding calculations reduces from 42(N0+1) to
32(N0+1).

Let us introduce the Hubbard operators as

X pq
f = | f , p〉〈 f , q|, (10)

where p, q = 0; σ ; 2 describe quantum states on the f th
site [42]. Then, using the connection a f σ = X 0σ

f + ησ X σ̄2
f the

Hamiltonian (1) in the atomic representation acquires the form

H = H0 + H1 + H2 + H ′ + HV , (11)

where the onsite Hamiltonian is

H0 =
∑

f σ

ξσ X σσ
f +

∑
f

(2ξ + U )X 22
f . (12)

The Hamiltonians H1 and H2 describe processes at the lower
and upper Hubbard subbands, respectively,

H1 = − t

2

∑
f σ

(
X σ0

f X 0σ
f +1 + X σ0

f +1X 0σ
f

)

− α

2

∑
f σ

ησ

(
X σ0

f X 0σ̄
f +1 + X σ̄0

f +1X 0σ
f

)

+�1

∑
f

(
X 0↑

f X 0↓
f +1 + X 0↑

f +1X 0↓
f

)+ H.c., (13)

H2 = − t

2

∑
f σ

(
X 2σ̄

f X σ̄2
f +1 + X 2σ̄

f +1X σ̄2
f

)

− α

2

∑
f σ

ησ̄

(
X 2σ̄

f X σ2
f +1 + X 2σ

f +1X σ̄2
f

)

−�1

∑
f

(
X ↓2

f X ↑2
f +1 + X ↓2

f +1X ↑2
f

)+ H.c. (14)

The interaction between the subbands is characterized by the
Hamiltonian H ′:

H ′ = − t

2

∑
f σ

ησ

(
X σ0

f X σ̄2
f +1 + X 2σ̄

f X 0σ
f +1 + H.c.

)
− α

2

∑
f σ

(− X σ0
f X σ2

f +1 + X 2σ
f X 0σ

f +1 + H.c.
)

+
{

− �
∑

f

X 02
f + �1

∑
f

(− X 0↑
f X ↑2

f +1 − X 0↑
f +1X ↑2

f

+ X ↓2
f X 0↓

f +1 + X ↓2
f +1X 0↓

f

)}+ {H.c.}. (15)

The term characterizing intersite Coulomb interaction is

HV = V
∑

f

n f n f +1, (16)

where n f = X ↑↑
f + X ↓↓

f + 2X 22
f .

To derive the analog of the t-J∗-V model from the t-U -V
model (11) in the limit of strong electron correlations taking
into account spin-orbit coupling the unitary transformation is
applied,

H → H̃ = eSHeS†
, S† = −S, (17)

where the operator S has to satisfy H ′ − [H0, S]− = 0. As a
result, S is given by

S = t/2

U

∑
f σ

ησ

(
X σ0

f X σ̄2
f +1 − X 2σ̄

f X 0σ
f +1 − H.c.

)

−
∑

f σ

α/2

U − 2ησ h

(
X σ̄0

f X σ̄2
f +1 + X 2σ̄

f X 0σ̄
f +1 − H.c.

)

+ �

2ξ + U

∑
f

(
X 02

f − X 20
f

)
. (18)

By projecting the states on the lower Hubbard subband in the
limit U � α, t, h,�,�1 we obtain the effective Hamiltonian

Ht-J∗-V =
∑

f σ

ξσ X σσ
f − �2

2ξ + U

∑
f

X 00
f

+ H1 + Hint + H3 + HV , (19)

where the interaction term is described by

Hint = t2

U

∑
f

(
S f S f +1 − 1

4
n f n f +1

)

− tα

U

∑
f

{
(X ↑↓

f + X ↓↑
f )Sz

f +1 − Sz
f (X ↑↓

f +1 + X ↓↑
f +1)

}

− α2

U

∑
f

{
1

2
(X ↑↓

f X ↑↓
f +1 + X ↓↑

f X ↓↑
f +1) + Sz

f Sz
f +1

+ 1

4
n f n f +1

}
− α�(ξ + U )

U (2ξ + U )

∑
f σ

(
X 0σ

f X 0σ
f +1 + H.c.

)

− t�(ξ + U )

U (2ξ + U )

∑
f

(
X 0↓

f X 0↑
f +1 − X 0↑

f X 0↓
f +1 + H.c.

)
,

(20)
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and the three-center term is

H3 = − t2

4U

∑
f σ

(
X σ0

f −1X σ̄ σ̄
f X 0σ

f +1 − X σ̄0
f −1X σ σ̄

f X 0σ
f +1 + H.c.

)

+ tα

4U

∑
f σ

ησ

{
X σ̄0

f −1

(
X σσ

f + X σ̄ σ̄
f

)
X 0σ

f +1

+ X σ0
f −1

(
X σ σ̄

f − X σ̄ σ
f

)
X 0σ

f +1 + H.c.
}

+ α2

4U

∑
f σ

(
X σ0

f −1X σσ
f X 0σ

f +1 + X σ̄0
f −1X σ̄ σ

f X 0σ
f +1 + H.c.

)
.

(21)

Now, n f is determined on the reduced Hilbert space, i.e.,
n f = X ↑↑

f + X ↓↓
f , which is used in the definition of intersite

Coulomb interaction HV in (19). It is necessary to notice that
we neglect the contributions from the SC pairings between
nearest sites to the effective and three-center interactions
assuming �1 � α, t . Nevertheless, the pairings in the lower
Hubbard subband proportional to �1 are taken into account.

It is seen from (20) that the spin-orbit coupling induces
the anomalous terms like S+

f S+
f +1 in addition to the kinetic

exchange interaction with parameter t2/U . The local character
of onsite SC pairing leads to the appearance of two-site terms
only. At the same time, the combination of this pairing and
electron hoppings induces the spin-singlet pairings between
nearest sites. On the other hand, the interplay of spin-orbit
coupling and onsite pairing results in the spin-triplet pairings
on the nearest neighbors.

Earlier, the effective Hamiltonian for two-band Hubbard
model with spin-orbit interaction in the strongly correlated
limit was obtained [56]. However, to the best of our knowl-
edge the effective interactions (19) induced by the Rashba
spin-orbit coupling have not been derived previously and are
of fundamental interest themselves. It is useful to notice that
the model (19) can be easily brought to the D-class case by
setting �1 to zero.

In the limit U → ∞ the wire Hamiltonian (19) is reduced
to the t model

Ht =
∑

f σ

ξσ X σσ
f + H1 + HV . (22)

It is obvious that in this limit the proximity-induced onsite
SC pairing is fully suppressed as �/U → 0. Therefore, the
D-class-like situation can not be implemented here. Next, the
t-J-V (H3 term is neglected) and t models allow to modify
the numerical approach for more fruitful treatment of the
strong-correlation regime by means of the tJV - and t-DMRG
algorithms, respectively.

E. DMRG in the atomic representation

Let us turn to the numerical results obtained by the DMRG
method for the effective model. In this case, the coefficients
ω j f σ and z j f σ are defined similarly to (8) using the Hubbard
operators

w j f σ = 〈
 j |
(
X 0σ

f + X σ0
f

)|
0〉,
z j f σ = 〈
 j |

(
X 0σ

f − X σ0
f

)|
0〉. (23)

To show correspondence between the results provided by
the DMRG for the initial t-U -V model (tUV -DMRG) and
tJV -DMRG the chemical-potential dependencies of E1,2 are
plotted in Fig. 5. Note that the onsite Coulomb parameter is
chosen to be quite high, U = 10, in order to exclude the higher
orders of perturbation theory in the effective model (19).

Without the intersite Coulomb correlations, the excitation
energies obtained by the tUV -DMRG at U = 10 in Fig. 5(a)
(see blue and red solid curves) retains the features found at
U = 2 in Fig. 2(a). In particular, there are the left and right
MDMs (where E1,2 ≈ 0) around the MSMs (where E1 ≈ 0,
E2 �= 0). The last are realized at μ ≈ 0–1.2. Both energies
sharply increase at μ ≈ 1.5 due to the gap between the
Hubbard subbands. The appearance of the MDMs and MSMs
is proved by the μ dependence of MP1,2 [see blue and red solid
curves in the inset of Fig. 5(a)]. The tJV -DMRG data demon-
strate qualitatively similar behavior at low μ, μ < 0 [see blue
and red dashed curves in Fig. 5(a)]. The differences become
stronger at the higher concentrations. Here, the splitting of
E1 and E2 is reduced and accompanied by the oscillations
of excitation energies. Hence, the MSM region is shorter in
comparison with the tUV -DMRG results that are confirmed
by MP1 < 0.9 at μ ≈ 0–1 [see blue dashed curve in the inset
of Fig. 5(a)]. Finally, the area near μ = 1.5 with the MDMs is
reduced as well.

It is clearly seen from Fig. 5(b) that the mentioned partial
agreement between the tUV - and tJV -DMRG data is kept
when the intersite correlations V are taken into account. In
turn, there are two effects the nonzero V leads to. First,
it additionally stretches the lower Hubbard subband to the
right. In other words, the intersite interactions effectively
increase the onsite energy [see the expression for (Aσσ ) f , f
in (A3)]. Consequently, one has to raise μ to reach the same
concentration level in comparison with the situation of V = 0.
Second, the nonzero V decreases the excitation-spectrum gap
much stronger than U even though V � U [57]. As a result,
the E1,2 oscillations occur in the tUV -DMRG solution leading
to the MSM suppression that is corroborated by the MP1

behavior at μ ≈ 0.25–1.5 [see blue solid curve in the inset
of Fig. 5(b)]. Nevertheless, the MSMs survive in the area
of μ ≈ 1.5–2.25. The regions with the left and right MDMs
roughly conserve their widths. Then, the tJV -DMRG scheme
gives shorter areas of the MSMs and right MDMs. Thus, as
it was already noticed above, the differences between tUV -
and tJV -DMRG results at V �= 0 also strengthen when the
electron concentration grows. The observed deviations of two
DMRG schemes are attributed to the absence of three-center
terms (21) in the tJV -algorithm which is more powerful at
higher electron densities.

Since the tJV -DMRG algorithm also yields both MSMs
and MDMs, now we turn to the numerical simulations based
on the t-J-V -model. In Fig. 6 color plots of MP1,2 versus μ

and h are presented. Starting from the NBDI map found in
the no-interaction limit and shown in Fig. 1(a), one can trace
the evolution of topological phases induced by strong electron
correlations in the lower Hubbard subband (related to the left
parabola). If the intersite Coulomb correlations are omitted,
the left parabola is cut off at μ ≈ 1.5 by the Mott-Hubbard gap
[see Figs. 6(a) and 6(b)]. The MSMs are largely suppressed
inside the parabola persisting only at its right edge in the
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FIG. 5. The DMRG data for initial (t-U -V ) and effective (t-J-V ) models plotted by solid and dashed curves, respectively. The chemical-
potential dependencies of excitation energies at U = 10, V = 0 (a) and U = 10, V = 0.5 (b). Insets: the μ dependencies of the Majorana
polarizations MP1 and MP2 depicted by blue and red curves, respectively. Parameters: h = 0.1.

strip-shaped region where their norm is close to 1. Note that
taking into account the above-described comparison between
the tUV - and tJV -results we expect this area being much
wider in the former DMRG approach. Below the parabola the
MDMs emerge as MP1,2 → 1. Note that such a behavior is
similar to the situation shown in Fig. 1(b) where, in contrast,
|�| < 2|�1|. The MDM norms vary roughly from 0.5 to 0.8.

When the intersite electron-electron interactions are turned
on and V � U the mentioned effects still exist [see Figs. 6(c)
and 6(d)]. Meanwhile, the parabola is additionally stretched
out to the right (the right edge is not shown entirely) and its
bottom is shifted down. The MSM strip becomes narrower and
the MDM-region size is decreased.

To obtain the boundaries of different topological phases
showed by dashed curves in Fig. 6, we employ two criteria: the
entanglement spectrum degeneracy d and the length depen-
dencies of MPs, MP1,2(N ). They demonstrate good agreement
with each other. The dashed curves divide the areas with
different d (to calculate d we took N = 1400). Additionally,
the MP1,2(N ) behave differently in these regions. To show it,
three pairs of points in the (μ, h) space are considered [see
Fig. 6(a)]. The MPs as functions of the wire length for each
pair are displayed in Figs. 7(a)–7(c), respectively. It is seen
that the points A, C, and E are located in the trivial phase with
d = 1. In turn, the B and D points are in the topological phase
with d = 4 where the MDMs appear. Finally, the F point is
in other topological phases with d = 2 corresponding to the
phase with the MSMs.

The wire length dependencies of MPs can be used to ap-
proximately receive the phase diagram in case of the infinitely
long structure. As it was discussed in Sec. II if N → ∞,
U = V = 0 there is a clear correspondence between NBDI and
MP1 + MP2 allowing to directly compare the noninteracting
and strongly interacting phase diagrams. They are shown in
Figs. 6(e) and 6(f), respectively. Here, one can explicitly see
the significant transformation of the left parabola with the
MSMs inside and the induction of MDM region by the onsite
Coulomb repulsion.

Next, it is useful to consider the limit of U → ∞. The
MP1,2 maps in the variables μ and h calculated by the t-

DMRG algorithm are shown in Figs. 8(a) and 8(b), respec-
tively. As it was mentioned before, the results do not depend
on � as �/U → 0. One can see that the MSMs, surviving
at high and finite U close to the right boundary of the left-
parabola region characterized by strong spin polarization, are
destroyed if U → ∞. The MDMs in the parametric area under
the left parabola are suppressed as the MP2 is far from 1.
Nevertheless, the single edge modes persist in this region as it
is displayed in Fig. 8(a). The norms of such states exceed 0.7
in the wide range of parameters.

We denote the parameters h = 0.4, μ = −1.5 correspond-
ing to the high value of MP2 by the black point in Fig. 8.
For these parameters the spatial distributions of first two
excitations, ω j f σ and z j f σ ( j = 1, 2), are shown in Figs. 9(a)
and 9(b). The MP and norm values are MP1 ≈ 0.82, MP2 ≈
0.8 and norm1 ≈ 0.87, norm2 ≈ 0.52, respectively. For com-
parison, the same spatial distributions at h = 0.63, μ = −1.5
(see the white point in Fig. 8) are provided in Figs. 9(c)
and 9(d). In this situation the MP and norm values are
MP1 ≈ 0.94, MP2 ≈ 0.54 and norm1 ≈ 0.92, norm2 ≈ 0.47,
respectively.

It is seen from Fig. 9 that, while the second excitation
demonstrates the pronounced overlapping behavior typical for
bulk state [see Figs. 9(b) and 9(d)], the first one possesses
the features typical for the MSM even in the extreme case
of U → ∞ as the well-defined maxima of the distributions
near both edges occur [see Figs. 9(a) and 9(c)]. However, the
length dependencies of MPs reveal the instability of observed
edge states if the strength of onsite correlations is infinite.
Figure 7(d) shows that both MP1 and MP2 reduce for longer
wires. These data are corroborated by the calculations of
entanglement spectrum degeneracy which yield d = 1 for all
values of μ and h.

Thus, one can observe the following modification of the
phase diagram for |�| > 2|�1|: (1) in the no-interaction
case there are the MSM and trivial phases [see Fig. 1(a)];
(2) in the strongly correlated regime the MSM, MDM,
and trivial phases can be realized (see Fig. 6); (3) in the
limit of infinite onsite repulsion, the wire is in the trivial
phase.
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FIG. 6. The effect of Coulomb interactions on the topological phases of the BDI-class wire. MP1,2 as functions of chemical potential and
magnetic field at U = 10, V = 0 (a), (b) and U = 10, V = 0.5 (c), (d) calculated by the DMRG approach for the t-J-V model. The dashed
curves display the boundaries between different topological phases. The A-F points denote the parameters taken to plot Figs. 7(a)–7(c). (e), (f)
The noninteracting and strongly interacting topological phase diagrams, respectively. The last is obtained at U = 10, V = 0 based on the wire
length dependencies of Majorana polarizations.

It is essential to emphasize that the above-discussed
DMRG results inherently involve the contribution from zoo
of different many-body processes. To show their role more
prominently, one can analytically consider the t model (22)

in the simplest Hubbard-I approximation. The corresponding
details are given in Appendix B. By solving the system of
equations for the Zubarev’s Green functions [see Eq. (B1)],
the quasiparticle operator in the strongly correlated limit is
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FIG. 7. The wire length dependence of Majorana polarizations. (a) MP1,2(N ) correspond to A (circles) and B (crosses) points in Fig. 6(a);
(b) MP1,2(N ) correspond to C (circles) and D (crosses) points in Fig. 6(a); (c) MP1,2(N ) correspond to E (circles) and F (crosses) points in
Fig. 6(a); (d) MP1,2(N ) correspond to the white point in Fig. 8.

given by

α̃ j = 1

2

N∑
f =1

∑
σ

(w̃ j f σ γ̃A f σ + iz̃ j f σ γ̃B f σ ), (24)

where the Majorana operators in the atomic representation are
expressed as

γ̃A f σ = X 0σ
f + X σ0

f , γ̃B f σ = i
(
X σ0

f − X 0σ
f

)
. (25)

FIG. 8. The influence of infinite onsite repulsion on edge states of the BDI-class wire. The chemical potential-magnetic field diagrams of
the MP1 (a) and MP2 (b) obtained by the DMRG scheme for the t model at V = 0. In this limit, there are no boundaries of the topological
phases on the maps since only the trivial phase with d = 1 is possible. The black and white points denote the parameters for which the
Majorana-type spatial distributions of the first two modes are plotted in Figs. 9(a)–9(d).
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FIG. 9. The spatial distributions of the first (a), (c) and second
(b), (d) excitations in the t model. The top (bottom) plots correspond
to the black (white) point on Figs. 8.

The MP in the Hubbard-I approximation is defined simi-
larly to (7), substituting the w̃ j f σ , z̃ j f σ coefficients. Initially,
such an approach was used to analyze the coexistence phase
of superconductivity and noncollinear magnetic ordering in
the strongly correlated limit for the quasi-1D system [58].

The color plot of total MP, MP1 + MP2, versus μ and h
is displayed in Fig. 10. It is seen that in the wide range of
parameters the total MP is equal to 2 indicating the MDM
emergence. In the left-parabola region, the inequalities 1 <

MP1 + MP2 � 1.5 mainly hold. Here, the MSMs are well
defined as MP1 ≈ 1, MP2 � 0.5. Apparently, the Hubbard-
I approximation leads to the results quantitatively different
from the DMRG simulations (compare Fig. 10 and Fig. 8). In
particular, the former gives rise to the shift in the chemical
potential in comparison with the DMRG data due to the
differences in the energy spectrum and Fermi momentum.
In other words, the same value of μ in the Hubbard-I ap-
proximation and DMRG approach corresponds to different
electron densities, e.g., in the absence of magnetic field the
filling 〈n f 〉 = 1 is achieved at μ ≈ 1 (2) in the Hubbard-I
(DMRG) approach. Moreover, the MSMs and MDMs persist
in the Hubbard-I approximation, whereas the DMRG yields to
the complete suppression of the MSMs and MDMs.

FIG. 10. The total Majorana polarization of two excitations,
MP1 + MP2, as a function of μ and h calculated by means of the
Hubbard-I approximation in the t model at V = 0.

The reason of highlighted discrepancies is rather obvious:
the simplest Hubbard-I approximation does not take into
account contributions from spin and charge fluctuations. It
means that the quasiparticles related to the Hubbard fermions
are well defined. That is why the quasiparticle norm is always
equal to 1. On the other hand, spin and charge fluctuations
(for example, in the one-loop approximation) will modify
the real part of energy spectrum, but also might lead to the
damping effect (since the imaginary part of energy spectrum
becomes nonzero). We suppose that such corrections will
improve the agreement with the t-DMRG results and the
nonzero quasiparticle damping will give rise to the decrease of
its norm which resembles the effect occurring in the DMRG
method.

Nevertheless, the Hubbard-I approximation is meaningful
from a fundamental point of view since that is the first step
allowing to define the Majorana fermions in the strongly cor-
related limit [see (24)]. Thus, it opens a route to analytically
describe the influence of spin and charge fluctuations on the
MMs in this regime. But, consideration of similar effects is
beyond the scope of this work and will be analyzed in further
studies.

IV. CALORIC FUNCTIONS

Finally, we would like to discuss the possibility of ex-
perimental detection of topological phases in the strongly
correlated system (1) employing caloric functions. There are
a few reasons to use this tool here. First, these effects as a
way to identify topological phases are studied insufficiently
in comparison with the transport properties of the SC wires.
Second, a series of caloric anomalies indicating the nontrivial-
phase formation in the D-class wire persists in weak Coulomb
interactions when the GMF approach is valid [45]. The caloric
anomalies in these structures are related to the quantum
phase transitions [59,60] which, in turn, are caused by the
hybridization of MMs localized at the opposite edges. It is
clearly seen from the above numerical data that the strong
electron correlations in the BDI-class wire enhance this effect
due to the decrease of bulk gap. Thus, one can expect at least
to observe similar features in our system.

The MCE and ECE are defined by the change of system
temperature T under the adiabatic change of magnetic field or
chemical potential, respectively,

− 1

T

(
∂T

∂h

)
S,μ

=
(

∂〈M̂〉/∂T

C(T )

)
μ,h

, M̂ =
N∑

f =1;σ

σa+
f σ a f σ ,

− 1

T

(
∂T

∂μ

)
S,h

=
(

∂〈N̂〉/∂T

C(T )

)
μ,h

, N̂ =
N∑

f =1;σ

a+
f σ a f σ ,

(26)

where C(T ) is a specific heat of the system. Using the scaling
theory it was shown that the derivatives (26) have to diverge
in quantum critical points at low temperatures [59,60]. In
the vicinity of quantum critical points, these quantities have
different sign. The last follows from the definition (26) since
∂〈M̂〉/∂T and ∂〈N̂〉/∂T must have opposite signs in the
left and right neighborhood of quantum critical point. It is
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demonstrated below that the described behavior should take
place if either ground or excited state is changed.

In the case of noninteracting or weakly interacting
fermions, the MCE and ECE can be expressed via the u, v

Bogoliubov coefficients [45]

w∂〈N〉/∂T = 1

2T 2

2N∑
j=1

AjEj f (Ej )[1 − f (Ej )],

∂〈M〉/∂T = 1

2T 2

2N∑
j=1

BjEj f (Ej )[1 − f (Ej )],

C(T ) = 1

T 2

2N∑
j=1

E2
j f (Ej )[1 − f (Ej )], (27)

where

Aj =
N∑

f =1,σ

(|u j f σ |2 − |v j f σ |2),

Bj =
N∑

f =1,σ

ησ (|u j f σ |2 − |v j f σ |2). (28)

Here, f (Ej/T ) is the Fermi-Dirac function. It is seen
from (26)–(28) that for a single edge state with the energy
in the gap E1 � T � Ej′ ( j′ > 1) the divergences of caloric
effects occur if E1 = 0. Such a situation realizes in the D-class
wires for which the oscillations of ground-state fermionic
parity occur. Next, if there are a few edge excitations such that
Ej � T � Ej′ ( j′ > j) and the corresponding many-particle
excited states are changed but not the ground one that the
mentioned anomalies of MCE and ECE are not observed.

Thus, the following relation between the behavior of
caloric functions and energy spectrum of the system takes
place: the MCE and ECE change signs under quantum tran-
sitions and diverge (not diverge) in the transition points if the
ground (excited) state is changed. Both scenarios are able to
appear in the BDI-class wire. In the parametric region where
the MSMs emerge, the cascade of transitions accompanied
by the switches of ground-state fermionic parity occurs. In
the MDM area the set of quantum transitions realizes as
well. However, the ground state remains the same but the
multiple replacement of many-particle states belonging to the
dual-parity sector of the Hilbert space emerges.

The described effects are displayed in Fig. 11. The
plot 11(a) includes the magnetic-field dependencies of the
first two elementary excitations E1,2 without Coulomb in-
teractions. In Fig. 11(b) the MCE as a function of mag-
netic field calculated by formulas (26)–(28) at U = V = 0 is
demonstrated. This quantity changes its sign and periodically
diverges at the fields where E1 → 0, E2 �= 0. In contrast, the
divergences disappear in the MDM region and the MCE oscil-
lates with finite amplitude. Thus, the numerics fully support
the proposed correspondence between the behavior of caloric
functions and energy spectrum.

Strictly speaking, in the strongly correlated regime the
expressions (26)–(28) are inapplicable. An accurate analysis
of caloric functions in such a situation appeals to the finite-
temperature DMRG approach that goes beyond the scope

FIG. 11. The magnetic-field dependencies of E1,2 (a) and MCE
(b) for μ = −1.5. Insets of (a): left and right plots circumstantially
depict E1,2 in regions of h where the Majorana double and single
modes occur, respectively. Parameters: � = −0.3, �1 = 0.2, α =
1.5, U = 0, V = 0, T = 10−3.

of this study. However, a qualitative evaluation of caloric
effects in the low-temperature limit (T is much lesser than the
bulk gap) can be provided via the following thermodynamic
relations:

∂〈M̂〉/∂T = 〈M̂ · H 〉 − 〈M̂〉 · 〈H 〉,
∂〈N̂〉/∂T = 〈N̂ · H 〉 − 〈N̂〉 · 〈H 〉,

C(T ) = 〈H 2〉 − 〈H 〉2. (29)

Since the presence of two edge states results in the fourfold
degeneracy of entanglement spectrum that the equilibrium
averages can be calculated using first four many-body states
(two from each parity sector),

〈N̂〉 = Sp (N̂ · ρ), 〈M̂〉 = Sp (M̂ · ρ),

ρ =
(

1

Z̃

) ∑
j=1,2

∑
P=ev,od

e−EP
j /T
∣∣
P

j

〉〈

P

j

∣∣,
Z̃ =

∑
j=1,2

∑
P=ev,od

e−EP
j /T . (30)

This approximation confirms the correspondence between
the behavior of caloric functions and the spectrum of ele-
mentary excitations that is demonstrated in Fig. 12. Namely,
there are the MCE oscillations in the MDM area, h < 0.3, and
the series of anomalies in the former MSM region, h > 0.3
(see the inset of Fig. 12). As was already observed, the latter
appears due to the significant electron-electron interactions
leading to reduction of the gap between E1 and E2. Then, the
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FIG. 12. The magnetic-field dependencies of E1,2 for � = −0.5,
U = 10, μ = −0.75. Inset: MCE versus h. The other parameters are
taken the same as in Fig. 11.

spatial distribution of the lowest state becomes bulklike even
though E1 is still periodically equal to zero (as well as true
MSM). Thus, the highlighted properties are stable against the
Coulomb correlations. Note that such measurements can be
supplemented by probing of the spin polarization of the wire
as a whole, which provides the information about the MM
norm.

V. SUMMARY AND CONCLUSION

In this paper, the effect of Coulomb correlations on topo-
logical phases of the 1D BDI-class wire was analyzed em-
ploying the DMRG method. To probe and display the MM
emergence in the system, we generalized the MP concept
which had been introduced earlier for the D-class noninter-
acting structures. The numerics revealed that the MP behavior
is in agreement with the entanglement-spectrum degeneracy,
that has topological nature, in a wide range of values of the
Coulomb interactions. In the noninteracting case the equiv-
alence between the MP and NBDI topological invariant was
observed as well.

The tUV -DMRG calculations operating with the initial
Hamiltonian (1) showed the features which had been already
obtained for the D-class systems at weak correlations. In
particular, on the μ-h phase diagram the left parabola with
the MSMs inside is stretched to the right and its minimum
is shifted right and down. The Mott-Hubbard gap, where the
phase is trivial, between the left and right parabolas increases
while the onsite Coulomb interaction rises. Consequently,
in the case of strong electron correlations, the left (right)
parabola is located in the lower (upper) Hubbard subband.

In general, when U, V = 0 the BDI-class wire is char-
acterized by the presence of the MDM region around the
left parabola if |�| < 2|�1| and � < 0, �1 > 0. These con-
ditions directly correspond to the existence of nodal points
of SC order parameter. Then, it was demonstrated that the
interactions can induce two MMs at each edge even in the
opposite situation of |�| > 2|�1|. The effect is attributed to
the suppression of onsite SC pairing due to the increasing
correlations. Additionally, in the case of strong repulsion, the
MDM-to-MSM transformation was revealed. The norm of

such interaction-induced MMs significantly deviates from 1
at high U if the concentrations of spin-up and -down carriers
are commensurable. In turn, the MSMs survive inside the
parabola mainly in the pronounced spin-polarized regime
nσ � nσ̄ when they have the close-to-unity norm.

To improve the convergence and speed of DMRG numerics
in the strongly correlated regime we derived the t-J∗-V model
by integrating out all the states with two electrons on one site
in the wire utilizing projection-operator technique. The result-
ing Hamiltonian includes the effective interactions related to
the processes of both standard hopping and Rashba spin-orbit
coupling (as well as their combination). Note that if �1 = 0
that the acquired model becomes applicable for the strongly
correlated D-class wire. The comparison between tUV - and
tJV -DMRG data showed partial agreement as the three-center
terms were not included in the effective Hamiltonian. The last
algorithm was used to obtain the topological-phase diagrams
where the mentioned induction and suppression of MMs
were clearly seen. Additionally, we found that the intersite
Coulomb interactions result in the extra reduction of MSM
and MDM areas.

In order to demonstrate the dramatic impact of spin
and charge fluctuations on the observed effects the simplest
Hubbard-I approximation for the t model was considered
analytically. In this case, the MSM and MDM regions were
not affected by U and their norm equals 1 everywhere on
the phase diagram even though U → ∞. On the other hand,
using the calculations of entanglement spectrum degeneracy
in the t-DMRG approach it was revealed that both MSMs and
MDMs are completely destroyed in the U → ∞ limit.

We also discussed the possibility to probe the MSMs and
MDMs via the features of caloric functions. It was shown that
in the MSM area the MCE changes its sign and periodically
diverges, whereas in the case of MDMs this function oscillates
with finite amplitude. In the former situation, the anomalies
appear at the fields where the ground state changes parity
while there is no such effect if the MDMs emerge. Using the
DMRG data we argue that these features are able to persist in
the strongly correlated regime.
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APPENDIX A: GENERALIZED MEAN-FIELD
DESCRIPTION OF BDI-CLASS WIRE

In this Appendix the GMF approach, which is useful
to probe the effects of weak Coulomb interactions on the
topological phases of 1D structures, is discussed for the BDI-
class wire. The effective BdG Hamiltonian is defined as

H = 1
2 · C+ · H · C, (A1)

H =

⎛
⎜⎜⎜⎝

A↑↑ A↑↓ B↑↑ B↑↓
A+

↑↓ A↓↓ −BT
↑↓ B↓↓

−B∗
↑↑ −B∗

↑↓ −A∗
↑↑ −A∗

↑↓
B+

↑↓ −B∗
↓↓ −AT

↑↓ −A∗
↓↓

⎞
⎟⎟⎟⎠, (A2)

where C+ = (a+
↑ , a+

↓ , aT
↑ , aT

↓ ), aσ = (a1σ , . . . , aNσ )T . The
matrices Aσ,σ ′ , Bσ,σ ′ contain the following nonzero compo-
nents (Aσσ = A+

σσ , Bσσ = −BT
σσ ):

(Aσσ ) f , f = −μ − σh + U 〈a+
f σ̄ a f σ̄ 〉

+V

(∑
σ ′

〈a+
f −1,σ ′a f −1,σ ′ 〉 + 〈a+

f +1,σ ′a f +1,σ ′ 〉
)

,

(Aσσ ) f +1, f = − t

2
− V 〈a+

f σ a f +1,σ 〉,(
A↑↓

)
f , f = −U 〈a+

f ↓a f ↑〉,(
A↑↓

)
f , f +1 = −α

2
− V 〈a+

f +1↓a f ↑〉,
(
A↑↓

)
f +1, f = α

2
− V 〈a+

f ↓a f +1↑〉,
(Bσσ ) f +1, f = −V 〈a f +1σ a f σ 〉,(

B↑↓
)

f , f = −�∗ + U 〈a f ↓a f ↑〉,(
B↑↓

)
f , f +1 = −�1 + V 〈a f +1↓a f ↑〉,(

B↑↓
)

f +1, f = −�1 − V 〈a f +1↑a f ↓〉. (A3)

It is seen from (A3) that there are both renormalized elements
and new ones induced by nonzero U, V .

The eigenvectors Y j = (u j↑, u j↓, v∗
j↑, v∗

j↓)T of BdG
Hamiltonian (A2) describe the electronlike and holelike wave
functions of the states with excitation energy ε j . The averages
in the expressions (A3) are nonlinearly related to the sought
coefficients of transformation:

〈a+
f σ a f ′σ ′ 〉 =

2N∑
j=1

{
u j f σ u∗

j f ′σ ′ f
(ε j

T

)

+ v j f σ v∗
j f ′σ ′

[
1 − f

(ε j

T

)]}
, (A4)

〈a+
f σ a+

f ′σ ′ 〉 =
2N∑
j=1

{
u j f σ v j f ′σ ′ f

(ε j

T

)

+ v j f σ u j f ′σ ′
[
1 − f

(ε j

T

)]}
, (A5)

where f (x) is the Fermi-Dirac function. Analysis of the MP
can be carried out using the relation between the quasiparticle
operators α1,2 and self-adjoint Majorana operators γA f σ =

1
2 (a f σ + a+

f σ ), γB f σ = i
2 (a f σ − a+

f σ ),

α j = 1

2

N∑
f =1;σ

(w j f σ γA f σ + z j f σ γB f σ ). (A6)

APPENDIX B: HUBBARD-I APPROXIMATION
IN THE LIMIT U → ∞

Here, the Majorana quasiparticles in the limit U → ∞
are determined employing the Hubbard-I approximation. To
achieve it, we solve the system of equations for the Zubarev’s
Green functions on different sites which is written as⎛

⎜⎜⎜⎝
ω − Ã↑↑ −Ã↑↓ 0̂ −B̃↑↓
−Ã↓↑ ω − Ã↓↓ −B̃↓↑ 0̂

0̂ B̃∗
↑↓ ω + Ã↑↑ Ã↑↓

B̃∗
↓↑ 0̂ Ã↓↑ ω + Ã↓↓

⎞
⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎣
〈〈

X̂ 0↑|X ↑0
f ′
〉〉

ω〈〈
X̂ 0↓|X ↑0

f ′
〉〉

ω〈〈
X̂ ↑0|X ↑0

f ′
〉〉

ω〈〈
X̂ ↓0|X ↑0

f ′
〉〉

ω

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

δ̂↑
0̂
0̂
0̂

⎤
⎥⎥⎦, (B1)

where N × N matrices Ãσσ , Ãσ σ̄ , and B̃σ σ̄ are given by

Ãσσ =

⎛
⎜⎜⎜⎜⎝

ξ1σ z1σ̄ t 0 0

z2σ̄ t
. . .

. . . 0

0
. . .

. . . zN−1,σ̄ t
0 0 zN σ̄ t ξNσ

⎞
⎟⎟⎟⎟⎠, (B2)

Ãσ σ̄ =

⎛
⎜⎜⎜⎜⎝

0 −z1σ̄ α 0 0

z2σ̄ α
. . .

. . . 0

0
. . .

. . . −zN−1,σ̄ α

0 0 zN σ̄ α 0

⎞
⎟⎟⎟⎟⎠, (B3)

B̃σ σ̄ =

⎛
⎜⎜⎜⎜⎝

0 −z1σ̄�∗
1 0 0

−z2σ̄�∗
1

. . .
. . . 0

0
. . .

. . . −zN−1,σ̄ �∗
1

0 0 −zN σ̄�∗
1 0

⎞
⎟⎟⎟⎟⎠.

(B4)

In (B1), δ̂↑ is a vector column of size N ,

δ̂↑ = (z1↓δ1 f ′ , z2↓δ2 f ′ , . . . , zN↓δN f ′ )′, (B5)

where ξ f σ = ξσ − V (〈n f +1〉 + 〈n f −1〉), z f σ = 1 − 〈n f σ 〉 is
the site-dependent Hubbard renormalization factor, δ f f ′ is the
Kronecker symbol.

The low-energy quasiparticle Green function can be for-
mally represented in the form

(ω − ε j )
〈〈
α j |X ↑0

f ′
〉〉

ω
= z f ′↓(S†) j f ′ , (B6)

where ε j are branches of the excitation spectrum with j =
1, 2, . . . N , and S is a transformation matrix diagonalizing the
system-of-equation matrix. The factors z f σ , energy spectrum,
and Green functions are obtained self-consistently using the
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relation

〈n f σ 〉 =
2N∑
j=1

1

2ε j
∏

i �= j

(
ε2

j − ε2
i

){ g f σ (ε j )

exp(ε j/T ) + 1

− g f σ (−ε j )

exp(−ε j/T ) + 1

}
, (B7)

where g f σ are numerators of the Green functions
〈〈X 0σ

f |X σ0
f 〉〉

ω
which are numerically found from the Eq. (B1)

for σ =↑. The Green functions containing X ↓0
f as the second

operator can be received in the similar manner.
The relation (B6) makes it possible to determine the opera-

tors of elementary excitations in terms of the Hubbard fermion
operators:

α j =
N∑

f =1

∑
σ

(
ũ j f σ X 0σ

f + ṽ j f σ X σ0
f

)
. (B8)

Using the Majorana operators in the atomic representa-
tion (25) the quasiparticle operator can be presented in
the form

α̃ j = 1

2

N∑
f =1

∑
σ

(w̃ j f σ γ̃A f σ + iz̃ j f σ γ̃B f σ ). (B9)

The difference from the conventional definition (A6)
is that the operators γ̃A f σ and γ̃B f σ involve not only
one-fermion but also three-fermion summand since
X 0σ

f = a f σ (1 − a+
f σ̄ a f σ̄ ). The coefficients w̃ j f σ =

ũ j f σ + ṽ j f σ , z̃ j f σ = ũ j f σ − ṽ j f σ are sought Majorana-type
coefficients. Now, one can calculate the MP using the
definition (7).
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