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Abstract—It is shown that interlayer electron tunneling in the quasi-two-dimensional ensemble of Hubbard
fermions leads to the realization of the gapless superconducting phase with the chiral (d + id)-wave order
parameter symmetry, not for a single value of sodium ion concentration, but in a wide range of concentra-
tions. Precisely this situation corresponds to experimental data on the layered sodium cobaltite intercalated
by water (NaxCoO2 ⋅ yH2O). Intra-atomic electron repulsion that determines the strong electron correlation
regime leads to the representation of Hubbard fermions, the interaction of which ensures Cooper instability.
Intersite intralayer interactions between fermions considerably affect the positions of nodal points of the chi-
ral order parameter and change the critical concentration at which a topological transition occurs in the 2D
system of Hubbard fermions.
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1. INTRODUCTION
Layered magnets in which spins in planes are local-

ized at the triangular lattice sites are systems with
quantum effects that are manifested at the macro-
scopic level. This is due to strongly developed fluctua-
tions associated with frustrated exchange bonds on the
triangular lattice as well as with the quasi-2D struc-
ture. These factors determine nontrivial properties of
layered materials with a triangular lattice and induce
heightened interest from many research groups [1–9].

In conducting quasi-2D strongly correlated mate-
rials with a triangular lattice, the engaging of the Fermi
degrees of freedom leads to new nontrivial effects. The
superconducting phase [10] with the chiral symmetry
of the order parameter becomes a candidate for the
fundamental state of the system. This symmetry type
in combination with the noncollinear spin ordering
make possible the nontrivial topology and Majorana
modes [12–15]. In view of strong electron correla-
tions, additional features appear in the electromag-
netic response [16] and thermomagnetic properties
[17] of the superconducting phase formed due to
exchange of spin excitations [18]. A spin density wave
that can appear in the electron system described by the
Hubbard model [19] on a triangular lattice can initiate
the pseudogap behavior [20] of such an electron
ensemble. The existence of the d-wave superconduc-
tivity in such systems was confirmed by calculations

based on quantum dynamic cluster Monte Carlo
methods [21].

The discovery of a transition to the superconduct-
ing phase with an anisotropic order parameter in
water-intercalated sodium cobaltite NaxCoO2 ⋅ yH2O
at Tc = 5 K [10] substantially increased the number of
experimental [22–25] and theoretical investigations
[26–29] of properties of the normal and supercon-
ducting phases in quasi-two-dimensional materials
with a triangular lattice.

In particular, considerable attention was paid to the
symmetry of the superconducting order parameter
(SOP) (see reviews [30–32]). Since the triangular lat-
tice symmetry permits the realization of the chiral
(  + idxy)-wave SOP symmetry, the question con-
cerning the presence (or absence) of the gap in the
Fermi excitation spectrum of such a superconducting
phase arose.

It is assumed that the single-orbital Hubbard
model [19] is the minimal model for describing the
electronic structure of the CoO2 plane. In the strong
electron correlation regime, when the energy of the
intraatomic Coulomb electron repulsion (character-
ized by parameter U) is much higher than the absolute
value of hopping integrals tfm, the effective model is
used. This model can be constructed, for example,
using the unitary transformation method [33, 34] or
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236 VAL’KOV et al.
the operator form of perturbation theory in the form of
expansion in smallness parameters tfm/U. In this case,
second-order parameters contain two- and three-cen-
ter operators. If three-center terms are discarded, we
have the so-called t–J model [33, 34]. If, however,
three-center terms are included, there appears the t–
J* model. It is important that three-center terms are
also proportional to (tfm/U)2 and, hence, considerably
affects the conditions for the realization of the super-
conducting d-wave phase [35].

Analysis of the properties of the superconducting
phase with a complex order parameter on a triangular
lattice, which is performed based on the t–J model
[26–28] combined with the results of other theoretical
works [30–32], necessitated correcting of the chosen
methods for describing the superconducting state.

The reason for this has become obvious in the
attempt at matching the time evolution of the spin–
lattice relaxation obtained from the observation of the
nuclear magnetic resonance in NaxCoO2 ⋅ yH2O with
the concept of the singlet nature of Cooper pairing and
the chiral (d + id)-wave of the SOP symmetry.

As a matter of fact, the interaction between fermi-
ons in the aforementioned publications was consid-
ered only within the first coordination sphere. In this
case, the nodal points of the SOP lie only at the center
and at the edges of the Brillouin zone. For this reason,
the spectrum in the superconducting phase has a gap
for any doping level, while the spin–lattice relaxation
data required that superconductivity be gapless.

An approach to overcoming the difficulty with the
indication of the mechanism of realization of the gap-
less Fermi excitation spectrum for chiral (d + id)-wave
superconductors with a triangular lattice was proposed
in [11]. The main hypothesis formulated in [11] was
that the superconducting pairing occurs only for fer-
mions at the next-to-nearest sites. In this case, the
SOP nodal points lie within the Brillouin zone. Then
the spectrum for the superconducting phase for the
fermion concentration at which the Fermi contour of
the normal phase intersects the SOP zeros becomes
gapless and is characterized by six Dirac points.

However, the proposed mechanism of formation of
the gapless (d + id)-wave superconductivity does not
solve the above problem completely, not to mention its
somewhat artificial nature. As a matter of fact, the
above scenario of formation of the gapless phase is
realized only for one fermion concentration, while the
experimental matching between the theory and exper-
iment requires that the gapless spectrum be realized in
a wide range of doping with sodium ions.

The possibilities of formation of SOP nodal points
within the Brillouin zone were extended by consider-
ing a more realistic situation in which the potentials of
Cooper pairing of fermions from two coordination
spheres are accounted for simultaneously [36]. With
such an approach, there appears a dependence of the
positions of the SOP nodal points in the Brillouin
JOURNAL OF EXPERIMENTAL AN
zone on the model parameters as well as generally on
the doping level. This substantially extended the func-
tional potentialities of the theory in improving the
agreement with experimental data. However, the main
goal (viz., theoretical description of the gapless chiral
superconducting (d + id)-wave phase for a triangular
lattice in a wide doping level interval) was not
achieved.

In this study, we propose the solution of the afore-
mentioned problem. The main idea is associated with
the account for the actual quasi-two-dimensional
nature of the crystallographic structure of the materi-
als in question. In this case, condition |t⊥| ≪ |t| turned
out to be significant, where t⊥ is the parameter of elec-
tron hopping between nearest sites in the direction
perpendicular to the layers and t is the largest electron
hopping integral in the plane of the layer. This
inequality leads to the situation in which the superex-
change coupling between magnetically active ions
located in the same layer, which is proportional to the
square of the hopping parameter, is substantially larger
than the analogous coupling between such ions
belonging to different layers. This permits the use of
the model in which the Fermi excitation spectrum of
the normal phase is formed on the basis of the quasi-
two-dimensional crystallographic structure, while, as
regards superconducting pairing potentials, this model
describes a system of uncoupled layers with a triangu-
lar lattice.

The article is organized as follows. In Section 2, we
consider the model of the electronic structure of an
individual CoO2 layer with account for strong electron
correlations and pass to an ensemble to the Hubbard
fermions. The derivation of the self-consistency equa-
tion for the superconducting order parameter using
the diagram technique for the Hubbard operation is
described in Section 3. In Section 4, we construct the
region of realization of the chiral superconducting
phase in the 2D ensemble of the Hubbard fermions
and analyze possible configurations of nodal points of
the superconducting order parameter. The concentra-
tion evolution of nodal points is considered in
Section 5 with count for the intersite Coulomb repul-
sion of fermions. In Section 6, we demonstrate that
the inclusion of interlayer hops in the quasi-two-
dimensional ensemble of Hubbard fermions leads to
realization of the gapless chiral superconducting phase
in a wide concentration range as is observed in exper-
iments. The results are summarized in Conclusions.

2. QUASI-TWO-DIMENSIONAL ENSEMBLE 
OF HUBBARD FERMIONS

Cobalt ions in the CoO2 planes nominally corre-
spond to the four-valent state (Co4+) with the 3d5 elec-
tron configuration. Because of the presence of trigonal
distortion, the lower orbital triplet formed in the octa-
hedral crystal field splits into the upper singlet level
D THEORETICAL PHYSICS  Vol. 130  No. 2  2020



GAPLESS CHIRAL SUPERCONDUCTING 237
and the lower doubly degenerate level. Accordingly,
four d-electrons of the Co4+ ions occupy the lower
states (considering spin degrees of freedom), while the
remaining electron participates (during the formation
of CoO2 layer) in filling of the band states formed as a
result of collectivization of the upper states.

Under the influence of the intra-atomic Coulomb
repulsion, the aforementioned simple pattern of one-
fermion band states is modified. The main manifesta-
tion of such a modification is known to be described
by the single-orbital Hubbard model [19]. This, how-
ever, is insufficient for reflecting the features of the
superconducting phase of sodium cobaltite (see
below), and we must take into account the Coulomb
interaction of electrons located at different sites. For
this reason, we will use the Shubin–Vonsovski model
[37–39]

(1)

Here,  = afσ is the operator of the number of
electrons with spin projection σ at site f of the 3D lat-
tice,  (afσ) is the creation (annihilation) operator
for electron with spin projection σ at site f; ε is the ini-
tial energy of the one-electron state; μ is the chemical
potential of the electron system, and U is the Hubbard
repulsion energy of electrons located on the same
Vanier orbital with opposite spin projections.

The intersite interaction of electrons is described
by the last term in the second line in expression (1),

=  +  is the operator of the total number of
electrons on site f, and Vfm is the parameter of interac-
tion between electrons located on sites f and m.

In the kinetic energy operator, parameter tfm
describes the intensity of an electron hop from site m
to site f.

An increase in concentration x of sodium ions in
NaxCoO2 ⋅ yH2O leads to the passage of a part of cobalt
ions to state Co3+ with electron configuration 3d6. In
accordance with the hierarchy of the kinetic states of
electrons at cobalt ions considered above, we find that
doping is accompanied by the filling of the upper
Hubbard subband. In this case, the role of the single-
site basis for the Hilbert subspace is played by singly
filled electron states |↑ and |↓, as well as “two”
states |2.

Accordingly, in the regime of strong electron cor-
relations (U ≫ |tfm|, |t⊥|), in solving problem of the
structure of collectivized Fermi states in sodium
cobaltite, we can pass to the description in the lan-
guage of singly and doubly filled single-site states in
the framework of the effective Hamiltonian.
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A transition to the effective Hamiltonian acting in
the truncated Hilbert space can be realized rigorously
using the operator form of perturbation theory [40].

Taking into account the second-order terms in
|tfm|/U inclusively, we obtain a model representing the
Hubbard fermion ensemble:

(2)
The first term

(3)

describes one- and two-electrons states at the sites of
the 3D lattice in the atomic representation [41, 42].

Operator

(4)

takes into account the hops between the Hubbard fer-
mion sites.

The third term of Heff ref lects the emergence of
exchange coupling between cobalt ions in the second
order of perturbation theory (Jfm = 2tfm ⋅ tmf/U):

(5)

The operator with three-center terms,

(6)

which is obtained in the same order of perturbation
theory, described correlated hops of Hubbard fer-
mions.

The correlated part of the intersite Coulomb inter-
action between such fermions can be expressed in
terms of operator

(7)

in which the operator of the number of electrons at site
f is defined as

Hubbard operators  = |f, pf, q| are defined
conventionally using the basis of atomic states such
that |f, p is one of three possible states at site f.

In further analysis, we will consider the Coulomb
interaction only for electrons located within one layer.
The Coulomb interaction between electrons from dif-
ferent layers will be ignored because of screening
effects since the spacing between the layers increases
significantly during intercalation due to embedding of
water molecules between the CoO2 planes.

For the same reason, we assume that the interlayer
electron tunneling is much weaker than tunneling of
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electrons between the sites located within one CoO2
plane. Accordingly, parameter t⊥ determining the
intensity of an electron transition between the nearest
sites will be assumed modulo smaller than the hopping
parameter in one plane. We assume for simplicity that
interlayer hops occur only between the sites located in
neighboring CoO2 layers.

In this case, the exchange interaction between
cobalt ions located in different CoO2 layers is disre-
garded because, in view of condition t⊥ ≪ |t| (|t| is the
modulo largest hopping parameter |tfm| within a plane),
the interlayer exchange coupling parameter is much
smaller than the intralayer parameter. The interaction
between the layers is important in analysis of the mag-
netically ordered phase at finite temperatures.

In further analysis, we will disregard correlated
hops between the layers is disregarded for the reason
given in the description of operator .

Considering the above arguments, we come to the
conclusion that the features of the superconducting
phase of sodium cobaltite are determined by peculiar-
ities of the quasi-two-dimensional ensemble of Hub-
bard fermions with a triangular lattice in CoO2 layers.
The inclusion of strong single-site electron correla-
tions is reflected in the transition to the X operators
that are known to possess other algebra of permutation
relations. The use of the concept of Hubbard fermions
introduced above is associated with this circumstance.

3. EQUATION FOR THE ORDER
PARAMETER OF THE CHIRAL 
SUPERCONDUCTING PHASE

The self-consistency equation for the order param-
eter in the superconducting phase can be derived with
the help of the Matsubara Green functions (GFs) in
the atomic representation [42]:

(8)

where the angle brackets in the first line indicate aver-
aging over the grand canonical ensemble defined by
statistical operator

with temperature T. Operator Tτ chronologizes the
products of the Hubbard operators in the Heisenberg
representation in Matsubara “temporal” variables τ
and τ':

Indices α and β (root vectors [42]) are used for denot-
ing transitions between single-site states |↑, |↓, and
|2 and, hence, depend on two numbers of these states:
α = α(n, m). In this case,
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Acting on the wavefunction of the system, such an
operator transforms state |m of site f to state |n of the
same site. The negative value of root vector –β =
‒β(n, m) corresponds to the inverted transition of a
cobalt ion from single-site state |n into single-site
state |m; i.e.,

In the second line of definition (8), the Fourier
transform of the Matsubara Green function is intro-
duced in atomic representation, Dα, β(k, iωl), in which
k is the quasi-momentum and ωl = (2l + 1)πT, l = 0,
±1, ±2, …, is the Matsubara frequency for anticom-
muting operators.

If functions Dα, β(k, iωn) are treated as elements of
matrix (k, ωl), analysis of the diagrammatic series
for Dα, β(k, iωl) leads to matrix equation

(9)

where (k, iωl) is the force operator [42, 43]. Func-
tion  satisfies the Dyson equation in conventional
form

where (k, iωl) is the mass operator, and collectivized
Green function

describes noninteracting quasiparticles of the normal
phase if the force operator is calculated in the mean-
field approximation, and (iωl) is the matrix of sin-
gle-site propagators

En and Em being the initial one-ion energies. Matrix 

is composed of the Fourier transforms of elements ,
the values of which can be determined from compari-
son of operator  with the same operator written in
form

We will confine our further analysis to the mean-
field approximation corresponding to the Gor’kov
theory for traditional superconductors [44]. For the
sake of brevity, we will denote normal GF G↓2,↓2 by G
and anomalous GF G↓2, 2↑ by F.

Denoting the anomalous component of the mass
operator by Δ(k), we obtain from the Dyson equation
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Fig. 1. Diagrams for order parameter Δ(k).
(10)

where

(11)

is the Fermi excitation spectrum in the superconduct-
ing phase. For the t–J–V model, the normal phase
spectrum measured from the chemical potential is
defined as

(12)

while for the t–J*–V model, we have

(13)

where x is the fraction of two-states in the Hubbard
fermion ensemble, which is connected with the elec-
tron concentration n on a site by relation x = n – 1. The
Fourier transform of hopping integral tk with account
for parameters t1, t2, and t3 for three coordination
spheres is written as

(14)
where

(15)

are the basis functions of the s-wave symmetry. Since
singlet superconductivity with the d-wave order
parameter symmetry is realized in NaxCoO2 ⋅ yH2O,
we will henceforth (for brevity) confine our analysis to
only the representation of the contributions to the
anomalous component of the mass operator, which
ensure the above symmetry. Then the graphic repre-
sentation of Δ(k) is given by the sum of sever diagrams
shown in Fig. 1.

The solid curves in the diagrams with a light (dark)
arrow denote anomalous Green functions G↓2,2↑(q, iωl) =
F(q, iωl) and G↑2,2↓(q, iωl) = –F(–q, –iωl), respectively.

The fine line with a light (dark) arrow denotes the
initial propagator for the upper Hubbard subband of a
Fermi particle with the “up” (“down”) spin.

The light (dark) circle corresponds to end factor
N2↑ (N2↓), where N2σ = N2 + Nσ, Nσ =   is the
occupation number of the single-site state with one
electron with spin projection σ, and N2 =   is the
occupation number of the single-site state with two
electrons. Their values for the spin-singlet supercon-
ducting phase coincide, N2↑ = N2↓ = (1 + x)/2.

Δω =
ω −2 2

( )( , ) ,
( )

l
l k

kF k i
i E

= ξ + Δ2 2| ( )|k kE k

+ξ = ε + + − μ1 ,
2k k

xU t

−+ξ = ε + + + − μ
2

2(1 )1 ,
2 4k k k

xxU t t

= ϕ + ϕ + ϕ1 1 2 2 3 32 ( ) 2 ( ) 2 ( ),k s s st t k t k t k

   ϕ = +   
  

1
3( ) cos 2 cos cos ,
2 2

yx
s y

kkk k

   ϕ = +   
  

2
33( ) cos( 3 ) 2 cos cos ,

2 2
yx

s x
kkk k

ϕ = +3( ) cos(2 ) 2 cos( 3 )cos( )s y x yk k k k

σσ
fX

22
fX
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
Two diagrams in the upper row determine the con-
tributions to Δ(k), which are associated with the
exchange interaction described by operator . The
bold wavy curves in the diagram correspond to Fourier
transform Jq of the parameters of intersite exchange
interaction Jfg.

The next four diagrams in the second and third
rows describe correlated hops reflected in Heff by
three-center terms in expression (6). As shown in [35],
the total contribution of the first six diagrams to the
equation for the order parameter with the d-wave sym-
metry can be written in the form of the contribution
from only two first diagrams if we take for the effective
coupling constant the renormalized exchange :

(16)

The seventh diagram corresponds to the contribu-
tion to Δ(k) from the intersite Coulomb interaction of
fermions. Fourier transform Vq of this interaction is
shown by the bold dashed curve.

Comparing the diagrams with analytic expressions
and taking into account the above renormalizations as
well as the above expressions for the anomalous Green
functions, we obtain the following self-consistency
equation for the (d + id)-wave order parameter sym-
metry:

Ĵ
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(17)

In deriving this equation, we have preliminarily per-
formed summation over the Matsubara frequencies
using the structure of function F(q, iωl).

4. TEMPERATURE OF TRANSITION
TO THE CHIRAL SUPERCONDUCTING

(d + id)-WAVE PHASE IN THE 2D HUBBARD 
FERMION ENSEMBLE

We can easily find the solution to Eq. (17) assuming
that the kernel of this integral equation can be written
in the split form. In the 2D case with a triangular lat-
tice, when the dynamics of Hubbard fermions is deter-
mined by their hops and the intersite interaction, the
splitting follows from the Fourier representation of
intersite interactions.

Considering the exchange and Coulomb interac-
tions within two coordination spheres the parameter-
ization of which is determined by quantities J1, J2 and
V1, V2, respectively, this representation can be written
in form

where ϕsi(q) are the basis functions defined by expres-
sions (15). The form of the analytic dependence Δd(k)
on the quasi-momentum is determined by the basis
functions of the pairing potentials, which are trans-
formed in accordance to the irreducible d-wave repre-
sentation of rotation group C6.

Such basis functions for a triangular lattice are chi-
ral by nature and complex-valued. If the range of the
pairing potentials is bounded by two coordination
spheres, it is sufficient to use the following two func-
tions as the basis [11]:

(18)

(19)

Then the chiral (d + id)-wave order parameter can be
written in the form of superposition

(20)
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Ultimately, the problem is reduced to solving the
system of two transcendental equations in unknown
amplitudes  and :

(21)

which is obtained by substituting solution Δd(k) in
form (20) into Eq. (17). Coefficients Aij of this system
are defined as

(22)

where Lq = tanh(Eq/2T)/Eq.
To demonstrate the role of correlated hops in the

formation of properties of the superconducting phase,
we have introduced renormalization factor α in
exchange interaction parameters. In the case when
correlated hops are disregarded (t–J–V model), α = 2
and ξq is defined by expressions (12). If, however,
these hops are considered (t–J*–V model), coeffi-
cient α = 1 – x, and the spectrum is determined from
relation (13).

Since quantities Vi and Ji appear additively in the
Eqs. (22) for the order parameter, we will henceforth
assume that V2 = 0.

Relations (21) lead to the following equation for
determining the superconducting transition tempera-
ture:

(23)

in which quantities  differ from Aij only in that spec-
trum Eq appearing in quantity Lq is taken for Δq ≡ 0.

Figure 2 demonstrates the effect of Coulomb cor-
relations on the concentration dependence of the
superconducting transition temperature for the phase
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Fig. 2. Dependences of the superconducting transition
temperature in the chiral superconducting phase on the
concentrations of “twos” (x = n – 1), obtained in the t–J–
V model; solid curve corresponds to V1 = 0, dashed curve,
to V1 = 0.3; J1 = 0.3, J2 = 0.2, t2 = t3 = 0 (here and below,
all parameters are given in the units of |t1|).
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Fig. 3. Dependences of the superconducting transition
temperature in the chiral superconducting phase on the
concentrations of “twos” obtained in the t–J*–V model;
solid curve corresponds to V1 = 0, dashed curve, to V1 =
0.15; J1 = 0.3, J2 = 0.2, t2 = t3 = 0.
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with the chiral (d + id)-wave symmetry for the t–J–V
model. The renormalization associated with the inclu-
sion of transcendental terms reduces the supercon-
ducting transition temperature and the region of real-
ization of the superconducting phase (Fig. 3). The
solid curve in both figures corresponds to the case
when the Coulomb correlations are disregarded (V1 =
V2 = 0). As expected, the Coulomb repulsion of fermi-
ons suppresses the Cooper instability. At the same
time, it is significant that representation of Δd(k) in
terms of the two basis functions may lead to the fol-
lowing important effect: in the case of pairing suppres-
sion in one coordination sphere, the superconducting
phase can remain stable owing to pairing in the other
coordination sphere. In this case, the relative contri-
butions from two chiral invariants to Δd(k) are notice-
ably redistributed. This determines the mechanism
governing the effect of the intersite Coulomb interac-
tion on the topological transition in the chiral super-
conducting phase of the 2D Hubbard fermion ensem-
ble on a triangular lattice. Let us consider this effect in
greater detail.

5. EFFECT OF COULOMB CORRELATIONS ON 
THE CONFIGURATION OF NODAL POINTS 

AND ITS CONCENTRATION EVOLUTION

The important role of Coulomb correlations in the
problem of a quantum topological transition is associ-
ated with extension of the possibility of its realization.
It is known that the topological properties of the 2D
superconducting phase with complex order parameter

Δ = Δ + Δ( ) Re ( ) Im ( )d d dk k i k
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
change when the Fermi surface passes through nodal
points of Δd(k). As shown in [11], in the presence of
only one basis function corresponding to the second
coordination sphere, zeros of Δd(k) lie within the Bril-
louin zone at geometrically fixed points. Conse-
quently, a quantum topological transition occurs only
for the fermion concentration that is an independent
quantity. In this case, it is difficult to realize the gap-
less phase for the concentration corresponding to the
experimental value.

A different situation is observed when the Coulomb
correlations and exchange interactions within two
coordination spheres are taken into account. In this
case, because of the superposition of two basis func-
tions, the positions of zeros depend on the ratio of

amplitudes  and  of complex parameter Δd(k).
In this case, “old” zero may disappear, while new
zeros may appear. Figure 4 demonstrates the variation
of the configuration of nodal points upon a change in

amplitudes  and . Since the specific values of
these amplitudes change upon the variation of model
parameters, the fermion concentration, and, gener-
ally, the temperature, the gapless phase and the point
of the topological transition can easily be matched
with the experimental point.

The concentration evolution of nodal points is of
special importance. Since this evolution can change
qualitatively upon the actuation of correlated hops, we
consider results separately.

Δ0
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1d Δ0

2d
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Fig. 4. (Color online) Configuration of nodal points of
order parameter Δd(k) with the chiral symmetry type for

different ratios of amplitudes  and : (a) amplitudes
have the same sign; (b) amplitude have opposite signs.

(a) (b)

 |Δd1| > 3|Δd2|0 0

Δd1/Δd2 = 2.50 0

Δd1/Δd2 = 0.40 0

 |Δd1| > |Δd2|0 0

Δd1/Δd2 = −0.950 0

Δd1/Δd2 = −0.450 0

Δd1 = 00

Δ0
1d Δ0

2d

Fig. 5. (Color online) Configuration of nodal points of
Δd(q) and of the Fermi contour for different concentra-
tions x of “twos” in the t–J–V model: (a) t2 = t3 = 0, V1 =
0; (b) t2 = t3 = 0, V1 = 0.3; (c) t2 = 0.2, t3 = 0.15, V1 = 10.
In all figures, J1 = 0.3 and J2 = 0.2

(a)

(b)

(c)

x = 0.06 x = 0.1 x = 0.21

x = 0.05 x = 0.08 x = 0.15

x = 0.1 x = 0.18 x = 0.25
5.1. t–J–V Model

Figure 5 shows the arrangement of the nodal points
of Δd(k) in the Brillouin zone and the Fermi contour,
which was obtained from the solution of system (21),
in the t–J–V model for different parameters of the sys-
tem. Figure 5a corresponds to the case when the inter-
site Coulomb interaction is disregarded. Upon an
increase in the concentration, ratio /  changes.
This causes first an insignificant “expansion” and
then a displacement of nodal points towards the center
of the Brillouin zone, which is stronger than the dis-
placement of the Fermi contour. As a result, a change
in the fermion concentration in this regime is not
accompanied by a quantum topological transition.
This is one of significant features associated with the
superposition nature of the chiral order parameter.

The situation may change significantly when the
Coulomb correlations are taken into account. In spite

Δ0
1d Δ0

2d
JOURNAL OF EXPERIMENTAL AN
of the fact that the position of the Fermi contour is
independent of the Coulomb interaction, the mutual
dynamics of the nodal points and the Fermi contour
changes qualitatively (Fig. 5b) in the case when V1
(Coulomb electron interaction parameter) is close to
the value of J1 (exchange coupling parameter for the
nearest sites), and the Coulomb electron interaction
parameter V2 for the second coordination sphere
equals zero. In this case, nodal points are shifted rela-
tively slowly, and the Fermi contour has time to catch
up with it. At the critical concentration, the system of
nodal points of Δd(k) lies on the Fermi contour.

Thus, the inclusion of the Coulomb correlations
between the Hubbard fermions from the first coordi-
nation sphere not simply suppresses the tendency to
pairing, but may substantially affect the dynamics of
nodal points by modifying partial amplitudes  and

 and, hence, initiate a topological quantum transi-
tion to the superconducting state.

For V1 ≫ J1, the system of nodal points becomes
close to the system determined exclusively by the sec-
ond basis function, and the concentration behavior of
the system corresponds to the scenario described in
[11], the enhancement of the Coulomb interaction is
manifested only in the decrease in the transition tem-
perature in the range of realization of the supercon-
ducting phase, but does not change the position of the

Δ0
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Δ0
2d
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Fig. 6. (Color online) Configuration of nodal points of
Δd(q) and of the Fermi contour for different concentra-
tions x of “twos” in the t–J*–V model: (a) intersite cor-
relations are absent (V1 = 0); (b) intersite correlations are
activated (V1 = 0.15); J1 = 0.3, J2 = 0.2, t2 = t3 = 0.

(a)

(b)

x = 0.06 x = 0.15 x = 0.24

x = 0.06 x = 0.08 x = 0.12
nodal points. In Fig. 5c, the parameters of the system
are such that for large values of V, the superconducting
phase exists at the critical concentration.

5.2. t–J*–V Model

The account for correlated hops causes a renormal-
ization of the pairing interaction constant. For this
reason, the superconducting transition temperature
and the region of existence of the superconducting
phase decrease. Another effect of the aforementioned
hops is manifested in the possibility of changing the
concentration dynamics of nodal points and, as a con-
sequence, of changing the scenario of the topological
transition. This is demonstrated in Fig. 6, which shows
the configurations of the nodal points of Δd(k) in the
Brillouin zone in different conditions. In the absence
of Coulomb correlations (Fig. 6a), the behavior of the
nodal points in the t–J*–V model does not differ
qualitatively from the behavior of these points in the
t‒J model. Therefore, the Fermi contour does not
intersect nodal points either, and no quantum topo-
logical transition occurs. When the intersite interac-
tion due to the renormalization of the exchange inter-
action is considered, the first scenario of the forma-
tion of the phase with a gapless spectrum (Fig. 6b) is
observed for V1 ~ J1/2, and the reduction of the region
of existence of the superconducting phase rules out the
second scenario of formation of the gapless phase
(for V1 ≫ J1) in the t–J*–V model.

6. EFFECT OF INTERPLANAR HOPS
ON THE FORMATION

OF THE GAPLESS CHIRAL 
SUPERCONDUCTING (d + id)-WAVE PHASE

In analysis of the effect of quasi-two-dimensional-
ity on the spectral characteristics of the superconduct-
ing phase, we consider the factors existing, for exam-
ple, for sodium cobaltite. The main peculiarity is due
to the fact that intercalation with water (a supercon-
ducting transition occurs precisely in this case) causes
the separation of CoO2 layers (water molecules are
implanted between these layers). Consequently, the
fermion hopping integral between the sites belonging
to different layers becomes much smaller than the cor-
responding hopping integral in the plane of the layers:
|t⊥| ≪ |t|, where t⊥ is the parameter of electron hopping
between the nearest sites in the direction perpendicu-
lar to the layer and |t| is the largest electron hopping
integral in the plane of the layer.

As a result, the interaction between magnetically
active ions belonging to one layer, which is propor-
tional to the square of the hopping parameter, is much
stronger than the analogous interaction between ions
from different layers. This allows us to use the approx-
imation in which the Fermi excitation spectrum of the
normal phase is calculated for the quasi-2D case,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
while the 3D system relative to the superconducting
pairing potential is treated as a set of uncoupled layers
with triangular lattices.

The intercalated water molecules are known to be
implanted between CoO2 layers. This increases the
spacing between these layers. Therefore, the joint
effect of the large separation between the layers and
the presence of molecules with a high polarization
activity in the interlayer space lead to effects of strong
screening of the Coulomb potential in the direction
perpendicular to the layers. It follows hence that the
Coulomb interaction of fermions located in different
layers can be disregarded in the main approximation.

For simplicity, we will ignore below the effect of
correlated hops. Then equation (17) for calculating the
superconducting order parameter formally remains
unchanged; however, the expression for the Fourier
transform of hopping integral (14) is supplemented
with term 2tzcos(kz).

Figure 7a demonstrates the effect of interplanar
hops on the concentration dependence of the super-
conducting transition temperature to the chiral phase
with the (d + id)-wave order parameter symmetry;
Fig. 7b shows the effect of these hops on the density of
states for the energy value equal to the chemical poten-
tial.

It can be seen that an increase in tz leads to a
decrease in the superconducting transition tempera-
ture. It should be noted, however, that the variation of
Tc with increasing tz is nonmonotonic and depends on
the concentration (we are grateful to the reviewer who
paid attention to this circumstance). In the optimal
doping region, Tc decreases with increasing tz, while
the inverse process occurs in the overdoped region.
YSICS  Vol. 130  No. 2  2020
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Fig. 7. (a) Dependences of the superconducting transition
temperature to the chiral superconducting phase in the
Hubbard fermion ensemble on the concentration of “twos”
for different values of tz; (b) Concentration dependence of
the density of states at the chemical potential level for the
same ensemble; J1 = 0.3, J2 = 0.2, t2 = t3 = 0.
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Fig. 8. (Color online) (a) Fermi surface for a quasi-2D
ensemble of the Hubbard fermions (tz = 0.5); (b) projec-
tion of the Fermi surface of the same ensemble onto the
(px, py) plane. Concentration x = 0.18. The remaining
parameters are the same as in Fig. 7.
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Such a behavior is associated with the modification of
density of states, which is manifested in blurring of the
logarithmic divergence observed in the 2D system, as
well as with a nonmonotonic (in concentration) varia-
tion of the density of states at the chemical potential
level. A significant change in the superconducting
transition temperature occurs only for values of tz close
to 0.5|t1|. The region of existence of the superconduct-
ing phase changes insignificantly in this case.

Since the elementary excitation spectrum acquires
the dependence on pz, and order parameter Δd(p)
depends only on px and py upon the actuation on inter-
planar hops, it is more convenient in analysis of the
conditions for the formation of the gapless phase to
consider not the Femi surface itself, but its projection
on the (px, py) plane (see Fig. 8). The blue curve in
Fig. 8b shows the Fermi contour at tz = 0 (2D system),
and the red region appears in projecting the Fermi sur-
JOURNAL OF EXPERIMENTAL AN
face plotted for the same concentration and model
parameters, but for tz = 0.5|t1|. The value of this param-
eter was increased for better visualization. In calculat-
ing the concentration dependence of the gap width, we
will take a more realistic value. Therefore, if we
include the interplanar hops, we must consider
(instead of the individual Fermi contour in the pure
2D case) the surface, the width of projection of which
onto the (px, py) plane is proportional to tz.

For further analysis, it is significant that the posi-
tions of nodal points of Δd(p), which is determined by

parameter /  (see Fig. 4), weakly depends on the
interplanar hopping integral. This is demonstrated in
Fig. 9. It follows hence that the main influence of the
quasi-two-dimensionality effect on the system is man-
ifested in the emergence of a finite width of the projec-
tion of the Fermi surface in the (px, py) plane. As a
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Fig. 9. (Color online) Dependences of ratio /  on the
concentration in the t–J–V model for different values of tz
and V1. Solid curves correspond to tz = 0; dashed curve, to
tz = 0.5; lower curves were calculated for V1 = 0 and upper
curves, for V1 = 0.3; J1 = 0.3, J2 = 0.2, t2 = t3 = 0.
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Fig. 10. (Color online) Dependences of the gap in the
Fermi excitation spectrum in the superconducting phase
on concentration at tz = 0 (dashed curve) and tz = 0.1 (solid
curve); J1 = 0.3, J2 = 0.2, V1 = 0.3; t2 = t3 = 0.
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result, the superconducting phase with a gapless spec-
trum will be observed not at one concentration (criti-
cal point), but in a wide range of concentrations
(Fig. 10). Analogously, the expansion of the surface
leads to an increase in the range of values of the inter-
site Coulomb interaction, at which the gapless spec-
trum is realized. For example, for t2 = t3 = 0, J1 = 0.3,
J2 = 0.2, and tz = 0.2, the first scenario of the forma-
tion of the gapless phase (see Fig. 5b) is realized for
V1 ∈ (0.2, 0.5).

The inclusion of hops between layers also favors
the second scenario of the formation of the gapless
phase, which is realized for large values of the intersite
Coulomb repulsion (see Fig. 5c). The positions of the
nodal points in this scenario almost coincide with
zeros of basis function ϕd2(p), and the Fermi surface
intersects them at lower concentrations because of
“broadening.” For t2 = t3 = 0 and for tz increasing from
0 to 0.5, the minimal concentration at which this
intersection occurs decreases from 0.43 to 0.29.

7. CONCLUSIONS
We have analyzed the conditions in which the spec-

trum of the superconducting phase with the chiral
order parameter becomes gapless for the quasi-2D
ensemble of the Hubbard fermions on a triangular lat-
tice with account for the interaction within two coor-
dination spheres. It is shown that there are two scenar-
ios for the formation of the gapless phase.

The first of them is realized in the case when the
intersite Coulomb interaction parameters are compa-
rable with the exchange interaction parameters. Then
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
basis functions ϕd1(p) and ϕd2(p) give approximately
identical contributions to chiral order parameter Δd(p).
In this case, the positions of the nodal points strongly
depend both on the parameters of the system and on
the concentration, and the realization of the gapless
phase is determined by the relative dynamics of the
nodal points and the Fermi contour.

The second scenario is realized for V1 ≫ J1. The
positions of the nodal points are almost fully deter-
mined by only one basis function ϕd2(p). The order
parameter zeros lie within the Brillouin zone, and
their positions weakly depend on the concentration. If
superconductivity exists for the concentration at
which the Fermi contour of the normal phase crosses
these points, the phase with a gapless spectrum is real-
ized. However, this situation takes place only for one
value of fermion concentration, and precisely this sit-
uation was considered in [11].

The inclusion of correlated hops leads to a decrease
in the region of realization of the superconducting
phase; as a result, superconductivity degrades sooner
than the Fermi contour intersects zeros of basis func-
tion ϕd2(p) and, hence, the second scenario is not real-
ized in the t–J*–V model.

It is shown that a transition to the quasi-2D ensem-
ble of the Hubbard fermions, when interplanar transi-
tions are taken into account, the gapless supercon-
ducting chiral (d + id)-wave phase is realized not at a
single value of concentration, but in its certain range.
The expansion of the concentration range leads to the
reduction of requirements of realization of the gapless
phase, and both scenarios considered above are real-
ized in a large range of parameters.
YSICS  Vol. 130  No. 2  2020
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