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The inertial dynamics of magnetization in a ferromagnet is investigated theoretically. The analytically derived
dynamic response upon microwave excitation shows two peaks: ferromagnetic and nutation resonances. The
exact analytical expressions of frequency and linewidth of the magnetic nutation resonance are deduced from
the frequency-dependent susceptibility determined by the inertial Landau-Lifshitz-Gilbert equation. The study
shows that the dependence of nutation linewidth on the Gilbert precession damping has a minimum, which
becomes more expressive with increase of the applied magnetic field.
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I. INTRODUCTION

Recently, the effects of inertia in the spin dynamics of fer-
romagnets were reported to cause nutation resonance [1–12]
at frequencies higher than the conventional ferromagnetic
resonance. It was shown that inertia is responsible for the
nutation, and that this type of motion should be considered to-
gether with magnetization precession in the applied magnetic
field. Nutation in ferromagnets was confirmed experimentally
only recently [2], since nutation and precession operate at sub-
stantially different timescales, and conventional microwave
ferromagnetic resonance (FMR) spectroscopy techniques do
not easily reach the high-frequency (sub-Terahertz) regime
required to observe the inertia effect which in addition yields
a much weaker signal.

Similar to any other oscillatory system, the magnetization
in a ferromagnet has resonant frequencies usually studied
by ferromagnetic resonance [13,14]. The resonant eigenfre-
quency is determined by the magnetic parameters of the
material and applied magnetic field. Including inertia of the
magnetization in the model description shows that nutation
and precession are complementary to each other and several
resonances can be generated. In this paper, we concentrate on
the investigation of the resonance characteristics of nutation.

The investigation of nutation is connected to the progress
made in studies of the spin dynamics at ultrashort timescales
[15,16]. These successes led to the rapid development of a
new scientific field, the so-called ultrafast magnetism [17–25].
The experimental as well as theoretical investigation of the
inertial spin dynamics is at the very beginning, although it
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might be of significance for future high speed spintronics
applications including ultrafast magnetic switching.

Besides nutation driven by magnetization inertia, several
other origins of nutation have been reported. Transient nu-
tations (Rabi oscillations) have been widely investigated in
nuclear magnetic resonance [26] and electron spin resonance
[27–29], they were recently addressed in ferromagnets [30].
A complex dynamics and Josephson nutation of a local spin
s = 1/2 as well as large spin cluster embedded in the tunnel
junction between ferromagnetic leads was shown to occur due
to a coupling to Josephson current [31–33]. Low-frequency
nutation was observed in nanomagnets exhibiting a nonlinear
FMR with the large-angle precession of magnetization where
the onset of spin wave instabilities can be delayed due to
geometric confinement [34]. Nutation dynamics due to inertia
of magnetization in ferromagnetic thin films was observed for
the first time by Neeraj et al. [2].

The microscopic derivation of the magnetization inertia
was performed in Refs. [3–7]. A relation between the Gilbert
damping constant and the inertial regime characteristic time
was elaborated in Ref. [3]. The exchange interaction, damp-
ing, and moment of inertia can be calculated from first
principles as shown in Ref. [7]. The study of inertia spin
dynamics with a quantum approach in metallic ferromag-
nets was performed in Ref. [8]. In addition, nutation was
theoretically analyzed as a part of magnetization dynamics
in ferromagnetic nanostructure [9,10] and nanoparticles [11].
Despite these advances, exact analytical expressions for the
high-frequency susceptibility including inertia had not been
derived yet.

In Ref. [35], the inertial regime was introduced in the
framework of the mesoscopic nonequilibrium thermodynam-
ics theory, and it was shown to be responsible for the nutation
superimposed on the precession of magnetization. Wegrowe
and Ciornei [1] discussed the equivalence between the in-
ertia in the dynamics of uniform precession and a spinning
top within the framework of the Landau–Lifshitz–Gilbert
equation generalized to the inertial regime. This equation
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was studied analytically and numerically [12,36]. Although
these reports provide numerical tools for obtaining resonance
characteristics, the complexity of the numerical solution of
differential equations did not allow to estimate the nutation
frequency and linewidth accurately. Also in a recent remark-
able paper [37] a novel collective excitation–the nutation
wave–was reported, and the dispersion characteristics were
derived without discussion of the nutation resonance line-
shapes and intensities.

Thus, at present, there is a necessity to study the reso-
nance properties of nutation in ferromagnets, and this paper
is devoted to this study. We performed the investigation based
on the Landau-Lifshitz-Gilbert equation with the additional
inertia term and provide an analytical solution.

It is well known that the Landau-Lifshitz-Gilbert equation
allows finding the susceptibility as the ratio between the time-
varying magnetization and the time-varying driving magnetic
field (see, for example, Refs. [38,39] and references therein).
This susceptibility describes well the magnetic response of a
ferromagnet in the linear regime, that is a small cone angle of
the precession. In this description, the ferromagnet usually is
placed in a magnetic field big enough to align all atomic mag-
netic moments along the field, i.e., the ferromagnet is in the
saturated state and the magnetization precesses. The applied
driving magnetic field allows one to observe FMR as soon as
the driving field frequency coincides with eigenfrequency of
precession. Using the expression for susceptibility, one can
elaborate such resonance characteristics as eigenfrequency
and linewidth. We will present similar expressions for the
dynamic susceptibility, taking nutation into account.

II. SUSCEPTIBILITY

The ferromagnet is subjected to a uniform bias magnetic
field H0 acting along the z-axis and being strong enough to
initiate the magnetic saturation state. The small time-varying
magnetic field h is superimposed on the bias field. The
coupling between impact and response, taking into account
precession, damping, and nutation, is given by the Inertial
Landau-Lifshitz-Gilbert (ILLG) equation

dM
dt

= −|γ |M ×
[

Heff − α

|γ |M0

(
dM
dt

+ τ
d2M
dt2

)]
, (1)

where γ is the gyromagnetic ratio, M the magnetization
vector, M0 the magnetization at saturation, Heff the vector
sum of all magnetic fields, external and internal, acting upon
the magnetization, α the Gilbert damping, and τ the inertial
relaxation time. For simplicity, we assume that the ferromag-
net is infinite, i.e., there is no demagnetization correction,
with negligible magnetocrystalline anisotropy, and only the
externally applied fields contribute to the total field. Thus,
the bias magnetic field H0 and signal field h are included in
Heff . We assume that the signal is small |h| � |H0|, hence the
magnetization is directed along H0.

Our interest is to study the correlated dynamics of nutation
and precession simultaneously; therefore we write the magne-

tization and magnetic field in the generalized form using the
Fourier transformation

M(t ) = M0ẑ + 1√
2π

∫ ∞

−∞
dω′m(ω′)eiω′t , (2)

Heff (t ) = H0ẑ + 1√
2π

∫ ∞

−∞
dω′h(ω′)eiω′t , (3)

where ẑ is the unit vector along the z axis. If we substitute
these expressions in the ILLG equation and neglect the small
terms, then it leads to

1√
2π

∫ ∞

−∞
dω′iω′m(ω′)eiω′t

= 1√
2π

∫ ∞

−∞
dω′eiω′t [−|γ |M0ẑ × h(ω′)

+ |γ |H0ẑ × m(ω′) + iαω′ẑ × m(ω′)

− ατω′2ẑ × m(ω′)]. (4)

By performing the Fourier transform and changing the
order of integration, Eq. (4) becomes

1

2π

∫ ∞

−∞
dω′

∫ ∞

−∞
dtiω′m(ω′)ei(ω′−ω)t

= 1

2π

∫ ∞

−∞
dω′

∫ ∞

−∞
dtei(ω′−ω)t

× [−|γ |M0ẑ × h(ω′) + |γ |H0ẑ × m(ω′)

+ iαω′ẑ × m(ω′)−ατ (ω′)2ẑ × m(ω′)], (5)

where the integral representation of the Dirac δ function can
be found. With the δ function, Eq. (5) simplifies to

iωm(ω) = −|γ |M0ẑ × h(ω) + |γ |H0ẑ × m(ω)

+ iαωẑ × m(ω) − ατω2ẑ × m(ω). (6)

By projecting to Cartesian coordinates and introducing the
circular variables for positive and negative circular polariza-
tion m± = mx ± imy, h± = hx ± ihy, one obtains

−ατm+ω2 + (−m+ + iαm+)ω + (ωH m+ − ωMh+) = 0,

−ατm−ω2 + (m− + iαm−)ω + (ωH m− − ωMh−) = 0,

(7)

where ωH = |γ |H0 is the precession frequency and ωM =
|γ |M0. The small-signal susceptibility follows from these
equations:

m± = χ±h±,

χ+ = ωM

ωH − ω − ατω2 + iαω
,

χ− = ωM

ωH + ω − ατω2 + iαω
. (8)

It is seen that the susceptibility Eq. (8) is identical with the
susceptibility for LLG equation, if one drops the inertial term,
that is τ = 0.
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FIG. 1. (a) The FMR peak with nutation. (b) The nutation reso-
nance. The calculation was performed for |γ |/(2π ) = 28 GHz T−1,

μ0M0 = 1 T, μ0H0 = 100 mT, α = 0.0065, and τ = 10−11 s.

Let us separate dispersive and dissipative parts of the sus-
ceptibility χ± = χ ′

± − iχ ′′
±,

χ ′
+ = −ωM (ω − ωH + ατω2)

D+
, χ ′′

+ = αωωM

D+
,

χ ′
− = ωM (ω + ωH − ατω2)

D−
, χ ′′

− = αωωM

D−
, (9)

D+ = α2τ 2ω4 + 2ατω3 + (α2 − 2ατωH + 1)ω2

− 2ωHω + ω2
H , (10)

D− = α2τ 2ω4 − 2ατω3 + (α2 − 2ατωH + 1)ω2

+ 2ωHω + ω2
H . (11)

The frequency dependence of the dissipative parts of sus-
ceptibilities χ ′′

+ and χ ′′
− is shown in Fig. 1. The plus and minus

subscripts correspond to right-hand and left-hand direction
of rotation. Since the denominators D+ and D− are quartic
polynomials, four critical points for either χ ′′

+ or χ ′′
− can be

expected. Two of them that are extrema with a clear physical
meaning are plotted. In Fig. 1(a) the extremum, corresponding
to FMR at ω′

H ≈ |γ |H0 is shown. Due to the contribution of
nutation, the frequency and linewidth of this resonance are
slightly different from the ones of usual FMR. The resonance
occurs for right-hand precession, i.e., positive polarization.

In Fig. 1(b) the nutation resonance possessing negative
polarization is presented. Note that the polarizations of fer-
romagnetic and nutation resonances are reversed.

III. APPROXIMATION FOR NUTATION FREQUENCY

Let us turn to the description of an approximation of the
nutation resonance frequency. If we equate the denominator
D− to zero, solve the resulting equation, we obtain the ap-
proximation from the real part of the roots. This is reasonable,
since the numerator of χ ′′

− is the linear function of ω, and we
are interested in ω � 1. Indeed, the equation

α2τ 2ω4 − 2ατω3 + (α2 − 2ατωH + 1)ω2

+ 2ωHω + ω2
H = 0 (12)

has four roots that are complex conjugate in pairs

w−FMR1,2 = 1 ± iα −
√

1 − α2 + 4ατωH ± 2iα

2ατ
, (13)

wN1,2 = 1 ± iα +
√

1 − α2 + 4ατωH ± 2iα

2ατ
. (14)

One should choose the same sign from the ± symbol in
each formula, simultaneously. The real part of Eq. (13) gives
the approximate frequency for FMR, but in negative numbers,
so the sign should be inversed. The approximate frequency
of FMR in positive numbers can be derived from equation
D+ = 0. The approximate nutation frequency is obtained by
the real part of Eq. (14). One takes half the sum of two
conjugate roots wN1,2 , neglects the high τ terms, and obtains
the nutation resonance frequency

wN = 1 + √
1 + 2ατ |γ |H

2ατ
. (15)

Note that the expression of wN is close to the approxima-
tion given in Ref. [36] at τ � 1/α|γ |H, namely,

ωweak
nu =

√
1 + ατ |γ |H

ατ
. (16)

The similarity of both approximations becomes clear, if we
perform a Taylor series expansion and return to the notation
ωH ,

wN = 1 + √
1 + 2ατωH

2ατ
= 1

ατ
+ ωH

2
− ατω2

H

4

+ 1

4
α2τ 2ω3

H + O(α3τ 3),

ωweak
nu =

√
1 + ατωH

ατ
= 1

ατ
+ ωH

2
− ατω2

H

8

+ 1

16
α2τ 2ω3

H + O(α3τ 3).

IV. PRECISE EXPRESSIONS FOR FREQUENCY
AND LINEWIDTH OF NUTATION

The analytical approach proposed in this Letter yields pre-
cise values of the frequency of nutation resonance and the full
width at half maximum (FWHM) of the peak. The frequency
is found by extremum, when the derivative of the dissipative
part of susceptibilities Eq. (9) is zero,

∂χ ′′
−

∂ω
= 0. (17)

It is enough to determine zeros of the numerator of the
derivative, that are given by

3α2τ 2ω4 − 4ατω3 + (α2 − 2ατωH + 1)ω2 − ω2
H = 0.

(18)
Let us use Ferrari’s solution for this quartic equation and

introduce the following notation:

Ar = 3α2τ 2, Br = −4ατ, Cr = α2 − 2ατωH + 1,

Er = −ω2
H , ar = Cr

Ar
− 3B2

r

8A2
r

,

br = −BrCr

2A2
r

+ B3
r

8A3
r

, cr = B2
rCr

16A3
r

− 3B4
r

256A4
r

+ Er

Ar
. (19)

In Ferrari’s method, one should determine a root of the
nested depressed cubic equation. In the investigated case, the
root is written

yr = −5ar

6
+ Ur + Vr, (20)
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where

Ur = 3

√
−

√
P3

r

27
+ Q2

r

4
− Qr

2
, Vr = − Pr

3Ur
,

Pr = − a2
r

12
− cr, Qr = 1

3
arcr − a3

r

108
− b2

r

8
. (21)

Thus, the precise value of the nutation frequency is given
by


N = − Br

4Ar
+

√
ar + 2yr

2
+ 1

2

√
−3ar − 2yr − 2br√

ar + 2yr
.

(22)

The performed analysis shows that approximate value of
nutation resonance frequency is close to precise value.

The linewidth of the nutation resonance is found at a
half peak height. If one denotes the maximum by X ′′

− =
χ ′′

−(ω = 
N ), the equation which determines frequencies at
half magnitude is

1
2 X ′′

−
[
α2τ 2ω4 − 2ατω3 + (

α2 − 2ατωH + 1
)
ω2

+2ωωH + ω2
H

] − αωωM = 0. (23)

We repeat the procedure for finding solutions with Ferrari’s
method introducing the following new notations:

Alw = 1

2
α2τ 2X ′′

−, Blw = −ατX ′′
−,

Clw = 1

2
X ′′

−
(
α2 − 2ατωH + 1

)
, Dlw = ωH X ′′− − αωM

Elw = 1

2
ω2

H X ′′
−, alw = Clw

Alw
− 3B2

lw

8A2
lw

,

blw = −BlwClw

2A2
lw

+ B3
lw

8A3
lw

+ Dlw

Alw
,

clw = B2
lwClw

16A3
lw

− 3B4
lw

256A4
lw

− BlwDlw

4A2
lw

+ Elw

Alw
. (24)

A root of the nested depressed cubic equation ylw must be
found in the same way as provided in (20) with the corre-
sponding replacement of variables, i.e. subscript r is replaced
by lw. The difference between two adjacent roots gives the
nutation linewidth

�
N =
√

−3alw − 2ylw − 2blw√
alw + 2ylw

. (25)

The explicit expression for the linewidth can be written
using the Eqs. (19)–(25).

The effect of the inertial relaxation time on the nutation
linewidth is shown in Fig. 2. One can see that increasing iner-
tial relaxation time leads to narrowing of the linewidth. This
behavior is expected and is consistent with the traditional view
that decreasing of losses results in narrowing of linewidth.

Since the investigated oscillatory system implements si-
multaneous two types of motions, it is of interest to study the
influence of the Gilbert precession damping parameter α on
the nutation resonance linewidth. The result is presented in

FIG. 2. The dependence of the nutation linewidth on the inertial
relaxation time for μ0H0 = 100 mT, μ0M0 = 1 T, and α = 0.0065.

Fig. 3 and is valid for ferromagnets with vanishing anisotropy.
One sees that the dependence of �
N on α shows a minimum
that becomes more expressive with increasing bias magnetic
field. In other words, the linewidth is parametrized by the
magnitude of field. This nontrivial behavior of linewidth
relates with the nature of this oscillatory system, which per-
forms two coupled motions.

To elucidate the nontrivial behavior, one can consider the
susceptibility (9) in the same way as it is usually performed
for the forced harmonic oscillator with damping [40]. For this
oscillator, the linewidth can be directly calculated from the
denominator of the response expression once the driving fre-
quency is equal to eigenfrequency. In the investigated case of
magnetization with inertia, the response expression is Eq. (9)
with denominator Eqs. (10) and (11) written as

D± = α2τ 2ω4 ± 2ατω3 + (α2 − 2ατωH + 1)ω2

∓ 2ωHω + ω2
H . (26)

Since the applied magnetic field is included in this expres-
sion as ωH = |γ |H0, the linewidth depends on the field.

The obtained result can be generalized to a finite sample
with magnetocrystalline anisotropy with method of effective
demagnetizing factors [41,42]. In this case the bias magnetic

FIG. 3. The dependence of nutation resonance linewidth on pre-
cession Gilbert damping parameter at different magnetic fields H0 for
μ0M0 = 1 T and τ = 10−11 s.
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field H0 denotes an external field and in the final expressions
this field should be replaced by Hi0 = H0 − (N̂a + N̂d )M0,

where N̂a is the anisotropy demagnetizing tensor and N̂d is
the shape demagnetizing tensor.

V. CONCLUSION

In summary, we derived a general analytical expression for
the linewidth and frequency of nutation resonance in ferro-
magnets, depending on magnetization, the Gilbert damping,
the inertial relaxation time and applied magnetic field. We
show the nutation linewidth can be tuned by the applied
magnetic field, and this tunability breaks the direct relation be-

tween losses and the linewidth. This, for example, leads to the
appearance of a minimum in the nutation resonance linewidth
for the damping parameter around α = 0.15. The obtained
results are valid for ferromagnets with vanishing anisotropy.
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