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Open Fermi-Hubbard model: Landauer’s versus master equation approaches
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We introduce a simple model for the quantum transport of Fermi particles between two contacts connected
by a lead. It generalizes the Landauer formalism by explicitly taking into account the relaxation processes in the
contacts. We calculate the contact resistance and nonequilibrium quasimomentum distribution of the carriers in
the lead and show that they strongly depend on the rate of relaxation processes.
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I. INTRODUCTION

Recently much attention has been paid to dynamics and
nonequilibrium states of open many-body systems [1–16].
Here the term “open” means that the system of inter-
est is coupled to a bath and, hence, generally neither the
system energy nor the number of particles in the system
are conserved. Typical examples of open many-body sys-
tems are the open Fermi-Hubbard and Bose-Hubbard models
[3,5,8,10,13,14,16] which are supposed to describe the current
of fermionic or bosonic particles between two reservoirs (the
contacts) connected by a one-dimensional lattice (the lead).
The mathematical framework of the models is the master
equation for the reduced density matrix of the carriers in the
lattice with two relaxation terms acting on the first and the last
sites of the lattice. Remarkably, these models can be tackled
analytically or semi-analytically, leading to a number of im-
portant conclusions. In particular, it was shown in the recent
work [16] that in the case of Bose particles the interparticle
interactions result in a change of the ballistic transport regime,
where the current across the lattice is independent of the
lattice length L, to the diffusive transport, where the current
is inverse proportional to L.

Although the open Fermi- and Bose-Hubbard models are
important in the field of quantum transport, they have a limited
applicability because they rely on the Markovian master equa-
tion which is only justified for high-temperature reservoirs
[11,14,17]. The case of low-temperature particle reservoirs,
which is of particular interest in solid-state physics, remains
a challenge. A popular approach to a non-Markovian bath is
the stochastic Schrödinger equation with the correlated noise
[18–21]. As shown in Ref. [21], this leads to an infinite set
of the coupled Lindblad-like master equations which should
be truncated to a finite set to ensure a given accuracy. Unfor-
tunately, the application of this method to the open Hubbard
chains looks unfeasible for the moment. In the present work
we explore a different approach which allows us to stay within
the Markovian approximation in spite of the fact that the
reduced density matrix of the carriers in the chain does not
obey a Markovian master equation. The idea is to use the
hierarchical reservoirs where the contacts are both part of the
system and the larger reservoirs.

The structure of the paper is the following. In the next
section we introduce a simple model where the Hubbard chain
is dressed by the contacts. In Sec. III we analyze the current
of the Fermi particle across the chain as the function of the
model parameters and calculate nonequilibrium distributions
of the carriers over the Bloch states for the carriers in the
contacts and the lead. The relation to the Landauer equation is
discussed in Sec. IV. Finally, the concluding Sec. V summa-
rizes the obtained results and indicates some prospects of the
further research.

II. MODEL

Let us consider two contacts connected by the Hubbard
chain (see Fig. 1)

Ĥ = ĤL + ĤR + Ĥs + Ĥ (L)
ε + Ĥ (R)

ε . (1)

In Eq. (1) ĤL and ĤR are Hamiltonians of the left and right
contacts, Ĥs is the Hamiltonian of the carriers in the chain,
and Ĥ ( j)

ε , where j = L, R, are the coupling Hamiltonians.
The Hamiltonians of the contacts read

Ĥj =
∑

k

Ekb̂†
kb̂k , Ek = −J cos

(
2πk

M

)
, (2)

where b̂†
k and b̂k are the creation and annihilation operators

which create or annihilate a particle in the Bloch state with
the quasimomentum κ = k/M. Notice that these operators, as
well as the Hamiltonian parameters, also carry the index j
which we omit here not to overburden the equation. The con-
tacts are assumed to be a part of the larger particle reservoirs
which enforce the relaxation of the reduced density matrices
R̂( j)(t ) of the isolated contacts into the equilibrium state given
by the Fermi-Dirac distribution for the fermionic carriers and
Bose-Einstein distribution for the bosonic carriers

nk = Tr[b̂†
kb̂kR̂(t = ∞)] = 1

eβ(Ek−μ) ∓ 1
. (3)

To be certain, from now on we shall consider the spinless
fermions and zero reservoir temperature. Then the explicit
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FIG. 1. Schematic presentation of the model. Wavy arrows indi-
cate the particle exchange between the contacts and reservoirs.

form of the Lindblad relaxation operator is

L(R̂) = −γ

2

∑
|k|<kF

(b̂k b̂†
kR̂ − b̂†

kR̂b̂k + R̂b̂†
kb̂k ) , (4)

if |k| < kF and

L(R̂) = −γ

2

∑
|k|>kF

(b̂†
kb̂kR̂ − b̂kR̂b̂†

k + R̂b̂k b̂†
k ) , (5)

if |k| > kF , where kF is determined by the Fermi energy
of the corresponding reservoir through the relation EF =
−J cos(2πkF /M ) and γ is the relaxation constant.

For fermions in the chain we elect to work in the Wannier
basis. Then the chain Hamiltonian is given by the tight-
binding model for the spinless fermions

Ĥs = −J

2

(
L−1∑
l=1

ĉ†
l+1ĉl + H.c.

)
, (6)

where operator ĉ†
l (ĉl ) creates (annihilates) a fermion in the lth

site of the chain. To simplify the analysis we assume that the
hopping constant J in Eq. (6) coincides with that in Eq. (2).
This allows us to use J as the energy measurement unit.

Finally, the coupling operator between the left contact and
the chain is

Ĥ (L)
ε = ε√

M

(
ĉ†

1

M∑
k=1

b̂kei 2πm
M k + H.c.

)
, (7)

and the coupling operator between the chain and the right
contact has similar form where the operator ĉ†

1 is substituted
by the operator ĉ†

L.
The evolution of the system (1) is assumed to obey the

Markovian master equation

dR̂

dt
= −i[Ĥ, R̂] + LL(R̂) + LR(R̂) , (8)

where R̂ = R̂(t ) now denotes the total density matrix of the
composed system “contacts+ chain.” In the considered case
of the spinless fermions the size of this matrix is obviously
given by the equation

N =
N∑

n=0

N!

n!(N − n)!
= 2N , (9)

where the parameter N is the total number of the single-
particle states, N = ML + L + MR. The density matrix R̂
carries full information about the system which we actually
do not need for our purposes. Indeed, to predict the current

between the contacts it suffices to know the single-particle
density matrix (SPDM) of the size N × N which is defined
according to the equation

ρ
(i, j)
k,l (t ) = Tr[d̂†(i)

k d̂ ( j)
l R(t )] . (10)

(Here we use the common notation for the creation and
annihilation operators appearing in the problem, where the
superindexes i and j now take one of the three meaning: L for
the left contact, s for the chain, and R for the right contact.)
Our particular interest is the block ρ

(s,s)
l,m which is the SPDM

of the carriers in the chain. Knowing this block one finds the
current as

j(t ) = Tr[ ĵρ̂ (s,s)(t )] , (11)

where ĵ is the current operator, jl,m = J (δl,m+1 − δl+1,m)/2i.
Alternatively, one finds the current by using the equation

j(t ) = 2
∑
k>0

J sin

(
2πk

M

)
f (k, t ) , (12)

f (k, t ) = ρ̃
(s,s)
k,k (t ) − ρ̃

(s,s)
−k,−k (t ) , (13)

where ρ̃ (s,s) is the matrix ρ̂ (s,s) in the momentum representa-
tion, i.e., the Fourier transform of ρ̂ (s,s).

Next we use the fact that the master equation (8) has a
quadratic form with respect to creation and annihilation op-
erators. In this case one can obtain a closed set of equations
for the SPDM elements. Substituting Eq. (10) into Eq. (8) we
get

dρ
(i, j)
k,l

dt
= −i[Ĥ, ρ](i, j)

k,l − γ B(i, j)ρ
(i, j)
k,l + γ A(i, j)

k,l , (14)

where B(L,L) = B(R,R) = B(L,R) = B(R,L) = 1, B(s,s) = 0,
B(s,L) = B(L,s) = B(s,R) = B(R,s) = 0.5, and A(i, j)

k,l = 0 except

the elements A( j, j)
k,k which are equal to unity for |k| < k( j)

F
of the respective contact. It is easy to see from Eq. (14)
that for vanishing coupling constant ε the density matrices
of the contacts relax to the diagonal matrices with the
diagonal elements obeying the Fermi-Dirac distribution (3).
However, if ε �= 0 and k(R)

F �= k(L)
F the system relaxes to a

nonequilibrium state with the stationary current j̄ flowing
between the contacts. In what follows we analyze this
nonequilibrium state in more detail.

III. NUMERICAL RESULTS

We solve Eq. (14) numerically for different system
size and different parameter values. Figures 2(a) and
2(b) illustrate relaxation of the system to the steady
state for ML = MR = L = 60, J = 1, ε = 0.5, E (L)

F = 0.3,
E (R)

F = −0.3, and γ = 0.05. Figure 2(a) shows population
dynamics of the lattice sites in the situation where initially
there were no particles in the system. It is seen that the
site occupations nl (t ) slowly approach the value 0.5.
Unlike this slow process, the mean current j(t ) rapidly
reaches the stationary value j̄/L ≈ 0.06. Thus, there are two
characteristic relaxation times in the system, τ1 and τ2 � τ1,
which scale differently with the chain length L. The system
reaches its true steady state for t > τ2, which for the chosen
L and the initial condition is about 10 000 tunneling periods.
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FIG. 2. Upper row: Populations of the chain sites (left) and the
mean current normalized to the chain length (right) as the functions
of time which is measured in the units of the tunneling period. Lower
row: Single-particle density matrix of the carriers in the chain at
t = 104 in the coordinate (left) and momentum (right) representa-
tion. Parameters are ML = MR = L = 60, J = 1, ε = 0.5, E (L)

F =
0.3, E (R)

F = −0.3, and γ = 0.05. Initial condition corresponds to the
empty system.

Next we discuss the stationary SPDM of the carriers in the
chain. The lower panels in Fig. 2 show the matrix ρ̂ (s,s)(t =
104) in the coordinate and momentum representations, respec-
tively. It is seen that the stationary SPDM is approximately
diagonal in the momentum representation, where we plot the
values of the diagonal elements in Fig. 3 by asterisks con-
nected by the solid line. Additionally, the dash-dotted and
dashed lines in Fig. 3 show occupation numbers of the con-
tact Bloch states. It is seen that the Fermi-Dirac distributions
of the isolated contacts are slightly perturbed by the lead.
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FIG. 3. Stationary momentum distributions (i.e., occupation
numbers of the Bloch states) of the carriers in the left contact, dash-
dotted line, in the right contact, dashed line, and in the chain, solid
line. Additional dotted lines show the momentum distribution of the
carriers in the chain at t = 250 and t = 2500.
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FIG. 4. Stationary current as the function of the chemical po-
tential difference. The chain length is L = 60, the contact size are
ML = MR = 60, dashed line, and ML = MR = 120, solid line. The
other parameters are ε = 0.5, E (R)

F = 
EF /2, E (L)
F = −
EF /2, and

γ = 0.125. The inserts show the function f (κ ) (only positive part is
shown) for every plateau.

On the contrary, the momentum distribution of the carriers in
the chain strongly deviates from the equilibrium Fermi-Dirac
distribution. Namely, it is asymmetric with respect to the re-
flection κ → −κ . Due to this asymmetry we have nonzero net
current which can be calculated by using Eqs. (12) and (13). It
is also an appropriate place here to comment on the relaxation
time τ2. The transient system dynamics for τ1 < t < τ2 is
reflected in the momentum distribution as a deep at κ = 0
(see dotted lines in Fig. 3) which disappears only for t > τ2.
However, since this deep is symmetric with respect to the
reflection, it affects neither the function f (κ ) nor the value
of the current as soon as t > τ1.

Finally we analyze the stationary current as the function
the system parameters. To be certain we shall assume E (R)

F =

EF /2, and E (L)

F = −
EF /2. The dashed line in the main
panel in Fig. 4 shows the stationary current as the function of

EF for the system size ML = MR = L = 60. The observed
step-like dependence is due to finite size of the contacts.
Indeed, increasing the number of states in the contacts two
times we double the number of steps. Thus, in the limit
ML, MR → ∞ we get a smooth dependence

j̄

L
≈ G(ε, γ )
EF , (15)

where the conductance G = G(ε, γ ), also known as the
inverse contact resistance, is some function of the relaxation
constant γ and the coupling constant ε. The dependence
(15) is exemplified in Fig. 5. The left panel in Fig. 5 shows
the stationary current as the function of ε for three different
values of the chemical potential difference 
EF , where we
set the relaxation constant γ = 0.1. The right panel shows
the stationary current as the function of γ where we set the
coupling constant ε = 0.5. Additionally, in Fig. 6 we depict
the function f (κ ) which sheds more light on the observed non-
trivial dependence of the current on the relaxation constant γ .
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FIG. 5. Left panel: Stationary current as the function of the
coupling constant ε for γ = 0.1 and three values of the parameter

EF /2 = 0.1, 0.2, 0.3, from bottom to top. Right panel: Stationary
current as the function of the relaxation constant γ for ε = 0.5 and
three values of the parameter 
EF /2 = 0.1, 0.2, 0.3, from bottom to
top.

IV. IMPERFECT CHAIN

Till now we analyzed the case of the perfect lead. It is inter-
esting to consider an imperfect lead or chain where, according
to the Landauer arguments, the stationary current should obey
the equation

j̄ = j̄0|t (EF )|2 , (16)

where t (EF ) is the transmission amplitude for the imperfect
chain at the Fermi energy and j̄0 is the stationary current in
the perfect chain. However, Eq. (16) neglects the decoherence
effect of reservoirs by approximating the quantum state of
the carriers by the plane wave with the quasimomentum kF .
To discuss the validity of Eq. (16) we simulate the system
dynamics for the chain with the square potential barrier. The
dashed line in Fig. 7 shows the transmission coefficient of the
barrier as the function of its hight δ. A number of transmis-
sion peaks and deeps due to the phenomenon of the resonant
above-barrier reflection are clearly seen. The solid lines in
Fig. 7 are the ratio j̄/ j̄0 for the three different values of the
relaxation constant γ . It is seen that the transmission peaks are
washed out if γ is increased. Thus, Eq. (16) can be valid only
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FIG. 6. The function f (κ ) for the parameters of Fig. 5(b) and

EF /2 = 0.3. Only positive part κ � 0 is shown.
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FIG. 7. The stationary current across the chain with the square
potential barrier of the 11 sites width and the hight δ. Symbols show
the ratio j̄/ j̄0 as the function of δ for γ = 0.01 (asterisks), γ = 0.1
(circles), and γ = 0.5 (diamonds). The other system parameters are
ε = 0.5 and 
EF /2 = 0.1. The dashed line is the transmission coef-
ficient of the barrier at E = EF = 0.

in the limit γ → 0 where, according to the results of Fig. 5(b),
the stationary current vanishes.

V. CONCLUSION

We introduced a simple model for the transport of Fermi
particles between two contacts with different chemical po-
tentials. The numerical analysis of the model shows that its
properties fit well the Landauer approach for the electron
transport in the mesoscopic devices [22]. In particular, all
relaxation processes in the system take place at the contacts.
The main difference with the Landauer approach is that we de-
scribe these processes explicitly by using the formalism of the
master equation. This allows us to relax the assumption about
the “reflectionless” contacts and calculate the nonequilibrium
distribution of the carriers over the Bloch states for arbitrary
value of the relaxation constant γ and the coupling constant
ε–the parameters which are absent in the standard Landauer
theory. Since the constant γ also determines the rate of deco-
herence in the system, one can address within the framework
of the introduced model a number of other questions like, for
example, the decoherence effect of reservoirs on the Anderson
localization in a disordered chain.

The other prospect of the research is the non-Markovian
master equation. For the considered problem one obtains this
equation by eliminating the contacts, i.e., by deriving the
equation for the density matrix ρ̂ (s,s)(t ) alone. The analysis
of this non-Markovian master equation (including various ap-
proximations) is of considerable academic interest.
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