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Abstract—The crossing resonance of two wavefields m(x, t) and u(x, t) of different natures in an inhomoge-
neous medium with zero mean value of the coupling parameter η between fields has been studied. The stages
of formation of the fine structure of the crossing resonance have been analyzed. It has been shown within the
model of independent crystallites that the removal of the degeneracy of eigenfrequencies of these fields at the
crossing resonance point has a threshold character in the coupling parameter and occurs under the condition
η > ηc, where ηc = |Γu – Γm|/2, Γu and Γm are the relaxation parameters of the corresponding wavefields. At

η > ηc, each random implementation of the Green’s functions  and  of wavefields has the form of two
resonance peaks with the same half-width (Γu + Γm)/2 spaced by the interval 2η; this form is standard for

crossing resonances. At η < ηc, the functions  and  are different: if Γu > Γm, the function  has the
form of a narrow resonance peak at ω = ωr, whereas the function  has the form of a broader resonance
peak split at the top by a narrow antiresonance. Averaging over regions where η > ηc leads to the formation of
a broad resonance with a resonance line half-width of about η21/2 on the both averaged Green’s functions,
which is due to the stochastic distribution of resonance frequencies. Averaging over regions where η < ηc

results in the sharpening of a resonance peak on the function  and an antiresonance peak on the function
 at the same frequency ω = ωr. As a result, a pattern of the crossing resonance in the inhomogeneous

medium is formed, consisting of identical broad peaks on both functions with the narrow resonance peak of
the fine structure on the function  and the antiresonance peak on the function . Thus, the fine struc-
ture of the spectrum of any crossing resonance of two wavefields of different natures in the inhomogeneous
medium is due to the contribution of random realizations corresponding to degenerate states of the natural
oscillations of the system. In a ferromagnet with a spatially inhomogeneous coupling parameter, spin and
elastic waves acquire damping parameters Γm(k) ∝ kc  and Γu(k) ∝ kc  proportional to the correlation wav-
enumber kc of inhomogeneities and to the velocities of the corresponding waves, which are summed with the
homogeneous damping parameters Γm and Γu of the same waves. This situation has been considered in a new
self-consisting approximation for the case where the contribution of homogeneous damping parameters is
negligibly small. It has been shown that the form of the fine structure on the functions  and  at the
second (high-frequency) crossing point of dispersion curves of spin and elastic waves changes to the opposite
form: narrow resonance peaks of the fine structure appear on the function , and antiresonance peaks arise
on the function  because  <  and  >  at the first and second crossing points, respectively.
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1. INTRODUCTION
Magnetoelastic (magnetoacoustic) resonance,

which is one of the types of crossing resonance of two
interacting wavefields of different physical natures, in
a homogeneous medium was studied in [1–9] both
theoretically and experimentally. Near the crossing
resonance occurring at the crossing of dispersion

curves of two interacting wavefields, the degeneracy of
eigenfrequencies of a system is lifted, a shift appears
between energy levels, and two resonance peaks arise
on the frequency dependences of the imaginary parts
of Green’s functions, the distance between which is
determined by the coupling parameter ε between
wavefields.
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FINE STRUCTURE OF THE CROSSING RESONANCE SPECTRUM 359
The first studies of the crossing resonance in a
medium with the inhomogeneous coupling parameter
ε(x), where x = {x, y, z} [10–13], performed in the
Bourret approximation [14] (single scattering of waves
by inhomogeneities of the coupling parameter) pre-
dicted the existence of disorder-stimulated crossing
resonance in the medium with zero mean value of the
coupling parameter. However, the adequate descrip-
tion of this phenomenon in the mentioned approxi-
mation was impossible because it requires the inclu-
sion of multiple scattering of waves by inhomogene-
ities of the coupling parameter.

To take into account multiple scattering, we used in
[15–18] the self-consistent approximation (SCA)
[19–22], which is widely applied to approximately cal-
culate Green’s functions. This approximation in dif-
ferent fields of physics has different names (Migdal,
Kraichnan, and Born approximations); for this rea-
son, in the cited and subsequent works, we first
referred to this approximation as the approximation of
nonoverlapping correlations and, then, as the standard
self-consistent approximation. The standard SCA
involves only diagrams with noncrossing correla-
tion/interaction lines, because it is derived with the
inclusion of only the first term of the expansion of the
vortex function (i.e., the vortex function is taken to be
unity).

The standard SCA was generalized to the case of
two interacting wavefields of different physical natures
with a stochastically inhomogeneous coupling param-
eter between these fields whose mean value is zero.
Using the developed method, we studied disorder-
induced crossing resonance occurring at the crossing
of dispersion curves of spin and elastic waves. The
inclusion of multiple scattering of waves by inhomoge-
neities led to the results significantly different from
those previously obtained for such a situation in the
Bourret approximation in [10–13]. Instead of the
removal of degeneracy of frequencies in the spectrum
of waves and splitting of resonance peaks of dynamic
susceptibilities, each of the imaginary parts  and 
of the Green’s functions of the elastic and spin waves,
respectively, should have a broad single-mode peak at
the crossing point of unperturbed dispersion curves.
The fine structure in the form of narrow resonance
and antiresonance peaks appears on the top of this
peak in the imaginary parts  and  of the Green’s
functions, respectively. It was shown that the widths of
broad peaks at a low correlation wavenumber kc (kc =

, where rc is the correlation radius of inhomogene-
ities of the coupling parameter ε(x)), are determined
by the rms f luctuation of the coupling parameter Δε,
whereas the widths of the narrow resonance and
antiresonance peaks are determined by the correlation
wavenumber kc. This allows measuring both these
main characteristics of inhomogeneities inde-
pendently. An increase in kc is accompanied by the
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sharp exchange-induced narrowing of the broad peak
and by the broadening of narrow resonance and
antiresonance peaks, which results in the gradual dis-
appearance of these narrow peaks. We also studied the
situation where the rms f luctuation Δε and mean value
ε of the coupling parameter are nonzero [17, 18].

The standard SCA allowed studying the main fea-
tures of the crossing resonance in the inhomogeneous
medium. At the same time, disadvantages of this
approach were manifested. The well-known demerit
of the approach is a dome-like shape of resonance
curves, which results in a number of defects at
approaching crossing resonance peaks: bends appear
on the slopes of the peaks in the imaginary parts of the
Green’s functions, a false central peak arises, which is
not related to the fine structure, etc. These defects
could sometimes provide doubts in some conclusions
of our previous works; therefore, the next improve-
ment of this approximation became necessary. The
authors of [23–32] developed various approaches to
the inclusion of vortex corrections to the self-energy or
to the Green’s function, but discrepancy between the
results obtained within various approaches remains
very significant although a great advance was
achieved. For the case of one wavefield, we derived in
[33] a new SCA including both the first and second
terms of the expansion of the vortex function.

The standard SCA and Bourret (Born) approxima-
tion are limiting cases of the new SCA. In [34], we
compared the new SCA to various existing approxima-
tions and to the numerical simulation of the solution
of the wave equation for a medium with one-dimen-
sional inhomogeneities. We showed that the new SCA
has obvious advantages in application to media with
long-wavelength inhomogeneities because it describes
the shape, width, and height of peaks much better than
the standard SCA. The developed mathematical
method based on the new SCA was used in [35] to
analyze the magnetoelastic resonance in the medium
with a partially or completely stochastized coupling
parameter. The method is applicable in a wide range of
the correlation wavenumber of inhomogeneities kc
from kc = 0 (infinite correlation radius) to kc values
corresponding to the classical limit.

The main result provided by the new method is a
significant improvement of the shape of resonance
peaks of the dynamic susceptibility, which corrected
all defects obtained in [15–18]. The new SCA qualita-
tively reproduces the previous standard SCA results on
the broadening and approach of magnetoelastic reso-
nance peaks and their merging to a single broad peak
with an increase in the rms fluctuation Δε and a
decrease in the mean value ε of the coupling parame-
ter. Most importantly, the appearance of the fine
structure of the spectrum in the form of a narrow res-
onance peak on the Green’s function of spin waves
and a narrow dip (antiresonance) on the Green’s
function of elastic waves was confirmed. This effect
YSICS  Vol. 130  No. 3  2020
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should be manifested at the interaction of any wave-
fields of different physical natures. A hypothesis of the
origin of the fine structure was discussed in [15–18].
However, this problem was not exactly solved because
of the complex mathematical technique of the theory
and the necessity of using numerical methods to
obtain particular results.

The aim of this work is to explain the nature of the
fine structure of the crossing resonance spectrum. To
this end, we consider the magnetoelastic resonance at
both crossing points of dispersion curves of spin and
elastic waves (Section 2) and the crossing resonance
within the model of an inhomogeneous medium with
the infinite correlation radius (Section 3).

2. MAGNETOELASTIC RESONANCE AT BOTH 
CROSSING POINTS OF DISPERSION CURVES

2.1. System of Equations of Matrix Green’s Functions
As in [15–18], we consider a coupled system of two

scalar equations for the resonance circular projections
of the magnetization m and elastic displacements u,
where only the dimensionless magnetoelastic coupling
parameter ε(x) is inhomogeneous, where x = {x, y, z}:

(1)

(2)

Here, α is the exchange parameter, μ is the elastic
force constant, M is the static magnetization along the
external d.c. magnetic field H (the amplitude of trans-
verse circular projections is m ≪ M), h is the external
a.c. magnetic field perpendicular to the field H, f is the
external mass force, and

(3)

Here, g is the gyromagnetic ratio, ω is the frequency,
ω0 is the frequency of the uniform ferromagnetic reso-
nance depending on the magnetic field H and demag-
netizing factors of the sample, and  =  is the
velocity of the elastic wave, where p is the density of
the medium.

We represent the magnetoelastic parameter ε(x) in
the form

(4)
where ε is the mean value of this parameter, Δε is its
rms f luctuation, and ρ(x) is a centered (ρ(x) = 0) nor-
malized (ρ2(x) = 1) random function of the coordi-
nates. Angle brackets mean the average over the
ensemble of realizations of this random function.

The stochastic properties of inhomogeneities ρ(x)
are characterized by a correlation function K depend-
ing on the difference of coordinates r = x – x',

∂α ∇ + ν − ε = −
∂

2( ) ( ) ,m
um M h
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(5)

or by its Fourier transform, i.e., the spectral density of
inhomogeneities

(6)

Substituting Eq. (4) into the system of Eqs. (1) and
(2), we rewrite the system in the matrix form

(7)

where

(8)

(9)

(10)

Here, it is seen that αm and μu are normalized vari-
ables for the coupled system of equations. We also use
this normalization to introduce the unaveraged matrix
Green’s function of the system by writing the equation
for it in the form

(11)

Here,

(12)

where ( ) and  ( ) are the spin (elastic)
Green’s functions, respectively, at the magnetic and
elastic point excitations, respectively; δ(x – x0) is the
Dirac delta function; and

(13)

is the identity matrix. To obtain the averaged Green’s
function , we use the new SCA [33], which for the
crossing resonance has the form of a system of three
coupled matrix equations [35]: the Dyson equation for
the averaged matrix Green’s function ,

(14)
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(15)

and the equation for the matrix vortex function ,

(16)

Here, K(x1, x4) is the correlation function,

(17)

and

(18)

and (x, x0) is the Green’s function of the homoge-
neous medium, which is a solution of the equation

(19)
The Fourier transforms of all matrix quantities

(20)

(21)

where d is the dimensionality of the space, give the
system of two coupled self-consistent equations for the
matrix Green’s functions  and vortex function ,
which is similar in structure to the system of equations
of the new SCA for one wavefield [33]:

(22)

(23)

Here,
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Similar to the initial matrix Green’s function ,
we represent the matrix Green’s function  in the
form

(27)

The elements of the initial matrix Green’s function
 have the form

(28)

where

(29)

The amplitudes m and u are expressed in terms of
the averaged Green’s functions as

(30)

(31)

2.2. Analysis of the Elements
of the Matrix Green’s function

Below, we consider only one-dimensional inho-
mogeneities of the coupling parameter ε(x) = ε(x). In
this case, d = 1 in Eqs. (20)–(31) and the vector k has
only one component kx = k. The correlation properties
of the random function ρ(x) are simulated by an expo-
nential correlation function

(32)

where r = |x – x'| and kc is the correlation wavenumber

of inhomogeneities (rc =  is the correlation radius of
inhomogeneities).

To analyze the fine structure at both crossing
points of dispersion curves of spin and elastic waves,
we consider the matrix Green’s function in the case of
the complete stochastization of the coupling parame-
ter (ε = 0 and Δε ≠ 0), where the fine structure is most
pronounced. Then, the system of Eqs. (22)–(28) is
simplified: all off-diagonal elements vanish because
Gmu(k) = Gum(k) ∝ ε, and the initial Green’s functions
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Fig. 1. (Color online) Dispersion laws of (straight line)
elastic waves and (three parabolas) spin waves at three fre-
quencies ω0 of the uniform ferromagnetic resonance. The
dispersion curves cross each other at the points (ωn, kn)
(n = 1, 2, 4, 5) and touch each other at the point (ω3, k3).
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 are expressed in an explicit form. For the numerical
analysis, it is convenient to represent the diagonal ele-
ments for spin and elastic waves in the form of recur-
rence formulas
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respectively. Here,
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and the superscripts n and m indicate the iteration
numbers for the Green’s and vortex functions, respec-
tively.

The first approximation of Eqs. (33)–(36) is
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ĝk

−

−
−

= − γ −
 π

× Γ − 



( ) 1 2 2

1 1

1
( 1) ( )

1 1 1 1

1( ) ( ) ( )
2

( ) ( , ) ,

n
mm mm

n m
uu mm

G k g k k S k k

G k k k k dk

−

−
−

= − γ −
 π

× Γ − 



( ) 1 2 2

1

1
( 1) ( )

1 1 1 1

1( ) ( ) ( )
2

( ) ( , ) ,

n
uu uu

n m
mm uu

G k g k k S k k

G k k k k dk

−

−

Γ − ≈ − γ − +
 π

× − Γ −

× − + 



( ) 2 2

1 1 1 2

( 1) ( )
1 2 2 1 2 2

1
( )

1 2 2

1( , ) 1 ( )
2

( ) ( , ) ( )

( ) ,

m
mm

m n
mm mm

n
uu

k k k k k k

S k k k k k G k

G k k k dk

−
−

Γ − ≈ − γ −
 π

× Γ − − + 



( ) 2 2

1 1 2 1 2

1
( 1) ( ) ( )

2 1 2 2 1 2 2

1( , ) 1 ( )
2

( , ) ( ) ( ) ,

m
uu

m n n
uu uu mm

k k k k S k k

k k k G k G k k k dk

= =
ν − ν −2 2

1 1( ) , ( ) ,mm uu
m u

g k g k
k k

Γ(0)
mm Γ(0)

uu
(0)
mmG

(0)
uuG

−
− γ= − − π 


12

(1) 1 2
1 1 1 1( ) ( ) ( ) ( ) ,

2mm mm uuG k g k k S k k g k dk

−
− γ= − − π 


12 2

(1) 1
1 1 1( ) ( ) ( ) ( ) ,

2uu uu mm
kG k g k S k k g k dk

−

 γΓ − ≈ − − + − π


× − + 




2

(1) 2
1 1 1 2 1 2

1

2 1 2 2

( , ) 1 ( ) ( )
2

( ) ( ) ,

mm

mm uu

k k k k k k S k k

g k g k k k dk
JOURNAL OF EXPERIMENTAL AN
(41)

After the substitution of Eq. (32) for S(k), integrals
can be calculated by residues or numerically with the
addition of an infinitesimal value iδ to the frequency in
order to avoid divergences in the integrals. In this case,
for the relaxation of waves to be due to scattering by
inhomogeneities of the coupling parameter rather
than to this artificial addition, the inequalities δ ≪ kc

and δ ≪ kc, where  = 2gMαk is the velocity of spin
waves, should be satisfied. We substitute Eqs. (38)–
(41) into Eqs. (33)–(36), perform numerical integra-
tion, and continue iterative substitutions and numeri-
cal integrations in the system of Eqs. (33)–(36) until a
convergent result.

Figure 1 shows the dispersion curves of spin and
elastic waves obtained neglecting the interaction
between wavefields for (straight line) elastic waves,

(42)

and (three parabolas) spin waves at three frequencies
ω0 of the uniform ferromagnetic resonance,

(43)

Here, l = 1, 2, 3 and  <  <  correspond to the
blue dashed, red dash-dotted, and black dotted lines,
respectively. The dispersion curves cross each other at
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Fig. 2. (Color online) Imaginary parts (dashed curves)
(ω) and (solid curves) (ω) of the Green’s

functions of spin and elastic waves, respectively, calculated
in the new SCA at kc/k3 = 0.01 near the crossing frequen-
cies ω1, ω2, ω4, and ω5 and touching frequency ω3 of the
dispersion curves.
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Fig. 3. (Color online) Imaginary parts (dashed curves)

(ω, k) and (solid curves) (ω, k) of the Green’s
functions of spin and elastic waves, respectively, calculated
in the standard SCA at kc/k3 = 0.01 near the crossing fre-
quencies ω1, ω2, ω4, and ω5 and touching frequency ω3 of
the dispersion curves.
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the points (ωn, kn) (n = 1, 2, 4, 5) and touch each other
at the point (ω3, k3).

The diagonal elements of the averaged Green’s
function numerically calculated by Eqs. (33) and (34)
can be represented in the form of the sum of the real,
G', and imaginary, G'', parts:

where j takes values m or u. Figure 2 shows the fre-
quency dependences of the imaginary parts of the
Green’s functions for all ωn and kn values. The calcu-
lation was performed at the correlation wavenumber of
inhomogeneities kc much lower than the wavenumbers
kn. With increasing n, peaks at each crossing point of
curves are broadened and their amplitude decreases.
The velocity of propagation of elastic waves at the first
two crossing points of the curves n = 1 and 2 is higher
than the velocity of propagation of spin waves. In
Fig. 2, this is manifested as a fine structure in the form
of a narrow dip at the tops of the imaginary parts of the
Green’s functions of elastic waves and a narrow peak
at the tops of the imaginary parts of the Green’s func-
tions of spin waves. Oppositely, the velocity of spin
waves at the last two points n = 4 and 5 is higher than
the velocity of elastic waves and, correspondingly, the
fine structure has the form opposite to the structure at
the points n = 1 and 2. Here, a narrow dip is observed
on the tops of the imaginary parts of the Green’s func-
tions of spin waves, whereas a narrow peak occurs on
the tops of the imaginary parts of the Green’s func-
tions of elastic waves. The velocities of elastic and spin
waves at the point of contact of dispersion curves, n =
3, are the same, and the fine structure of the spectrum
is absent. The amplitude of the fine structure on the
tops of the imaginary parts of the Green’s functions
depends on the ratio of the velocities of interacting

= +' ''( ) ( ) ( ),jj jj jjG k G k iG k
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waves: the higher this ratio, the more pronounced the
narrow resonance and antiresonance.

Figure 3 shows the same frequency dependences of
the imaginary parts of the Green’s functions as in
Fig. 2, but they were calculated in the cruder standard
SCA. In this approximation, Γmm(k1, k – k1) = 1 and
Γuu(k1, k – k1) = 1 are substituted into Eqs. (33) and
(34), Eqs. (35) and (36) are omitted, and Eqs. (33) and
(34) thus simplified become a complete system of self-
consistent equations. Figure 3 demonstrates how the
well-known defect of the standard SCA—dome-like
shape of resonance peaks—distorts the more realistic
picture obtained in the new SCA and shown in Fig. 2.
However, the dependence of the fine structure on the
ratio of velocities of interacting waves has qualitatively
the same character in both the standard and new
SCAs.

We now discuss the possibility and conditions for
the observation of effects calculated in this section.
According to the general expression (30), the calcu-
lated high-frequency susceptibility χg(ω, k) is deter-
mined by the Green’s function:

(44)

The calculation was performed for the unlimited space
at a fixed wavenumber k = kr, where kr corresponds to
the magnetoelastic resonance. The frequency depen-
dence of χg is continuous and monotonically decreas-
ing in the entire frequency range except for a narrow
vicinity of the frequency ωr of the magnetoelastic res-
onance; only this vicinity is of interest for us.

The direct observation of effects of the magneto-
elastic resonance can be provided by the experimental
study of the shape of the high-frequency susceptibility
of the spin-wave resonance in thin magnetic films.

ω ωχ ω = = −
α

r r
r

( , ) ( , )( , ) .g
m k G kk

h
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However, the shape of the experimentally observed
high-frequency susceptibility χm(ω, k) significantly
differs from the calculated susceptibility χg(ω, k) in the
unlimited space. The finiteness of the film results in
the discreteness of the spectrum of spin waves ωp(kp)
and, correspondingly, in the discrete peaks of the sus-
ceptibility χm(ωp, kp) at ω = ωp in the absence of damp-
ing. Because of the broadening of spin-wave reso-
nance lines due to damping or stochastic distribution
of frequencies caused by inhomogeneities, the
observed frequency dependence of χm is continuous
and has maxima at ω = ωp. For the appearance of
effects of the magnetoelastic resonance, the wave-
number kp of one of these resonances should be equal
to the wavenumber kr:

(45)

where d is the thickness of the film and p = 1, 2, 3, ….
This condition can be ensured by choosing the thick-
ness of the film. It is also necessary to take into
account that the experimental measurement of
χm(ωp, z) is accompanied by the self-averaging of the
response over the thickness of the film:

(46)

Thus, because of the difference between the calcu-
lation models and observation conditions (unlimited
space and thin film), only a qualitative agreement
between the calculated, χg(ω, kr), and observed, χm(ω,
kr), high-frequency susceptibilities can be expected.
However, all features of the fine structure of the mag-
netoelastic resonance calculated for χg(ω, kr) will be
manifested in χm(ω, kr) if the damping-induced broad-
ening of spin-wave resonance lines is much smaller
than broadening caused by the stochastic frequency
distribution.

3. MODEL OF ORIGIN
OF THE FINE STRUCTURE

IN THE SPECTRUM
OF THE CROSSING RESONANCE

To demonstrate the origin of the fine structure of
the crossing resonance spectrum in the medium with
an inhomogeneous coupling parameter, we use a sim-
ple model with the infinite correlation radius (kc = 0,
the model of independent crystallites), which is
described by Eqs. (63) in [35].

In this case, the random functions ρ(x) are trans-
formed to random values ρ whose stochastic proper-
ties are described by a certain distribution function
f(ρ), which can generally be arbitrary. The elements of
the matrix Green’s function depending on ρ in the

= = πr / ,pk k p d

−

  = ω
/2

/2

1 ( , ) .
d

p p
d

m m z dz
d

JOURNAL OF EXPERIMENTAL AN
case of the complete stochastization of the coupling
parameter (ε = 0 and Δε ≠ 0) have the form

(47)

(48)

The averaged Green’s functions are given by the
expressions

(49)

(50)

Here, we supplement this model by introducing the
phenomenological damping parameter Γm and Γu of
spin and elastic waves, respectively. We consider fre-
quencies near the magnetoelastic resonance frequency
ωr at the wavenumber k = kr. For this reason, we ana-
lyze only one branch of the dispersion curve of elastic
waves and represent the diagonal Green’s functions of
coupled spin and elastic waves in the form

(51)

(52)

where

(53)

(54)

(55)

We consider Eqs. (51) and (52) at k = kr, when ωm =
ωu = ωr:

(56)

(57)

where ζ = ω – ωr. The real and imaginary parts of the
eigenfrequencies as functions of the coupling parame-
ter η are obtained from the condition of zero denomi-
nator of the right-hand sides of Eqs. (56) and (57):

(58)

(59)

ν −ω ρ =
ν − ν − − γρ

�

2

2 2 2( , ; ) ,
( )( ) ( )

u
mm

m u

kG k
k k k

ν −ω ρ =
ν − ν − − γρ

�

2

2 2 2( , ; ) .
( )( ) ( )

m
uu

m u

kG k
k k k

ω = ω ρ ρ ρ �( , ) ( , ; ) ( ) ,mm mmG k G k f dˇ

ω = ω ρ ρ ρ �( , ) ( , ; ) ( ) .uu uuG k G k f dˇ

ω − ω − Γω =
ω − ω − Γ ω − ω − Γ − η

�

2( ) ,
( )( )

u u
mm

m m u u

iG
i i

ω − ω − Γω =
ω − ω − Γ ω − ω − Γ − η

�

2( ) ,
( )( )

m m
uu

m m u u

iG
i i

ω = ω + ω α 2
0 ,m M k

ω = v ,u uk

ω ωη ≈ Δε ρ
μ

.
2
M uM

ζ − Γκ =
ζ − Γ ζ − Γ − η

�

2( ) ,
( )( )

u
mm

m u

iG
i i

ζ − Γκ =
ζ − Γ ζ − Γ − η

�

2( ) ,
( )( )

m
uu

m u

iG
i i

±

ω η < ηω = 
ω ± η − η η > η

r c

2 2
r c c

, ,
'

, ,

±
Γ ± η − η η < ηω = 
Γ η > η

2 2
c c

c

, ,''
, ,
D THEORETICAL PHYSICS  Vol. 130  No. 3  2020



FINE STRUCTURE OF THE CROSSING RESONANCE SPECTRUM 365

Fig. 4. (Color online) (a) (Black solid curve) Real part of the frequency and (red dashed and blue dash-dotted curves) positions of
the maxima of the imaginary parts of the Green’s functions  and , respectively, and (b) the imaginary part of the frequency
versus the coupling parameter η. The critical value η = ηc separates the degenerate and nondegenerate parts of the spectrum.
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where

(60)

(61)

The dependences of ω' and ω'' on the coupling param-
eter η are shown in Fig. 4. It is seen that the removal of
the degeneracy of eigenfrequencies has a threshold
character in the coupling parameter η. The real parts
of the frequencies remain degenerate (  =  = ωr) at
the variation of the coupling parameter from zero to
the critical (threshold) value η = ηc given by Eq. (60).
Then, degeneracy is lifted and the gap Δω =  – 

η = Γ − Γc
1 | |,
2 u m

Γ = Γ + Γ1 ( ).
2 u m

+ω' −ω'

+ω' −ω'
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Fig. 5. Model of the distribution function f(η).

1
2ηm

–ηm ηm η
–ηc ηc0

f

appears in the spectrum and increases with η, reach-
ing the maximum

(62)

at η = ηm, where ηm is the maximum coupling param-
eter in a given material. Unlike the real parts, the
imaginary parts  of frequencies are degenerate in the
η interval from ηc to ηm. The damping of the eigenfre-
quencies  in this range is the same and is determined
by the half-sum of the damping parameters Γm and Γu.
At η < ηc, the degeneracy of the imaginary parts of the
frequencies is lifted: a decrease in η is accompanied by
an increase in  and a decrease in , which reach the
limiting values  = Γu and  = Γm at η = 0. For neg-
ative coupling parameters, each of the plots in Fig. 4
has a mirror symmetry if the magnitudes of the max-
ima ηm are the same for η > 0 and η < 0 (the magni-
tudes of ηc are the same by definition, see Eq. (60)).

The simplest symmetric rectangular distribution
function f(η) of random realizations of the coupling
parameter at a nonzero difference between damping
parameters in the system of two interacting wavefields
is shown in Fig. 5. The eigenfrequencies  in the
regions with 0 < |η| < |ηc| are degenerate in spite of a
nonzero coupling parameter η. Degeneracy is lifted
only in the shaded regions in Fig. 5 when the coupling
parameter η is above the threshold value ηc. We
emphasize that the appearance of unshaded sub-

Δω = η − η2 2
m c2 ,

±ω''

±ω''

+ω'' −ω''
+ω'' −ω''

±ω'
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Fig. 6. (Color online) Imaginary parts of the diagonal Green’s functions of (a) spin and (b) elastic waves at the point k = kr for
(thin black solid lines) η > 1.5ηc, (blue dashed curves) η = 1.5ηc, (red thick solid curves) η = ηc, and (red dotted curves) η = 0.5ηc.
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threshold regions is due not to damping but to the dif-
ference between the damping parameters: when Γu =
Γm, degeneracy is lifted at any |η| ≠ 0.

The imaginary parts of random realizations of the
Green’s functions  and  have the form

(63)

(64)

where

(65)

The functions (ζ) and (ζ) at several η values are
shown in Fig. 6. A series of curves at various values η >
1.5ηc corresponds to the shaded regions in Fig. 5 where
degeneracy is lifted. Here, each curve has the usual two
maxima at ζ1,2 ≈ ± . The functions (ζ) and (ζ) at
these maxima are approximately the same:

(66)

As η decreases and approaches the critical value ηc,
the difference between the functions (ζ) and

(ζ) appears. At η < 1.5ηc, the function (ζ) has
one peak, whereas the function (ζ) has two peaks
(blue dashed lines). Differences between these func-
tions are particularly large in the region η ≤ ηc corre-
sponding to the degeneracy of the oscillation frequen-
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cies. Expressions (63) and (64) at ζ = ηc are simplified
to the form

(67)

(68)

These expressions correspond to red thick solid lines
in Fig. 6. Both Eqs. (67) and (68) have the same math-
ematical form. The denominator corresponds to a sin-
gle resonance maximum at the point ζ = 0, whereas
the numerator corresponds to the resonance mini-
mum at the same point. The characteristics of the res-
onance maximum are identical for both functions

(ζ) and (ζ), whereas the characteristics of the
resonance minima are strongly different at different
relations between Γu and Γm. If Γu > Γm as in our case,
the numerator of the function (ζ) has a shallow
broad minimum, which is suppressed by the sharp
maximum of the denominator. When the derivative of
the function (ζ) is zero, one maximum should be
observed at ω = ωr. In this case, the numerator of the
function (ζ) has a narrow sharp minimum at ω =
ωr, which is manifested against the background of a
broader maximum. As a result, two maxima on this
function should be observed in the case Γu > 2Γm at the
frequencies

(69)
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Fig. 7. Averaged imaginary parts of the diagonal Green’s functions of the (a) spin and (b) elastic waves at the point k = kr for (solid
curves) Γm ≠ Γu and (dotted curves) Γm = Γu (ηc = 0).
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The red thick line in Fig. 6b corresponding to this sit-
uation is similar to neighboring thin lines correspond-
ing to the degeneracy removal region. However,
according to Eq. (69), the splitting of the maximum on
this line into two peaks does not mean the appearance
of a gap in the spectrum. Intervals between these max-
ima decrease with a further decrease in η (Fig. 6b, red
dotted line). The dependence of the interval between
the peaks on η is shown in Fig. 4a (red dashed line).
Figure 4a also shows the dependence of the positions
of the maxima of the function (ζ) on η (blue dash-
dotted line). It is seen that the dependence of the posi-
tion of the maxima of the Green’s functions (ζ)
and (ζ) on η is significantly different from the
dependence of the eigenfrequencies on η.

Random realizations in Fig. 6 can be considered as
the Green’s functions of homogeneous samples with
the corresponding coupling parameters η. In this case,
both Green’s functions  and  of the sample with
η > ηc have the same form standard for crossing reso-
nances (one of thin black lines in Figs. 6a and 6b),
whereas the forms of the functions  and  for the
sample with η < ηc are different and correspond to res-
onance and antiresonance (red lines in Figs. 6a and
6b, respectively) of the fine structure of the spectrum,
respectively.

Both situations corresponding to the nondegener-
ate and degenerate spectra of eigenfrequencies can
also be observed in an appropriately oriented single
crystal. The magnitude and sign of the coupling
parameter η in many materials are different along dif-
ferent crystallographic axes [36, 37]. In particular, the

� ''mmG

� ''mmG
� ''uuG

� ''mmG � ''uuG

� ''mmG � ''uuG
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parameter η in an iron single crystal is positive and
negative along the [100] and [111] axes, respectively,
and has intermediate values along other directions. In
the situation with the oriented single crystal, as well as
in the situation with materials with different η values,
degenerate and nondegenerate spectra can be
observed only separately.

We now average Eqs. (63) and (64) for the imagi-
nary parts of the Green’s functions over the coupling
parameter η with the distribution function (see Fig. 5)
by numerical integration (Fig. 7). It is seen that the
plots of the averaged Green’s functions (ζ) and

(ζ) in the considered model clearly exhibit the
main feature of the fine structure of the magnetoelas-
tic resonance, i.e., the appearance of a narrow reso-
nance on the function (ζ) and a narrow antireso-
nance on the function (ζ) at ω = ωr against the
background of broad maxima caused by the stochastic
distribution of eigenfrequencies.

Thus, we have shown that the effects of the fine
structure of the magnetoelastic spectrum occurring in
inhomogeneous ferromagnets are due to the contribu-
tion of random realizations corresponding to the
degenerate state of the magnetoelastic system. Such
states are always present in the distribution function of
the coupling parameter if the critical coupling param-
eter ηc given by Eq. (60) is nonzero.

4. CONCLUSIONS

This work has been devoted to determining the ori-
gin of the fine structure of the crossing resonance
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spectrum of two wavefields of different natures in an
inhomogeneous medium, which was predicted by
analytical and numerical methods in our previous
works [15–18, 33–35]. To this end, we have consid-
ered the magnetoelastic resonance at both crossing
points of dispersion curves of spin and elastic waves
(Section 2) and the crossing resonance in the model of
the inhomogeneous medium with the infinite correla-
tion radius (Section 3). We have studied interacting
wavefields in the medium with the stochastically inho-
mogeneous coupling parameter between them with
zero mean value, where coupling between wavefields is
ensured only by spatial f luctuations of this parameter.
The performed study has revealed the stage of forma-
tion of the fine structure of the spectrum, beginning
with the crossing resonance in the homogeneous
medium.

The removal of degeneracy of the eigenfrequencies
of two wavefields of different natures m(x, t) and u(x,
t) at the crossing point of their dispersion curves, ω =
ωr, k = kr, at the appearance of the coupling η between
these fields in the homogeneous medium with differ-
ent relaxation parameters Γm and Γu of the corre-
sponding waves has a threshold character. This
removal occurs when the parameter η exceeds the crit-
ical value ηc = |Γu – Γm|/2. The forms of the Green’s
functions  and  of the fields m(x, t) and u(x, t),
respectively, are strongly different in media with
degenerate (η < ηc) and nondegenerate (η > ηc) fre-
quency spectra. In media with the nondegenerate
spectrum (η > ηc), both Green’s functions  and

 have the form of two resonance peaks with the
same half-width (Γu + Γm)/2 spaced by the interval 2η,
which is standard for crossing resonances in the
homogeneous sample. In media with the degenerate
frequency spectrum (η < ηc), the Green’s functions

 and  have different forms: if Γm < Γu, the func-
tion (ζ) has the form of a narrow resonance peak at
the frequency ω = ωr, whereas the function  has the
form of a broader resonance peak split on the top by a
narrow antiresonance at the same frequency ω = ωr.

Thus, the main features of the fine structure of the
crossing resonance in the inhomogeneous medium—a
narrow resonance on the function  and a narrow
antiresonance at the same frequency ω = ωr on the
function —are standard for the crossing resonance
in the homogeneous sample where η < ηc. The two
forms of the spectrum of the magnetoelastic reso-
nance corresponding to η < ηc and η > ηc in the
homogeneous sample can be observed only separately
either in different samples or in a single crystal, which
allows broad ranges of variation of the magnitude and
sign of the parameter η at different orientations of this
crystal.
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The distribution function in an inhomogeneous
material (e.g., in a polycrystal with different orienta-
tions of crystallites) includes regions both with η < ηc
and with η > ηc. Averaging over the regions with η > ηc
leads to the formation of a broad resonance line with
the half-width of about η21/2 caused by the stochastic
distribution of resonance frequencies. Averaging over
the regions with η < ηc results in the sharpening of the
resonance peak on the function  and the antireso-
nance peak on the function  at the same frequency
ω = ωr. As a result, the following pattern of the cross-
ing resonance in the inhomogeneous medium is
formed: identical broad peaks on both functions 
and  with a narrow resonance peak of the fine
structure on the function  and a narrow resonance
peak on the function .

Thus, it has been shown that the fine structure of
the spectrum of any crossing resonance of two wave-
fields of different natures in the inhomogeneous
medium is due to the contribution of random realiza-
tions corresponding to degenerate eigenfrequencies of
the system.

The damping parameters Γm(k) ∝ kc  and Γu(k) ∝
kc  of spin and elastic waves proportional to the cor-
relation wavenumber kc of inhomogeneities and to the
velocity of the corresponding waves, which are
summed with the uniform damping parameters Γm
and Γu of the same waves, occur in a ferromagnet with
the spatially inhomogeneous coupling parameter. This
situation has been considered in this work in the new
SCA for the case where the contribution of the uni-
form damping parameter is negligibly small. It has
been shown that the form of the fine structure on the
functions  and  at the second (high-frequency)
crossing point of the dispersion curves of spin and
elastic waves changes to the opposite form: a narrow
resonance peak of the fine structure occurs on the
function  and an antiresonance peak appears on
the function  because  <  and  >  at the
points of the first and second crossings, respectively. If
the contribution of uniform damping parameters Γm
and Γu is large, the form of the fine structure of the
spectrum at both the first and second crossing points
of dispersion curves is determined by the ratio of these
damping parameters. In this work, we have studied the
case of the complete stochastization of the coupling
parameter (ε = 0 and Δε ≠ 0), when the fine structure
is the most pronounced. As we showed in [17, 35], the
fine structure is also manifested at a nonzero mean
value of the coupling parameter. As far as we know, the
fine structure of the spectrum of the magnetoelastic
resonance has not yet been observed experimentally.
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