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1. A new field called ultrafast magnetism has
appeared and developed in the last decade in con-
densed matter physics [1–5]. Intense ultrashort laser
pulses can excite spin dynamics in magnetic materials,
which is of great fundamental and applied interest.
The main experimental method in this field is the
pump–probe technique [6, 7]. Depending on the
properties of a magnetic medium, the pump pulse
results in ultrafast demagnetization or magnetization
reversal of a sample or in the excitation of the preces-
sion of the magnetization. The exchange interaction
can change because of the interaction with light [8].

Systems with spin crossover [9–11], which can
exist in a crystal phase and in the form of complex-
molecular aperiodic compounds, are among nonstan-
dard systems interesting for the study of ultrafast mag-
netic switching. In particular, the authors of [12] stud-
ied the light induced spin state trapping (LIESST)
effect in the Fe(phen)2(NCS)2 compound [9, 10] by
X-ray absorption near edge spectroscopy (XANES)
and time-resolved optical spectroscopy. They detected
local deformations of ligands and the excitation of var-
ious vibron modes at the transition of the Fe2+ ion
from a low-spin (LS) to high-spin (HS) state. Iron
oxides with the Fe3+ and Fe2+ ions with the HS ground
state, where the spin crossover to the LS state occurs at
high pressures, constitute another important class of
compounds with spin crossover [13].

In this work, we consider the ultrafast quantum
relaxation dynamics of the photoexcited state with the
spin different from the spin of the ground state (which
can be called the dynamic spin crossover) in magneti-
cally ordered materials with allowance for the spin–
orbit coupling between the HS and LS states and the
electron–vibration interaction beyond the adiabatic
approximation. A feature of magnetically ordered sys-
tems is the interatomic exchange interaction, which,
together with the elastic interaction, is responsible for
cooperative phenomena near spin crossover.

2. For definiteness, we consider only the case of 
ions (FeO and Mg1 – xFexO), for which 
and . To describe the possible coexistence of
different cation terms, spin variables are inappropriate
because they act only in the subspace of spin sublevels
of a given spin. In this case, it is more adequate to use
Hubbard operators that can be constructed on the
basis of eigenstates of a cation including several terms.
In this case, Hubbard X operators are constructed in
terms of HS states with different spin projections ,

 and the singlet LS state . The
effective Hamiltonian for the description of the effect
of the exchange interaction between HS states includ-
ing the vibron and spin–orbit coupling can be written
in the form

(1)
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Here,

(2)

where J is the interatomic exchange interaction and
the spin energy gap , i.e., the differ-
ence between the energies  and  of the electron
configurations of the LS and HS states, is determined
by the competition of the intra-atomic Hund
exchange interaction with the crystal field . We
consider only the case of the high-spin ground state,

. The spin operators for  in the Hub-
bard operator representation have the form [14]

, 

, and 

; the particle num-

ber operator at the ith site is .

The condition of the completeness for Hubbard X

operators has the form , and the

average number of electrons for a  ion is .
The derivation of the effective Hamiltonian (2) from
the microscopic multiband  model using the pro-
jection operator technique within the multielectron
LDA + GTB method [15] can be found in [16].

The second term in Eq. (1) contains the energy of
local totally symmetric vibrations of the cation–anion
complex (which we consider as a unit cell and below
will be called the SK complex, taking into account the
possibility of occupation of either the HS or the LS at
the spin crossover), electron–vibration (vibron) cou-
pling [17, 18], and elastic interaction of cations at
neighboring lattice cites, and describes the change in
the volume of the system under the variation of tem-
perature:

(3)

Here,  and  are the electron–vibration coupling
constants, k is the elastic coupling constant,  is the
normal coordinate operator corresponding to the
breather vibrational mode of ligands,  is the conju-
gate momentum operator,  is the elastic intermolec-
ular coupling constant, and M is the effective mass of
the oscillator. Since the ionic radii of cations in the LS
and HS states are significantly different (by about
10%), not only linear terms but also terms quadratic in

 should be taken into account in the electron–vibra-
tion coupling. The elastic coupling constants in the LS
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and HS states are  and ,
respectively. Because of anharmonicity in the elec-
tron–phonon coupling, the frequencies of local vibra-
tions in the HS and LS states are different:

 and . For
the chosen parameters presented below, 
0.045 eV and  eV.

The third term in Eq. (1) has the form

(4)

and mixes the HS and LS states because of the spin–
orbit coupling [19].

When all interactions inside the spin crossover
complex are taken into account exactly and the mean
field approximation is used for the elastic and
exchange intercell interaction, the Hamiltonian (1)
has the form

(5)

Here,  is the Weiss field, where  is the

number of the nearest neighbors and  is the

magnetization, and N is the number of sites of the
crystal lattice. We consider the two-sublattice anti-
ferromagnet, where the magnetization of the sublat-
tice is m.

The set of the eigenfunctions of the Hamiltonian (5)
can be represented in the form

(6)

Here,  is the orthonormalized
basis of functions in the form of the direct product of
the eigenstates of spin projection operators ,

 in the case of the HS state
 and  for the LS state  and the har-
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below 1%). When considering various temperature
effects, it is necessary to control the constancy of the
energies  of the lowest excited states . In other
words,  is the number of phonons that should be
taken into account at a given electron–vibration cou-
pling in order to form a “phonon coat” of the ground
and lowest excited states. In our calculations, Nph =
300–500 depending on the used parameters and tem-
perature. Multiphonon contributions to function (6)
give Frank–Condon resonances at the excitation of
such states [20]. Then, the quantum statistical aver-
ages of the magnetization , displacement ,
and population of the HS state  have the form

(7)

(8)

(9)

Here, , where Z =

 is the partition function.

The metal–ligand bond length can be represented
in the form , where  is the regular compo-
nent caused by the anharmonicity of vibrations of the
lattice and the anomalous contribution q caused by the
vibronic interaction. In the absence of spin–orbit cou-
pling, the equilibrium positions of ligands corre-
sponding to minima of the potential energy in the LS

and HS states are given by the expressions 

and . For the chosen parameters presented
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below,  Å,  Å, and
 Å. Since the bond length  at

 is about 2 Å,  is about 10% of this value in
agreement with the known difference between the
ionic radii in the LS and HS states. It is seen that

 in the absence of the electron–vibration
coupling and temperature-induced change in the vol-
ume of the system is possible only because of anhar-
monicity.

3. We consider the relaxation of the spin crossover
complex placed in an equilibrium medium (thermo-
stat) at a sudden light-induced excitation of the HS
state to the LS state. The Hamiltonian of the total sys-
tem can be written in the form

(10)

Here,  is the Hamiltonian of the

cell (5);  is the Hamiltonian of the

thermostat, where  are the creation (annihila-
tion) operators of phonons with the wave vector q in
the thermostat; and  = 

 + 

 is the interaction operator between the

spin crossover complex and thermostat, where 
are the creation (annihilation) operators of quanta of
local vibrations (vibrons) introduced above and 
and  are the vibron–phonon and spin–phonon
coupling constants, respectively.

We consider the dynamics of the system in terms of
the reduced density matrix  using the generalized
master equation [21]
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the average value of a certain observable defined by
this operator is written in the form .

The standard calculations of the coefficients 
appearing in Eq. (11) give

(14)

(15)

(16)

where , , and  is the
Bose–Einstein distribution function. In our case,

 and . The coefficients
 and  in Eqs. (15) and (16) are determined by

the constants  and , respectively. As typical

values of these coefficients, we used 

1 ps and  ps corresponding to the

experiments reported in [22, 23].
Figure 1 shows the calculated relaxation dynamics

of (red line) the magnetization m, (blue line) the pop-
ulation of the HS state , and (black line) the displace-
ment q for the spin–orbit coupling parameters Jx =
(upper panels) 0.01 and (lower panels) 0.05 eV. The
calculations were performed taking into account the
triple orbital degeneracy of the HS state at  K
with the parameters J = 28 K (for FexMg1 – xO) [24]
and  eV/Å2,  eV,  eV/Å2,

 eV/Å2, and  eV/Å [25]. The time in
the left and middle panels is given in units of

10‒12 s. The right panels show the Fourier spec-
tral analyses of the magnetization m, the population of
the HS state n, and (black line) the displacement q for
the determination of the intensity and frequency of
the spectral components of the solutions of Eq. (11).
As the initial photoexcited state , we specified
the state obtained from the ground state

=

by switching the quantum numbers α and .
In particular, if the magnetic HS state is the
ground state, the excited state  =

 is low-
spin and the elastic (phonon) system remains
unchanged, i.e., holds in the initial state correspond-
ing to the HS electron configuration of the d ion. In
other words, such switching of the states implements
the dynamic crossover of the cation, leaving
unchanged the state of ligands. This switching is justi-
fied because the photoexcitation of the system from
the ground, e.g., LS  state in the experiment occurs
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first to a certain intermediate , , or charge-
transfer state from which the system can rapidly return
back to the ground state or transit through a cascade to
the excited vibron HS state and, then, relaxes much
more slowly to the ground state because of the phonon
damping. In the case of the HS  ground state, the

intermediate state is the  term, from which the sys-
tem transfers quite rapidly through a cascade to the
excited vibron LS state and, then, relaxes much more
slowly to the HS ground state because of the phonon
damping [22, 23]. The characteristic time of cascade
transition is less than 100 fs, whereas relaxation
through a phonon ladder occurs in about 3 ps [22, 23].
For this reason, we do not consider primary cascade
processes in the system and take the nonmagnetic
vibron LS state as the initial state at  in Eq. (11).
The photoexcited state can be expanded in the basis of
the eigenstates of the Hamiltonian of the isolated sub-
system , where ; con-
sequently, the initial density matrix has the form

.
At finite temperatures, the subsystem is in the state
 with the probability ; therefore, the initial den-

sity operator has the form  =

, where ,
.

To determine the characteristic time of relaxation
of photoexcited states, we used the exponential
approximation  of the time depen-
dences of the magnetization , the population of
the HS state , and the displacement ,
where  and  are the fitting parameters and the
equilibrium values  were found from the static self-
consistent solution of the mean-field equations (7)–
(9). Figure 2 shows these approximations for the spin–
orbit coupling parameters Jx = (upper panels) 0.01 and
(lower panels) 0.05 eV.

As seen in Figs. 1 and 2, the relaxation times for n
and q are almost the same, . This is not surpris-
ing because change in the bond length q is propor-
tional to the ionic radius of the cation. The relaxation
times are summarized in Table 1.

According to Figs. 1 and 2, it is possible to separate
several time scales of the complex dynamics of the sys-
tem: the period of oscillations of the magnetization m,
the population of the HS state n, and the displacement
q and the characteristic time of relaxation of the sys-
tem to the ground state. Moreover, the time dynamics
of the system are significantly different in the cases of
weak and strong spin–orbit coupling. In particular,
the dependences  and  at the spin–orbit cou-
pling parameter  eV exhibit a number of per-
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Fig. 1. (Color online) Quantum relaxation dynamics of initially low-spin photoexcited Franck–Condon states at  K for
the spin–orbit coupling parameters Jx = (upper panels) 0.01 and (lower panels) 0.05 eV. The time in the left and middle panels is

given in units of  s. The right panels show the Fourier spectral analyses of (red line) the magnetization , (blue line)
the population of the HS state , and (black line) the displacement .

ω

= 100T

−τ = 12
0 10 m

n q

Fig. 2. (Color online) Exponential approximation  of the time dependences of the magnetization m, (blue line) the
population of the HS state n, and (black line) the displacement q for the spin–orbit coupling parameters Jx = (upper panels) 0.01
and (lower panels) 0.05 eV.

−ξ= + η0
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Table 1. Characteristic relaxation times of the magnetiza-
tion , population of the HS state , and metal–
ligand bond length  for two values of the spin–orbit cou-
pling 

 (meV)  (ps)  (ps)  (ps)

10 1.18 1.06 1.06
50 0.40 0.18 0.18

τ( )m τ( )n
τ( )q

xJ

xJ τm τn τq
turbations with intervals between them (wave packet
or train of high-frequency waves with a vibrational
energy of ~1 eV). Narrow peaks in the Fourier spec-
trum of this train of high-frequency waves in the lower
right panel of Fig. 1 are separated by a frequency inter-
val of Δω = 58 meV, which almost coincides with the
lattice vibration energy  = 55 meV. This allows
treating the train of high-frequency waves as Franck–
Condon resonances correlating with the minima and
maxima of oscillations of . These perturbations
relax in a time of ; after that, the magnetization
undergoes long-lived periodic oscillations with a
period of 140 fs and an energy of 35 meV. The same
frequencies are also revealed in the Fourier analysis for

 eV (Fig. 1, the upper right panel), but the
amplitudes of oscillations are much smaller than those
for the case  eV (Fig. 1, the lower right
panel). Such low-frequency oscillations of the magne-
tization were detected experimentally in FeBO3 canted
antiferromagnet subjected to a femtosecond pumping
[26, 27]. In [26, 27], the initial HS  state of
the Fe3+ ion was excited to the intermediate spin state
of the Fe3+ ion with the spin , and in about 4 ps
after the excitation, oscillations of the magnetization
with a period of about 2 ps were observed. In our cal-
culations, oscillations of the magnetization were
established after the return of the electron and elastic
systems to the equilibrium HS values in a time of about
2 ps and had a period of 0.14 ps. Since we do not con-
sider in this work a model that corresponds to the
scheme of the levels of the Fe3+ ion and is adequate to
FeBO3, it is impossible to expect quantitative coinci-
dence with the experimental data. At the same time,
the qualitative picture of long-lived magnetic oscilla-
tions revealed in our work is consistent with the data
[26, 27].

4. To conclude, we have revealed for the first time
oscillations of the magnetization and a complex mul-
tiscale time dynamics of relaxation of the magnetiza-
tion, population of the HS state, and the cation–anion
bond length in strongly correlated systems with spin
crossover and long-range magnetic order. We hope
that this work will stimulate further experimental stud-
ies of the ultrafast time dynamics of magnetically
ordered systems with spin crossover.
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