CRYSTAL GROWTH

Melt–Solution Synthesis and Magnetic Properties of SmFe_{2.8}Sc_{0.2}(BO₃)₄ Ferroborate

I. A. Gudim^{*a*,*}, E. V. Eremin^{*a*,*b*,*c*}, and V. L. Temerov^{*a*}

 ^a Kirensky Institute of Physics, Federal Research Center "Krasnoyarsk Scientific Center," Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
^b Siberian Federal University, Krasnoyarsk, 660041 Russia
^c Siberian State University of Science and Technologies, Krasnoyarsk, 660037 Russia
* e-mail: bezm@iph.krasn.ru

Received April 18, 2019; revised April 24, 2019; accepted April 26, 2019

Abstract—Single crystals of $SmFe_{2.8}Sc_{0.2}(BO_3)_4$ ferroborates are grown in melt—solutions based on bismuth trimolybdate. The magnetic properties of grown single crystals are studied. The presence of long-range magnetic order in these crystals is found.

DOI: 10.1134/S1063774520020108

INTRODUCTION

The multiferroic properties of trigonal rare-earth oxiborates $RM_3(BO_3)_4$ (R = Y, La-Lu, M = Fe, Al, Cr, Ga, Sc) have been intensively studied in the last years [1, 2]. It was recently found [3] that aluminoborates $RAl_3(BO_3)_4$, which were previously of interest mainly due to their optical and magnetooptical properties, have giant values of magnetoelectric polarization. The value of magnetoelectric polarization in $HoAl_3(BO_3)_4$ is record for multifferoics: being measured along the crystallographic axis a, with field applied in the perpendicular direction b, it amounts to $\Delta P_{ab}(B_b) = -5240 \ \mu\text{C/m}^2$ at T = 5 K in a field of 9 T [4]. This value exceeds many times the known maximum values of magnetoelectric polarization, including those for ferroborates. An enhancement of the magnetoelectric effect is also observed when Fe³⁺ ions in HoFe₃(BO₃)₄ are replaced with Ga^{3+} ions [5].

In this regard, it is of interest to study other subclasses of borates, for example, with Sc^{3+} ions in the subsystem of small cations. Since the strongest magnetoelectric effect was observed in samarium $SmFe_3(BO_3)_4$ ferroborate [6], the study of samarium $SmSc_3(BO_3)_4$ scandoborate is most interesting. However, since melt-solution synthesis of $SmSc_3(BO_3)_4$ meets certain difficulties, we applied the method of subsequent replacement in the small-radius cation of well-known ferroborate $SmFe_3(BO_3)_4$.

In this paper, we report the results of studying the melt–solution technique for growing $SmFe_{2.8}Sc_{0.2}(BO_3)_4$ single crystal and its magnetic properties.

GROWTH OF SmFe_{2.8}Sc_{0.2}(BO₃)₄ SINGLE CRYSTALS

The growth was performed from a melt–solution based on bismuth trimolybdate solvent of the following composition:

80 wt % $[Bi_2Mo_3O_{12} + 2B_2O_3 + 0.5Sm_2O_3]$ + 20 wt % SmFe_{2.8}Sc_{0.2}(BO₃)₄.

A solution-melt of mass 150 g was prepared at $T = 1000^{\circ}$ C in a platinum cylindrical crucible (diameter D = 100 mm, height H = 90 mm) by melting a mixture of Bi₂O₃, MoO₃, B₂O₃, Sm₂O₃, Fe₂O₃, and Sc₂O₃ oxides in a ratio determined by the aforementioned formula. The crucible was placed in a crystallization furnace, where the temperature decreases from the crucible bottom with a vertical gradient of $1-2^{\circ}$ C/cm. The melt-solution was homogenized at $T = 1000^{\circ}$ C for 24 h. Stirring was performed to maintain homogeneity.

Ranges of stability of SmFe_{2.8}Sc_{0.2}(BO₃)₄ crystals and the ratios of melt–solution components were determined by direct phase probing. The saturation temperature was determined with an error of $\pm 2^{\circ}$ C using probe crystals, which were obtained previously from the same melt–solution under the conditions of spontaneous nucleation on a rotating platinum rod holder. The metastable-zone width $\Delta T_{met} \approx 12^{\circ}$ C was defined as the maximum supercooling at which nucleation was absent during a 20-h exposure.

To obtain seeds of $\text{SmFe}_{2.8}\text{Sc}_{0.2}(\text{BO}_3)_4$ crystals, we used the method for limiting the number of seeds by nucleation in a thin melt–solution layer. In this case, after determining the crystallization parameters, a rod

Fig. 1. Temperature dependences of the magnetization of oxiborate $\text{SmFe}_{2.8}\text{Sc}_{0.2}(\text{BO}_3)_4$ with huntite structure, which were measured in a magnetic field of 0.1 T directed along the crystallographic axis *c* (solid line) and, in the basal plane, along the axis *a* (dotted line). The photograph of grown crystals is shown in the inset.

was immersed in the melt-solution at the homogenization temperature, and rotation with a speed of 40 rpm was switched on. Two hours later the melt-solution temperature was reduced to $5-7^{\circ}C$ below the saturation temperature. Two more hours later the rod was lifted to the colder zone of furnace chamber (with a temperature 10-15°C below the saturation temperature). In this case, only few nuclei were formed in a thin melt-solution layer remaining on the rod. The number of nuclei is small, because the concentration of crystal-forming oxides reduces drastically in the small volume of retained melt-solution layer. The nucleation lasted 1 h. Then the rod was immersed again in the melt-solution, and seeds were grown up for 24 h. Then the rod was took out from the furnace. The remnants of melt-solution were removed by boiling in a 20% aqueous solution of nitric acid. Grown seed crystals were removed from the rod and used in further growth of large crystals.

Four high-quality seeds were fixed on the platinum rod holder, which was suspended above the melt-solution at the homogenization temperature. The holder was immersed in the melt-solution at $T = T_{sat} + 7^{\circ}C$, and then reverse rotation with a period 1 min and speed $\omega = 30$ rpm was switched on. The temperature was reduced to $T = T_{sat} - 7^{\circ}C$ 15 min after. Then the melt-solution temperature was reduced with an accelerated rate of 1-3°C/day, so that the crystal growth rate did not exceed 0.5 mm/day. The growth continued for 9-10 days. After the growth, the holder with crystals was lifted above the melt-solution surface and cooled to room temperature with a rate not higher more than 100°C/h. As a result, crystals with a size of 5-7 mm were obtained.

MAGNETIC PROPERTIES

Figure 1 shows the temperature dependences of magnetization of SmFe_{2.8}Sc_{0.2}(BO₃)₄ single crystals. The magnetization was measured in a magnetic field of 0.1 T, directed along the *c* axis ($M_{\parallel}(T)$), and in the basal plane along the second-order axis *a* ($M_{\perp}(T)$). It can be seen that, despite the substitution of non-magnetic Sc³⁺ ions for magnetic Fe³⁺ ions, the compound still preserves a long-range magnetic order with a Neel temperature $T_{\rm N} = 21$ K. This value is less than that in pure SmFe₃(BO₃)₄ ($T_{\rm N} = 31$ K [3]). The presence of Sc³⁺ ions with such concentration is insufficient for implementing a transition to the paramagnetic state.

In the paramagnetic region, the magnetization is isotropic and obeys the Curie–Weiss law. The experimentally found paramagnetic Curie temperature turned out to be $\theta = -113$ K, which is less than that for SmFe₃(BO₃)₄ ($\theta = -131$ K [6, 7]). The negative sign is indicative of antiferromagnetic exchange interaction in the compound. It can be seen that Curie paramagnetic temperature is also lower. This fact indicates antiferromagnetic interaction of Sm³⁺ ions with the nearest iron ions Fe³⁺.

CONCLUSIONS

SmFe_{2.8}Sc_{0.2}(BO₃)₄ single crystals were grown in melt–solution based on bismuth trimolybdate, and their magnetic properties were studied. The compound was found to preserve long-range magnetic order. The values of Neel and paramagnetic Curie temperatures were determined: $T_N = 21$ K and $\theta = -113$ K, respectively.

FUNDING

This study was supported by joint grant no. 18-42-240011_a of the Russian Foundation for Basic Research and the Krasnoyarsk Territory Government Foundation for scientific-technical support.

REFERENCES

- 1. Y. Hinatsu, Y. Doi, K. Ito, et al., J. Solid State Chem. **172**, 438 (2003).
- A. K. Zvezdin, S. S. Krotov, A. M. Kadomtseva, et al., JETP Lett. 81 (6), 272 (2005).
- K.-C. Liang, R. P. Chaudhury, B. Lorenz, et al., Phys. Rev. B 83, 180417(R) (2011).
- A. I. Begunov, A. A. Demidov, I. A. Gudim, and E. V. Eremin, JETP Lett. 97 (9), 528 (2013).
- N. V. Volkov, I. A. Gudim, E. V. Eremin, et al., JETP Lett. 99 (2), 67 (2014).
- A. A. Mukhin, G. P. Vorob'ev, V. Yu. Ivanov, et al., JETP Lett. 93 (5), 275 (2011).
- A. A. Demidov, D. V. Volkov, I. A. Gudim, et al., JETP 116 (5), 800 (2013). https://doi.org/10.1134/S1063776113050038

Translated by D. Churochkin

CRYSTALLOGRAPHY REPORTS Vol. 65 No. 2 2020