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Quantum entanglement and the Born-Markov approximation for an open quantum system
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We revisit the Born-Markov approximation for an open quantum system by considering a microscopic model
of the bath, namely, the Bose-Hubbard chain in the parameter region where it is chaotic in the sense of quantum
chaos. It is shown that strong ergodic properties of the bath justify all approximations required for deriving the
Markovian master equation from the first principles.
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I. INTRODUCTION

Nowadays one witnesses a renewed of interest in open
quantum systems, with the emphasis shifted to open many-
body systems [1–8]. The standard approach to dynamics of
an open system is the master equation for the reduced density
matrix,

ρS (t ) = TrB[R(t )], (1)

where R(t ) is the total density operator of the combined
system consisting of the system of interest (subindex S) and
the bath (subindex B). In the Markovian case, the dynamics of
the matrix ρS (t ) is governed by the Lindblad equation [9–12],

dρS

dt
= − i[HS, ρS]

−
∑

n

γn

2
(ρSV †

n Vn − 2VnρSV †
n + V †

n VnρS ) , (2)

where HS is the system Hamiltonian and γn and Vn are some
relaxation constants and operators. Mathematically, this struc-
ture of the master equation is fixed by the condition of posi-
tivity for the density matrix [13]. However, the microscopic
derivation of Eq. (2) is a tedious procedure which involves a
number of approximations. These approximations, known as
the Born-Markov approximation, are usually summarized as
follows.

(i) Interaction between the system and the bath is weak
enough that one can neglect the back action of the system on
the bath.

(ii) Correlation time for the relevant bath observables is
much shorter than the characteristic timescale of the system
dynamics.

(iii) The system and the bath are uncorrelated; i.e., at any
time the total density matrix factorizes into the tensor product
of the reduced density matrices,

R(t ) = ρB(t ) ⊗ ρS (t ). (3)

Although the listed assumptions formally allow one to
derive the master equation (2), they have not been checked
for any realistic model of the bath. In this work we fill
this gap in the theory by considering a simple microscopic
“system + bath” model. We simulate the full dynamic of this

combined system and show that the assumption (3) actually
never holds because of the onset of quantum entanglement
between the system and the bath. The analysis of this entan-
glement, which is one of the aims of this work, is given in
Sec. III, after introducing the model in Sec. II. We also analyze
the correlation time of the relevant bath observables in Sec. IV
and relate it to the spectrum and eigenstate statistics of the
bath. These results help us to identify the conditions under
which the Markovian approximation for the system of interest
is justified. Finally, in Sec. V we discuss the conceptional
problem related to the assumption (3). It is argued that this (in-
valid) assumption can be substituted by a weaker assumption
which still suffices to derive the master equation (2) but does
not assume the absence of correlation between the system and
the bath.

II. THE MODEL

We consider a two-level system, HS = δσ̂z, which is at-
tached to the first site of the Bose-Hubbard chain,

HB = −J

2

L−1∑
l=1

(â†
l+1âl + H.c.) + U

2

L∑
l=1

n̂l (n̂l − 1) . (4)

The latter system is known to be generally chaotic in the
sense of quantum chaos [14–16] that is reflected in the
Wigner-Dyson spectrum statistics and ergodic properties of
the eigenstates [17,18]. As the coupling operator we choose

Hint = ε(â†
1â2σ̂+ + H.c.). (5)

Thus, the “spin” flips up if a Bose particle tunnels into the first
site of the chain and flips down if the particle tunnels out of
this site.

We also assume that HB is in a highly excited state. Then
one may expect that it acts as an infinite-temperature bath
which equilibrates the population of the system energy levels.
In terms of the master equation, this would correspond to the
relaxation operator

L(ρs) = − γ1

2
(ρSσ̂+σ̂− − 2σ̂−ρSσ̂+ + σ̂+σ̂−ρS )

− γ2

2
(ρSσ̂−σ̂+ − 2σ̂+ρSσ̂− + σ̂−σ̂+ρS ), (6)

where γ1 = γ2.
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FIG. 1. Main panel: The quantity (8) as the function of time.
Inset: The matrix elements of the reduced density matrix ρS (t ). The
system parameters are δ = 0.5 and ε = 0.2. The bath parameters are
J = 1, U = 0.8, N = 6, and L = 7. The initial bath state is given
by the eigenstate of the Bose-Hubbard Hamiltonian with the energy
E = 2.8361.

III. SYSTEM DYNAMICS

First we illustrate the invalidity of Eq. (3). We simulate the
dynamics of the total system,

R(t ) = W (t )R(0)W †(t ),

W (t ) = exp(−iHt ), H = HS + HB + Hint, (7)

for the initial condition given by a product state, i.e.,
R(t = 0) = ρB ⊗ ρS . Although the uncorrelated initial state
is usually considered to be a rather important assumption
for validity of the master equation, here we use it exclu-
sively to demonstrate the onset of quantum entanglement.
To be certain we choose ρS = |ψ〉〈ψ |, where |ψ〉 is given
by a coherent superposition of the two system eigenstates,
|ψ〉 = √

0.7|↑〉 + √
0.3|↓〉 and ρB = |�〉〈�|, where |�〉 is an

eigenstate of the Bose-Hubbard Hamiltonian with the energy
E = 〈�|HB|�〉 from the central part of its energy spectrum
[see Fig. 3(a) below]. In this case the Bose-Hubbard chain
acts as a high-temperature bath, inducing relaxation of the
reduced density matrix ρS (t ) into a diagonal matrix (see inset
in Fig. 1). The decay of the off-diagonal elements reflects the
onset of entanglement between the system and the bath which
we characterize by the quantity

G(t ) = |R(t ) − ρB(t ) ⊗ ρS (t )|
|R(t )| , (8)

where the modulus sign denotes the sum of all matrix el-
ements taken by the absolute value. (Another measure of
entanglement based on the information entropy is discussed
in Appendix A.) A rapid growth of entanglement is clearly
seen in Fig. 1. We mention that time fluctuations of the matrix
elements of ρS (t ) can be greatly reduced by choosing a few
eigenstates in a narrow energy interval as the initial bath state,
i.e., ρB(t = 0) ∼ ∑

j |� j〉〈� j |. This additional average also
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FIG. 2. The same as in Fig. 1 yet for the initial bath state
ρB(t = 0) ∼ ∑

j |� j〉〈� j | where the sum is taken over 100 eigen-
states falling in the energy interval 2.45 � E � 3.21.

reveals the exponential law for the decay of the off-diagonal
elements with the decay rate proportional to ε2 (see Fig. 2).

A comment on the value of the coupling constant ε is
in turn. As it was mentioned in the introductory part of the
paper, ε has to be small to justify the Markovian master
equation (2). However, since we work with a finite bath, it
must not be smaller than some critical value εcr. One finds this
critical value by analyzing the spectrum statistics of the total
Hamiltonian. Figure 3(b) shows the integrated level-spacing
distribution for the parameters of Fig. 1, yet ε = 0, where
it is given by the direct sum of two independent Gaussian
orthogonal ensemble (GOE) spectra. When ε is increased
from zero to εcr the level-spacing distribution converges to
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FIG. 3. Lower panels: Integrated level-spacing distribution for
the (unfolded) energy spectrum of the total Hamiltonian H for ε = 0
(b) and ε = 0.2 (c). Notice that small ε does not affect the density of
state shown in panel (a).
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FIG. 4. Main panel: The real (solid line) and imaginary (dashed
line) parts of the correlation function (9) as the function of τ at t =
100. Parameters are the same as in Fig. 2. Inset: Correlation function
of the regular bath which is obtained by setting U = 0 in the Bose-
Hubbard Hamiltonian.

that for a single GOE spectrum [see Fig. 3(c)]. Remarkably,
the critical ε decreases with an increase of the bath size.
For example, εcr = 0.2 for (N, L) = (5, 6) (dimension of the
bath Hilbert space NB = 504), εcr = 0.1 for (N, L) = (6, 7)
(NB = 924), and εcr � 0.05 for (N, L) = (7, 8) (NB = 3432).
Thus, the existence of the lower boundary for the coupling
constant is a finite-size effect.

IV. BATH CORRELATION TIME

Next we discuss the correlation time of the bath. The
relevant to the master equation correlation function of the bath
has the form

α(τ, t ) = TrB[�(τ )ρB(t )],

�(τ ) = exp(−iHBτ )â†
1â2 exp(iHBτ )â†

2â1. (9)

The function α(τ, t ) is shown in Fig. 4, where we fixed time to
t = 100. It is seen in Fig. 4 that correlations decay within the
characteristic time τ ∗ ≈ 4, which is short enough compared
to the characteristic timescale of the system dynamics shown
in Fig. 2.

We stress that the decay of correlations is entirely due to
the chaotic nature of the bath. For the sake of comparison the
inset in Fig. 4 shows the correlation function for U = 0 where
the Bose-Hubbard model reduces to L linear oscillators. We
also mention that for chosen t = 100 the system and the bath
are already strongly entangled so that ρB(t = 100) principally
differs from ρB(t = 0). Yet, we get the same result if we
choose t = 0. This clarifies the meaning of the statement that
one can neglect back action of the system on the bath—it does
not imply that ρB(t ) ≈ ρB(0) but that the ergodic properties of
the bath remain unchanged. A formal proof of this statement
as well as a more detailed analysis of the correlation function
based on the statistics of the transition matrix elements of the
interaction Hamiltonian Hint is given in Appendix B.
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FIG. 5. Four quantities calculated according to the left-hand side
(solid lines) and the right-hand side (dashed lines) of Eq. (10).

V. ENTANGLED VS UNCORRELATED

As it was demonstrated in Sec. III, the assumption (3),
which is explicitly or implicitly used in every tutorial on the
master equation, never holds. Fortunately, one can justify a
weaker than Eq. (3) assumption, namely,

TrB[�R(t )] = TrB[�ρB(t )]ρS (t ), (10)

where � is an arbitrary operator defined in the bath Hilbert
space [19]. It is easy to see that Eq. (10) formally follows from
Eq. (3), but the opposite is not true. Nevertheless, Eq. (10)
together with the assumptions (i) and (ii) suffices to derive the
master equation (2).

We check the validity of Eq. (10) numerically, where as
the operator � we consider �(τ = 0) = â†

1â2â†
2â1. The solid

and dashed lines in four panels in Fig. 5 show four quantities
calculated according to the left-hand side and the right-hand
side of Eq. (10). A reasonable agreement is noticed. It should
be stressed that the discussed equation is not mathematically
exact and may hold only with some accuracy. Originally it
was deduced in Ref. [19] by appealing to the mixing property
of classical chaotic systems and the quantum-classical corre-
spondence. The result in Fig. 5 indicates that this equation also
holds in the case where the quantum system has no obvious
classical counterpart.

VI. CONCLUSION

To summarize, we considered the microscopic model of
the bath given by the Bose-Hubbard model in the parameter
region where it is chaotic in the sense of quantum chaos.
Unlike the other, most popular microscopic model of the
bath—an infinite number of linear oscillators—the chaotic
Bose-Hubbard bath has strong ergodic properties that lead to
wide-scale quantum entanglement not only between the bath
modes but also between the bath modes and the system of
interest which is coupled to the bath. It was shown that these
ergodic properties justify all assumptions which one needs to
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FIG. 6. Von Neumann entropy, main panel, and eigenvalues of
ρS (t ), inset, as the function of time for the parameters of Fig. 1.

derive the Markovian master equation for the reduced density
matrix of the system.

As the final remark we mention that the considered mi-
croscopic model of the bath also allows us to study other
situations and problems. In particular, choosing the energy of
the initial bath state in the left slope of its density of states
will mimic a finite-temperature bath where γ2 < γ1 in Eq. (6).
Besides this one can address the case of a non-Markovian bath
by decreasing the interaction constant U in the Bose-Hubbard
Hamiltonian to the value where it is partially chaotic. We
reserve these problems for future studies.
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APPENDIX A

For the initial condition used in Fig. 1 the total density
matrix R(t ) is a pure state for any time. However, the reduced
density matrices ρS (t ) and ρB(t ) become mixed states in the
course of time. Using the spectral decomposition we have

ρS (t ) =
2∑

n=1

wn(t )|φn(t )〉〈φn(t )|, (A1)

where wn(t ) and |φn(t )〉 are eigenvalues and eigenstates of
the 2×2 matrix ρS (t ). The commonly accepted quantitative
characteristic of the entanglement is the information entropy
S(t ) = −∑

n wn log(wn). The dynamics of the entropy S(t )
and eigenvalues wn(t ) are exemplified in Fig. 6.

Analogously, for the reduced density matrix of the bath we
have

ρB(t ) =
NB∑
n=1

wn(t )|
n(t )〉〈
n(t )|, (A2)
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FIG. 7. Expansion coefficients c(n)
j (t ) by squared modulus of the

states |
1(t )〉, panel (a), and |
2(t )〉, panel (b), at t = 200.

where the summation formally runs to NB—the dimension of
the Hilbert space of the Bose-Hubbard Hamiltonian. However,
according to the Schmidt theorem for the pure R(t ) only two
eigenvalues wn(t ) differ from zero, and they coincide with
the eigenvalues of ρS (t ). Thus, the information entropy of
the bath is the same. The difference appears in the structure
of the eigenstates. Figure 7 shows the expansion coefficients
of the states |
1(t )〉 and |
2(t )〉 in the bath energy basis,

|
n(t )〉 =
NB∑
j=1

c(n)
j (t )|� j〉. (A3)

It is seen that the system-bath interaction admixes to the
initial bath state |�E 〉 with the energy E = 2.8361 the other
eigenstates of HB which form three groups separated by the
energy interval 2δ. Since δ is assumed to be small compared
to the width of the bath spectrum, all these states have the
same ergodic properties as the initial state. This implies,
in particular, that the mean value of any observable, 〈�〉 =
〈� j |�|� j〉|, is the same up to statistical fluctuations. Thus,

Tr[�ρB(t )] = Tr[�ρB(t = 0)]. (A4)

This equation can be viewed as a formalization of the state-
ment about the negligible effect of the system on the bath.
The result (A4) can be easily generalized to the case where
the initial bath state is a mixed state. Notice, however, that in
this case the von Neumann entropies of the system and the
bath are different.

APPENDIX B

The shape of the correlation function in Fig. 4 is deter-
mined by the statistics of the transition matrix elements of the
interaction Hamiltonian. In fact, in terms of the eigenstates
and eigenenergies of the Hamiltonian HB, Eq. (9) can be
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FIG. 8. Main panel: The correlation function of the bath cal-
culated according to Eq. (B1). Inset: Distribution function for the
transition matrix elements. To reduce statistical fluctuations, here we
consider a larger bath (N, L) = (7, 8) where the dimension of the
bath Hilbert space is NB = 3432.

written as

α(τ ) =
∑

k

|〈�k|â†
1â2|� j〉|2ei(Ek−Ej )τ , (B1)

where we set t = 0 and |� j〉 is the initial bath state. Labeling
the states |�k〉 by their energies instead of the index k,
Eq. (B1) takes the form

α(τ ) =
∫

dEV (E , Ej )e
i(E−Ej )τ , (B2)

where

V (E , Ej ) = |〈�k|â†
1â2|� j〉|2 (B3)

and the bar denotes the average over a small energy interval
dE . Notice that the function (B3) depends only on the energy
difference �E = E − Ej . Thus, we have an additional aver-
age over Ej if the initial bath state is a mixed state.

The function V = V (�E ) is depicted in the inset in Fig. 8.
It is a structured Gaussian where the number and positions
of local peaks are determined by the value of the interaction
constant U . This fine structure of V (�E ) is responsible for os-
cillations of α(τ ), whereas the Gaussian envelope determines
the overall decay of the correlation function as

α(τ ) ∼ exp

[
−

(
τ

τ ∗

)2]
, (B4)

where the correlation time τ ∗ is inversely proportional to the
Gaussian width.
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