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Owing to the nonlocal character of the Majorana state, the corresponding excitations are of great interest. It
is demonstrated that the direct consequence of such nonlocality is the collapse of the Fano resonance man-
ifesting itself in the conductance of an asymmetric interference device, the arms of which are connected by a
one-dimensional topological superconductor. In the framework of the spinless model, it is shown that the
predicted effect is associated with an increase in the multiplicity of the degeneracy of the zero-energy state of
the structure arising at the critical point of the Kitaev model. Such an increase leads to the formation of a
bound state in the continuum.
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1. The formation of bound states in the continuum
(BSCs) in quantum systems is a particular case of cou-
pling between continuous and discrete states, when
their hybridization vanishes [1, 2]. Bound states in the
continuum can be due both to fundamental mecha-
nisms related to a certain symmetry of the structure [3]
and to an accidental vanishing of the mentioned cou-
pling occurring in the course of continuous change in
the parameters of the system [4]. In the ideal case, sys-
tems with BSCs should exhibit infinite Q factors,
which makes them quite promising for optical applica-
tions, such as lasers, filters, and detectors [5].

Quantum dot arrays are popular objects often
exhibiting BSCs [6]. This is already evident in the sim-
plest case of two dots whose eigenstates can be consid-
ered as bonding and antibonding ones. Then, breaking
the symmetry of an open system by the continuous
variation of the parameters characterizing the tunnel
coupling of the double quantum dot with contacts, we
can trace the crossover from the situation where the
antibonding state is a BSC at the symmetric parallel
connection to that where both of these states have the
same finite lifetime at the serial connection [7].

In the intermediate case of an asymmetric parallel
connection, the conductance resonance related to the
antibonding state has the form of a Fano resonance
[8], the width of which is proportional to the value of
hybridization of this state with the continuum. A sim-
ilar picture is observed when the Aharonov–Bohm

phase is taken into account [9, 10]. As a result, in
highly asymmetric transport geometry, the conduc-
tance is characterized by the presence of a wide Breit–
Wigner resonance and a narrow Fano resonance, sim-
ilar to the Dicke effect in optics [11]. Thus, the Fano
resonance can be interpreted as a precursor of a BSC,
and its collapse is a point in the parametric space
where the BSC appears [12, 13]. An increase in the
number of quantum dots in the structure leads to the
corresponding increase in the number of BSCs [14].
Many-particle effects also lead to the formation of
additional BSCs and Fano resonances [15, 16]. In
turn, the spin–orbit coupling and Zeeman splitting
make it possible to implement the spin filtering effect
based on these features [17, 18]. Note that BSCs arise
in the systems under discussion naturally because
these systems are not one-dimensional in the coordi-
nate or energy space [19, 20].

The phenomenon of topological superconductivity
is of great interest since it is promising mainly for
quantum computations, which are resistant to the pro-
cesses disturbing the phase of a qubit state. One of the
scenarios allowing the actual formation of the Majo-
rana state (MS) in one-dimensional systems is the
combination of spin–orbit coupling, superconducting
pairing, and magnetic field [21–23]. In this case, at a
certain relation between the parameters characterizing
the normal phase, an odd number of Fermi points
arise at  (k is the wave vector). As a result, the≥ 0k
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Fig. 1. (Color online) Aharonov–Bohm ring with the arms
connected by the superconducting wire exhibiting the
Rashba spin−orbit coupling.
superconducting pairing of electrons belonging to one
subband, i.e., the effective p-wave pairing, takes place.
Thus, a wire becomes equivalent to a Kitaev chain,
which is an idealized one-dimensional system, where
the formation of the MS was demonstrated for the first
time [24]. Spin−orbit coupling is important also
because the self-conjugated operator of the quasipar-
ticle excitation with zero energy cannot have the form

. Several tunneling spectroscopy experi-
ments with InAs and InSb superconducting wires
(SWs) exhibiting the strong spin−orbit coupling and
induced superconducting pairing provide evidence in
favor of the MS formation in the aforementioned
structures [25].

However, despite the progress in epitaxial growth
techniques and measurement methods [26], the quan-
tization of the conductance obtained at zero voltage
does not provide sufficient evidence for the formation
of a topologically nontrivial phase in the structures
under discussion [27]. As a result, the search for alter-
native ways of detecting the MS [28], in particular,
using the nonlocal nature of this excitation, is a topical
task. In [29], the transport characteristics of the sym-
metric Aharonov–Bohm ring, the arms of which are
connected by a SW bridge (see Fig. 1 at t1 = t2), are
analyzed. It is shown that the conductance exhibits the
Dicke effect if the nontrivial phase arises in the wire.
Moreover, the properties of the Fano resonance
depend on the overlap of the Majorana wavefunctions
localized at opposite ends of the SW.

In this work, we study the asymmetric ring shown
in Fig. 1, where asymmetry corresponds to different
tunneling parameters between the contacts and
device, t1 ≠ t2. It is shown that, in contrast to the pre-
viously studied symmetric geometry [29], new Fano
resonances appear in the conductance of an asymmet-
ric device. It is found that their width is proportional
to the degree of nonlocality of the state of the SW with
the lowest energy. In other words, the higher the near-
edge probability density, the narrower the Fano reso-
nance. As a result, in the limiting case of two noninter-
acting Majorana fermions, this conductance feature
disappears.

+
↑ ↓β = + vua a
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2. The quantum transport features discussed below
are due to the SW. The Hamiltonian of the SW has
the form

(1)

Here,  is the on-site energy, where  is the
energy of the gate electric field and μ is the chemical
potential; t is the hopping integral for the nearest sites;
α is the Rashba spin−orbit coupling constant; Δ is the
s-wave superconducting pairing parameter; and h is
the Zeeman energy related to the magnetic field B in
the device plane. Then, the topologically nontrivial
phase takes place if the following inequalities are valid
[21, 22]:

(2)
Note that, although α formally does not appear in
inequalities (2), a nonzero spin−orbit coupling is
essential for the formation of the MS, as was already
mentioned in Section 1. Moreover, the effective
Rashba field  should be perpendicular to the Zee-
man field B. Further on, in our calculations, all energy
parameters are measured in units of t: , ,

, and .
The wires in the normal phase (NW), which are the

arms of the ring (see Fig. 1), are assumed identical.
Their Hamiltonians  are obtained from Eq. (1) at

. The coupling between the SW and NWs is
described by the tunneling Hamiltonian

(3)

where  is the hopping integral between the edge SW
and NW sites,  is the creation operator for an
electron with the spin projection σ at the last site in the
left (right) upper NW, and  is the creation oper-
ator for an electron with the spin projection σ at the
first site in the left (right) lower NW. In turn, the cou-
pling between the device (SW + NW) and contacts is
also described by the tunneling Hamiltonian, which at
the same time plays the role of the interaction operator
in the diagram technique for nonequilibrium Green’s
functions

(4)

where  is the creation operator for an electron
with the wave vector k and the spin projection σ at the
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left (right) contact and  are the hopping integrals
between the contacts and device. The Hamiltonian for
the ith contact (i = L or R) has the simple form

, where  is
the electrochemical potential of the contact including
the applied bias voltage.

To calculate the steady-state current f lowing across
the device, it is convenient to diagonalize its Hamilto-

nian, , using the Nambu

operators in the site representation, 

, where  is the annihilation operator
of an electron with the spin projection σ at the jth site
of the NW or SW [29]. Then, we can specify the matrix
Green’s function of the ring in the form

(5)

where  is the ordering operator at the Keldysh time
contour consisting of the lower (superscript +) and
upper (superscript −) parts [30]; a, b = +,−; and 
has the dimension ; i.e., it includes the
Nambu operators for both SW and all NWs,

(6)

The electron current in the left contact is written as
 (  is the particle number

operator in the left contact). The solution of the
Heisenberg equation gives ( )

(7)

Here, ,

(8)

are the diagonal matrices that depend on the time and
result from the unitary transformation [31] converting
the voltage dependence into the operator , and

 and  are the
mixed Green’s functions. In the Nambu operator
space,  has the form of the Hamiltonian for free
particles; therefore, in specifying averages in  and

, we should use the same guidelines as those for
the averages for the -ordered product of the second
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quantization operators [32, 33]. As a result, at ,
Eq. (7) is transformed to

(9)

where  =  are the self-
energies of the left contact ( );  is the
bare Green’s function of the left contact. Integrating
over the time  and using the Fourier transform,
we get

(10)

The further transformation of Eq. (10) makes it possi-
ble to obtain an explicit form of the components asso-
ciated with the local Andreev reflection and the non-
local transfer of charge carriers. However, these
lengthy expressions are not presented here.

Since many-particle interactions are absent in the
system, the Green’s functions in Eq. (10) are deter-
mined taking into account all the tunneling processes
between the device and contacts [33]. In particular,
block matrices of the advanced Green’s function

of the whole device  are determined by the Dyson
equation

(11)

where  is the retarded self-energy matrix
describing the effect of both contacts on the ring. In
the further numerical calculations, we will use the
popular approximation of wide-band contacts, for
which the real parts of the self-energy functions can be
neglected and the imaginary parts can be considered
as constants (see, e.g., [34]). Then, we have the fol-
lowing nonzero blocks of :

(12)

Here,  and , i = 1, 2, where
 are the functions characterizing the broad-

ening of energy levels of the device caused by its inter-
action with the contact,  is the 4 × 4 identity matrix,
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Fig. 2. (Color online) (a) Excitation energies  and
(b) conductance of the ring consisting of six sites versus
electric field energy in the gate. The parameters are ,

, , and .

ed

−1 4E

= 1n
= 2N = .0 0 5t = .0 3h
ing directly the asymmetric (symmetric) ring, we
assume that  = 0.01 ( ).

The blocks  in Eq. (10) are obtained by the

solution of the Keldysh equation, .
Note that we consider the regime where all the tran-
sient processes have ended and the bare Green’s func-
tions of the device are not involved in this equation
[33]. Here, nonzero blocks are given by the expres-
sions

(13)

where  are the Fermi–Dirac functions.
3. We now present the results of the numerical cal-

culation of quantum transport in the regime of linear
response and low temperatures ( ) for the
system shown in Fig. 1. First, we consider the limiting
case of a ring with a minimum number of sites, ,

. In Fig. 2a, we show the dependence of the
energies of the first four states, , on the gate field
energy. At h, , the energies are pairwise degener-
ate (see thin dotted curves). In addition, since the
superconducting pairing in the ring is inhomoge-
neous, the gap arises at . However, at zero gate
field,  and, hence, the conductance,

, exhibits resonance only at  (see the
dotted line in Fig. 2b).

At , the gap is suppressed and the number of
zeros in the spectrum becomes doubled because of the
Zeeman splitting (see the dashed lines in Fig. 2a). As a
result, the number of conductance peaks increases;
this is illustrated by the dashed curve in Fig. 2b. How-
ever, not all zeros in the excitation energies manifest
themselves as resonances in the conductance, which is
a signature of arising BSCs [7, 10]. There are several
ways to achieve a finite value of their lifetime. For
example, the spatial symmetry of the eigenstates in the
ring can be broken by introducing the spin–orbit cou-
pling [35]. As a result, the zeros of the excitation spec-
trum associated with the SW are slightly shifted, and
Fano resonances arise in the conductance (see the
solid and dash-dotted curves in Figs. 2a and 2b,
respectively). Thus, to have the Dicke effect in a sym-
metric ring with the superconducting central region,
we need the combined effect of the magnetic field and
spin–orbit coupling.

Note that the zero-energy state at  remains
doubly degenerate even at . Such degeneracy is
also due to the symmetry of the ring under study and
implies the existence of additional BSCs [36, 37].
Their existence can manifest itself in the conductance
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if we introduce the asymmetry of the tunneling
parameters to the contacts. The solid curve in Fig. 2b
shows that additional Fano resonances appear in this
case at . A similar effect arises if the
Aharonov–Bohm phase is taken into account [9, 10].

If the NWs and SW in the ring contain a larger
number of sites, N = 30 and n = 20, respectively, the
Dicke effect also takes place under the condition (2)
and at  [29]. This regime means the implemen-
tation of a topologically nontrivial phase in the SW.
The solid curve in Fig. 3a denotes a pair of resonances,
Fano and Breit–Wigner ones, in the conductance of a
symmetric ring (N = 30 and n = 20) as a function of
Zeeman energy. As mentioned above, the properties of
the Fano resonance in this case depend on the degree
of localization of the MS, which makes it possible to
use such device for the detection of these excitations.

Additional features in the electron transport related
to the nonlocality of the MS occur in an asymmetric
ring. In this case, an additional narrow Fano reso-
nance arises near the wide antiresonance (see the
dashed curve in Fig. 3a). It is important to note that,
with the increase in the bridge length, the wide

= ±d he

α ≠ 0
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Fig. 3. (Color online) (a) Fano resonance caused by the
asymmetry of the tunneling processes in the ring. (b) Col-
lapse of the Fano resonance illustrated in panel (a) with
the increase in the degree of MS nonlocality. The param-
eters are n = 20, N = 30, t0 = 0.1, and .= 1de
antiresonance approaches the narrow Fano peak. In
turn, the latter collapses, which is clearly seen in
Fig. 3b, and the BSC appears. In other words, this can
be interpreted as a peculiar topological blockade of the
Fano effect, associated with the asymmetry of the
transport processes in the ring, since the correspond-
ing resonance disappears just because of the nonlocal-
ity of the low-energy excitation in the SW.

To understand the mechanism underlying the col-
lapse of the Fano resonance, it is important to recall
that this resonance is determined by the BSC arising
because of the degeneracy of the eigenstates of a closed
system with zero energy. Hence, the disappearance of
the Fano resonance could suggest an increase in the
multiplicity of the degeneracy of this state if the over-
lap of the Majorana wavefunctions becomes negligi-
ble. To test this hypothesis, we consider the spinless
model of the ring with n = 1. In this situation, we use
the Kitaev chain with an even number of sites in the
bridge [24]. Then, the Hamiltonian of the ring at

 has the form

(14)

The diagonalization of Hamiltonian (14) leads to the
following equation for the excitation spectrum:

(15)

where  and , i = 1−4, are the polynomials
of power N/2 with the property 
caused by the electron−hole symmetry. It follows
from (15) that, for the special case of the Kitaev
model, , where the wavefunctions of the Majo-
rana fermions do not overlap, the multiplicity of the
degeneracy for the zero-energy state increases at N > 2.
This is just the reason for the suppression of the nar-
row Fano resonance illustrated in Fig. 3b.

To make the situation clearer, we consider this
system in the Majorana representation, aj =

, where  ( ). In Figs. 4a and
4b, we schematically present the device in the frame-
work of such description for the special case of the
Kitaev model, , for  and , respec-
tively (straight lines denote the interaction between
Majorana fermions of different kinds). We can see that
the upper and lower arms in the former case remain
connected because of the absence of superconducting
pairing in horizontal directions. In the latter case, the
device is divided into upper and lower identical subsys-
tems. Each of them includes two chains of interacting
quasiparticles. The self-energies of a chain with only
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two bonds in the horizontal direction are  and
. If the vertical bond is included (in

much the same way as the Fano–Anderson model),

 and . Thus, it is the forma-
tion of the T-shaped structures of Majorana fermions
that leads to the suppression of the Fano resonance in
the asymmetric ring. Note that the nonlocality of the
MS does not depend on the ratio of the tunneling
parameters between the subsystems (contacts, NW,
and SW); therefore, the effect under discussion has a
universal nature and arises in the most general situa-
tion typical of experiment, namely, when all these
parameters are different. In addition, according to
Fig. 4, it is clear that the Fano resonance is not sup-
pressed at t = 0, i.e., in the case of two noninteracting
arms. We should emphasize that the described Fano
resonance in the symmetric case does not arise in
principle.
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Fig. 4. Ring with n = 1 in the representation of Majorana
operators at (a) N = 2 and (b) N > 2 for .Δ = t
4. To summarize, we have analyzed the character-
istic features of low-energy quantum transport related
to the asymmetry of kinetic processes in the
Aharonov–Bohm ring whose arms are connected by a
superconducting wire in a topologically nontrivial
phase. It has been found that the Fano resonance aris-
ing because of such symmetry breaking collapses with
an increase in the bridge length or, in other words,
when the overlap of the Majorana wavefunctions
becomes negligible. To explain this effect, we have
considered the model of a spinless ring, where the
Kitaev chain acts as the superconducting wire. The
analytical calculation of the spectrum of such system
reveals an increase in the multiplicity of the degener-
acy of the zero-energy state for the special case of the
Kitaev model at N > 2 because of the formation of the
T-shaped chains of Majorana fermions. This is a direct
consequence of the nonlocality of the MS.
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