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Abstract—We consider the change in the electronic structure of the two-band Hubbard model in the regime
of strong electron correlations with spin crossover upon the passage through the crossover point depending
on the crystal field growth. An abrupt semimetal–insulator–semimetal transition is detected during the pas-
sage through the spin crossover point in the absence of the spin–orbit interaction, which is accompanied by
a jumpwise redistribution of the partial spectral weight between the poles of the Green function of Fermi qua-
siparticles. The role of the spin–orbit interaction and the change in the surface topology of surface of one-
particle Green function zeros are considered.
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1. INTRODUCTION

Spin crossover is a transition between the low-spin
(LS) and high-spin (HS) states of the central ion of a
transition 3d metal, which is observed in various coor-
dination compounds under the action of external
physical factors such as temperature, radiation, pres-
sure, magnetic or electric field, or chemical factors
(salvation, isomerization, ligand exchange reaction,
and bond rupture) [1–3].

A theoretical description of spin crossovers is tradi-
tionally based on the single-ion pattern in which the
HS state is stabilized by the intratomic Hund exchange
interaction, while the LS state is stabilized by the crys-
tal field that increases with the external pressure. For
this reason, the ground HS state typical of an isolated
ion changes to the LS state when the crystal field
energy becomes equal to the energy of the Hund
exchange interaction. In such a situation, spin cross-
over at zero temperature is a quantum phase transition
in pressure with a topological order parameter deter-
mined by the Berry geometrical phase that changes
abruptly by 2π at the transition point [4]; therefore, it
would be interesting to investigate the band structure
during spin crossover. This study is aimed at analysis
of the evolution of the electronic band structure
during the spin crossover based on the two-band Hub-
bard model considered for a 2D square lattice. In this
case, the inclusion of multiparticle effects (Coulomb

interaction of electrons) is of fundamental impor-
tance; for this reason, we are using here the formalism
of Green’s functions and the representation of Hub-
bard X operators.

2. MINIMAL MODEL
The minimal model of strongly correlated systems

with spin crossover is the two-band Hubbard model
that is widely used in theoretical analysis of the elec-
tronic, magnetic, and crystalline structure and the
interrelation between different systems in the regime
of strong and weak electron correlations [5–10]. The
Hamiltonian of the model can be written in the form

(1)
The first term

includes the hopping of electrons between the nearest
neighboring crystal lattice sites with energy levels ε1
and ε2 = ε1 + Δ, where Δ is the electron energy in the
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Fig. 1. (Color online) Dependence of the energy of terms
on crystal field Δ. Red dashed line shows the position of
the HS state (S = 1); green dotted curve indicates the posi-
tion of the LS state (S = 0). Solid black lines are excited
singlet states; ΔC is the crossover point. Calculations were
made for the following set of parameters: U = 3 eV, V =
1 eV, J = 0.7 eV, and J' = 0.3 eV.
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crystal field and tλλ' are the hopping integrals (λ, λ' =
1, 2). The second term

contains the energy of the Coulomb interaction of
electrons (the electron–electron interaction is consid-
ered in the Kanamori approximation [11]).

Apart from its relative simplicity, an important fea-
ture of such a two-orbital model is the possibility of
formation of various localized multielectron (two-par-
ticle) states (terms) characterized by spin values S = 0,
1 (Fig. 1) and crossover between them in the case of
half-filling (Ne = 2 is the number of electrons per crys-
tal lattice site) and in the zeroth approximation in
intersite jumps.
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For example, for Ne = 2 and tλλ' = 0, Hamiltonian
(1) has six eigenstates. In the region Δ < ΔC, the
ground state is the triplet (S = 1) HS state |mS with
energy

(see Fig. 1, red dashed line), which is triply degenerate
in spin projection mS = 0, ±1:

while, for Δ > ΔC, the ground state is the singlet (S =
0) LS state

with energy

(see Fig. 1, green dotted curve). At the crossover point

the energy levels of these states intersect. The remain-
ing two states are excited singlet states

with energies

respectively, where

is the normalization factor depending on Δ (in Fig. 1,
these states are shown by the solid black line).

3. VARIATION OF THE ELECTRONIC 
STRUCTURE UPON AN INCREASE

IN THE CRYSTAL FIELD

It is convenient to determine the electron spectrum
of Hamiltonian (1) using Hubbard X operators Xpq =
|pq| constructed for the eigenstates of Hamiltonian
(1) in the absence of electron jumps (for tλλ' = 0) with
different numbers of electrons Ne = 1, 2, 3 per crystal
lattice site. Since the Hubbard operators form a lin-
early independent basis, any local operator can be
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expressed in terms of a linear combination of X opera-
tors, including the one-electron annihilation (cre-
ation) operator at site i with orbital index λ and spin
projection σ = ±1/2:

(2)

Alternately, since the number of different root vectors
(pq) is finite, we can number them and juxtapose each
vector to its number m; in this case,

In the representation of Hubbard X operators,
Hamiltonian (1) has form

Here, Ep is the energy of multielectron terms and

is the renormalized hopping integral.
For deriving the dispersion relations for quasiparti-

cle excitations, we will use the method of the equations
of motion for the matrix Green function

which are connected with one-electron Green func-
tion

by relation

In terms of the Fermi one-particle Green function,
we can express the spectral density of one-particle
excitations,

and the density of one-particle states for the given spin
projection (N is the normalization factor),

In the Hubbard-I approximation for Green func-
tion (k, ω), we can write the following equation:
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Here,

where

Fm ≡ F(pq) = Xpp + Xqq is the filling factor, which is
referred to as the end factor in the diagram technique
for the X operators [12]:

where tλλ'(k) is the Fourier transform of the hopping
integrals. Solution (3) has the standard form for the
mean field theory: (k, ω) = (ω) – (k).

The dispersion relation for Fermi quasiparticles is
determined by the equation for the pole of the matrix
Green function Dmn(k, ω) = :

This equation is close in form to the dispersion
equation of the tight binding method in the one-elec-
tron band theory, but differs from it in the following
two features: first, indices m and n label not one-elec-
tron orbitals, but one-particle excitations in a mul-
tielectron systems; second, the effective hopping inte-
gral is determined by product tmn(k) and filling factor
Fm depending on the filling numbers of the initial and
final states.

It should be noted that the following sum rule fol-
lows from exact representation (2) and the commuta-
tion relations for the Fermi operators:

The consequence of this sum rule is the conservation
of the total spectral weight in each band λ for any
wavevector k:

In the diagram technique of the X operators, we can
write the following Dyson equation for Green func-
tion (k, ω) [13]:

(4)

Here, (k, ω) and (k, ω) are the mass and force
operators, respectively, and

In the Hubbard-I approximation, the structure of exact
Green function (4) is preserved, but the mass operator is
set at zero, while force operator Pmn(k, ω) → δmnFm.
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Fig. 2. (Color online) Dispersion of Fermi quasiparticle
excitations calculated for the HS phase at Δ = 1 eV. Red
dashed horizontal line shows the position of the Fermi
level in the bandgap. Colored curves show the distribution
of partial spectral weight of quasiparticle excitations in the
first Brillouin zone for (a) λ = 1 (ε1), (b) λ = 2 (ε2), and (c)
spectral weight.
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Fig. 3. (Color online) Dispersion of Fermi quasiparticle
excitations calculated for the HS phase at Δ = 1.64 eV.
Dielectric gap Eg = 0 eV; the Fermi surface of the electron
and hole types opens at points G(0, 0), M(1, 1), respec-
tively, of the first Brillouin zone. Colored curves show the
distribution of partial spectral weight of quasiparticle exci-
tations in the first Brillouin zone for (a) λ = 1 (ε1), (b) λ =
2 (ε2), and (c) total spectral weight.

0

0

0

2

2

2

4

4

4

6

6

6

8

8

8

10

10

10

12

12

12

–2

–2

–2

G

G

G

G

G

G

M

M

M

X

X

X

1.2

1.2

1.8

0

0

0

(a)

(b)

(c)

E, eV

E, eV

E, eV

1.2
1.4
1.6

1.0
0.8
0.6
0.4
0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2
Figures 2–7 illustrate the variation of the electron
spectrum and the Fermi surfaces depending on the
increase of crystal field Δ. All calculations were per-
formed at T = 0 for the following set of parameters:
U = 3 eV, V = 1 eV, J = 0.7 eV, J ' = 0.3 eV, t11 = t22 =
1 eV, and t12 = t21 = 0.5 eV. For example, for Δ = 1 eV
JOURNAL OF EXPERIMENTAL AN
(see Fig. 2), the calculated band structure has an indi-
rect dielectric gap Eg, and the Fermi energy lies in the
bandgap. Here and below, the color represents the
partial spectral weight distribution

λ λσ
σ

ω = ω( , ) ( , )A k A k
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Fig. 4. (Color online) Electronic structure calculated for the HS phase at Δ = ΔC – δ, δ → 0. Left column shows dispersion of
Fermi quasiparticle excitations. Right column shows the corresponding Fermi surfaces. Colored curves show the distribution of
the partial spectral weight of quasiparticle excitations in the first Brillouin zone for (a, d) λ = 1 (ε1), (b, e) λ = 2 (ε2), and (c, f)
total spectral weight.
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of Fermi quasiparticle excitations within the first Bril-
louin zone for λ = 1 (ε1) (a), λ = 2 (ε2) (b), and total

spectral weight A(k, ω) = (k, ω) (c). Since
the system in the HS phase is considered in the para-
magnetic state and, accordingly, in the nonmagnetic
state in the LS phase, we have Aλ ↑(k, ω) = Aλ↓(k, ω)
everywhere. The horizontal red dashed line indicates

λσλ σ ,
A

JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
the position of the Fermi level. For Δ ≈ 1.64 eV (see
Fig. 3), the dielectric gap disappears (Eg = 0), and the
Fermi surface of the hole and electron types opens at
point G(0, 0), M(1, 1), respectively, of the first Brill-
ouin zone. With increasing crystal field in the HS
phase for Δ < ΔC, the Fermi surface increases, and the
overlapping of the valence band with the conduction
band, which is typical of semimetals, is observed. Fig-
YSICS  Vol. 130  No. 5  2020
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Fig. 5. (Color online) Electronic band structure calculated strictly at the crossover point for Δ = ΔC, ξ = 0. Colored curves show
the distribution of partial spectral weight of quasiparticle excitations in the first Brillouin zone for (a) λ = 1 (ε1), (b) λ = 2 (ε2),
and (c, d) total spectral weight. The dispersion relation (c) is shown separately in (d) on a magnified scale near the Fermi level
indicated by the horizontal red dashed line.
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ure 4 shows the results of calculation of the electronic
structure in the immediate vicinity of the crossover in
the HS phase at Δ = ΔC – δ, δ → 0 (the value of δ was
assumed to be 5 × 10–4 eV). However, exactly at the
crossover point at Δ = ΔC, a dielectric gap opens jump-
wise in the electron spectrum (see Fig. 5). On the right
of the crossover point in the LS phase for Δ = ΔC + δ,
δ → 0, the system abruptly passes again to the semi-
metallic state (see Fig. 6) with the structure inverse
relative to the initial band structure. Mutual inversion
of the band can clearly be seen from comparison of the
Fermi surfaces before and after the transition near ΔC

(see Figs. 4d, 4e and Figs. 6d, 6e). Here and below, the
Fermi surface is shown for the first quarter of the first
Brillouin zone. Therefore, in the absence of the spin–
orbit interaction (ξ = 0), a sharp semimetal–insula-
tor–semimetal transition typical of quantum phase
transitions with band inversion occurs between the HS
and LS states upon an increase in the crystal field
near ΔC.
JOURNAL OF EXPERIMENTAL AN
Figure 7 shows for comparison the results of calcu-
lation of the Fermi surfaces in different phases of the
HS and LS states in the vicinity of transition (upper
and lower rows, respectively) with account for the dis-
tribution of the partial and total spectral weights, as
well as the corresponding results of calculation of the
surfaces of zeros of Green function Gλσ(k, ω) and the
total Green function

of quasiparticle excitations, which coincide for σ =
±1/2 (black color). Strictly at the crossover point (Δ =
ΔC), there is no Fermi surface. Apart from the evolu-
tion of surfaces themselves upon a change in the crys-
tal field Δ near the crossover point, it can clearly be
seen that close positions of poles and zeros of the
Green function lead to a decrease in the spectral
weight of the poles. The limiting case of their superpo-
sition corresponds to their annihilation. It can also be
seen that a transition of the crystal field through the
critical value leads to a sharp change in the topology of

σ λσ
λ

ω = ω( , ) ( , )G k G k
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Fig. 6. (Color online) Electronic structure calculated for the LS phase at Δ = ΔC + δ, δ → 0. Left column shows dispersion of
Fermi quasiparticle excitations. Right column shows the corresponding Fermi surface. Colored curves are the distributions of the
partial spectral weight of quasiparticle excitations in the first Brillouin zone for (a, d) λ = 1 (ε1); (b, e) λ = 2 (ε2), and (c, f) total
spectral weight.
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the surfaces of Green function zeros, which consider-
ably affects the redistribution of the partial spectral
weight on the Fermi surface; however, the topology of
the surfaces of the Green function poles does not
change in this case. Therefore, the transition described
above occurs with a change in the topological proper-
ties, which leads to the inversion of the band structure
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
and necessitates the opening of the dielectric gap at
the transition point proper.

4. ROLE OF THE SPIN–ORBIT INTERACTION

In the presence of the spin–orbit interaction ξ,
quantum-mechanical mixing of the HS and LS states
YSICS  Vol. 130  No. 5  2020
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Fig. 7. (Color online) Fermi surface and the surface of zeros of the Green function for quasiparticles. Upper panel corresponds
to the HS phase for Δ = ΔC – δ, δ = 5 × 10–6 eV. Lower panel shows the phase of the LS state for Δ = ΔC +δ. Colored curves are
the distributions of the partial spectral weight of quasiparticle excitations for λ = 1 (ε1), λ = 2 (ε2), and total spectral weight. The
corresponding surfaces of Green function zeros for quasiparticles are shown by black curves.
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takes place, and the ground state of the system
becomes their linear combination [14]. Figure 8 shows
the dependence of the energy of terms of the HS and
LS states on crystal field Δ near ΔC in the presence of
the spin–orbit interaction with energy ξ = 0.05 eV
between them (solid black curves). The red dashed
line and the green dotted curve show for comparison
the position of terms of the HS and LS states in the
absence of the spin–orbit interaction (ξ = 0). The
solid inclined black line coinciding with the dashed
red line shows the Kramers doublet. Therefore, the
quantum phase transition induced by the sharp change
of the ground state of the system in the presence of the
spin–orbit interaction is transformed into a smooth
quantum crossover.

Figure 9 shows the results of calculation of the elec-
tronic band structure for Δ = ΔC with account for
spin–orbit interaction ξ = 0.05 eV. The band structure
is of the semimetal type. The splitting of the valence
band and the conduction band induced by the spin–
orbit interaction can be seen clearly. Since the ground
JOURNAL OF EXPERIMENTAL AN
state of the system in this case is a superposition of the
HS and LS states, the energy spectrum slightly on the
left and on the right of ΔC does not differ qualitatively
in any way from the spectrum shown in Fig. 9. There-
fore, the system can be continuously transferred
through the crossover point without sharp singularities
observed near ΔC for ξ = 0. The dielectric ground state
is unstable to the perturbation induced by the spin–
orbit interaction.

In spite of the fact that in the presence of spin–
orbit interaction ξ, the electronic band structure con-
tinuously changes during passage through the cross-
over point upon an increase in the crystal field, the
topology of the surface of zeros of the total Green
function Gσ(k, ω) still changes. Figure 10 shows for
comparison the results of calculation of the Fermi sur-
face and the surface of the full Green function zeros
for quasiparticles in the absence (ξ = 0, left column)
and in the presence (ξ = 0.05 eV, right column) of the
spin–orbit interaction. Colored curves show the dis-
tribution of the total spectral weight A(k, ω) of quasi-
D THEORETICAL PHYSICS  Vol. 130  No. 5  2020
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Fig. 8. (Color online) Dependences of the energy of terms
of the HS and LS states on crystal field Δ near ΔC in the
presence of spin–orbit interaction ξ = 0.05 eV between
them (solid black curves). Red dashed line and green dot-
ted line show the positions of terms of the HS and LS
states, respectively, in the absence of the spin–orbit inter-
action (ξ = 0).
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particle excitations. The surfaces of zeros of full Green
function Gσ(k, ω) of quasiparticles, which coincide for
σ = ±1/2, are shown by black curves. Apart of the
splitting associated with the spin–orbit interaction
between the electron and hole parts of the Fermi sur-
face and the surface of zeros, the change in the topol-
ogy of the surface of zeros near ΔC can be seen clearly.
Therefore, even in the presence of the spin–orbit
interaction leading to the quantum-mechanical mix-
ing of the HS and LS states, the topological peculiarity
in the shape variations of the surface of zeros of the full
Green function for Fermi quasiparticle is preserved.

5. DISCUSSION AND CONCLUSIONS
Spin crossover at zero temperature is a quantum

phase transition in pressure (crystal field growth) with
the topological order parameter determined by the
geometrical Berry phase, which changes abruptly by
2π at the transition point [4]. For this reason, it is
interesting to trace the variation of the band structure
during the spin crossover. In the framework of the
two-band Hubbard model considered for a simple 2D
square lattice, a semimetal–insulator–semimetal
transition has been detected in the electron system
with spin crossover upon an increase in the crystal
field during the transition from the HS phase to the
phase of the LS state. The abrupt opening of the
dielectric gap in the electron excitation spectrum at
the crossover point is associated with the band struc-
ture inversion, i.e., jumpwise redistribution of the par-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
tial spectral weight of quasiparticle excitations
between the electron and hole regions of the Fermi
surface and a change in the topology of the surface of
zeros of the Green function for quasiparticle exci-
tations. It should be noted that simultaneous analysis
of the surfaces of zeros and poles of the Green function
at the Fermi level makes it possible to trace the topo-
logical changes in the electronic structure at the spin
crossover point more accurately and reflects the
essence of the method based on analysis of topological
invariants [15].

We have considered the results of calculation of the
electronic structure with account for the nondiagonal
component of the spin–orbit interaction leading to the
quantum-mechanical mixing of the HS and LS states
and to a smooth variation of the ground state of the
system upon an increase in the crystal field. It is shown
that even in the presence of the spin–orbit interaction,
a topological singularity was observed in the change of
the shape of the surface of zeros of the full Green func-
tion for Fermi quasiparticle excitations. All calcula-
tions were performed for the paramagnetic HS state in
the absence of magnetic ordering. However, in the
presence of the cooperative superexchange interaction

, the system exhibits again a sharp change in the
ground magnetically ordered HS (antiferromagnetic
or ferromagnetic) state to the nonmagnetic LS state if
z  > ξ, where z is the number of the nearest neighbors,
but now for Δ > ΔC [16–19]. Therefore, despite the
spin–orbit interaction, a sharp rearrangement of the
electron spectrum occurs at the spin crossover point
with a change in the topology of the Fermi surface and
the surface of the Green function zeros. The calcula-
tion of the electronic band structure with allowance
for the antiferromagnetic order is the subject of sepa-
rate analysis.

Since the semimetallic HS and LS phases can be
spatially separated, and their electronic band struc-
tures in the absence of the spin–orbit interaction can-
not be transformed into each other continuously
(without discontinuities), it can be proposed that the
dielectric state can be formed at the interface between
two phases analogously to the formation of the metal
state at the interface between two dielectrics with a
topologically nontrivial band structure. For this rea-
son, concluding this section, we endeavor to consider
in general the possibility of existence of a dielectric
state at the interface between arbitrary semimetallic
media with mutually inverted bands at the inverse
contact on the basis of the model example of the cor-
related system with spin crossover given in this study.
For this purpose, we recollect that topological elec-
tronic states were predicted by Volkov and Pankratov
[20] as the boundary states at the inverse contact
between semiconductors with mutually inverted bands
(with opposite signs of the bandgap). This turned out
to be a predecessor of a new quantum type of matter.
Moreover, Pb1 – xSnxTex semiconductor compounds
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Fig. 9. (Color online) Electronic structure calculated strictly at the crossover point for Δ = ΔC in the presence of spin–orbit inter-
action ξ = 0.05 eV. Left column shows dispersion of Fermi quasiparticle excitations. Right column shows the corresponding
Fermi surfaces. Colored curves are the distributions of the partial spectral weight of quasiparticle excitations for (a, d) λ = 1 (ε1),
(b, e) λ = 2 (ε2), and (c, f) total spectral weight.
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with band inversion, which were considered in [20] as
the model system, in fact proved to be topological
insulators [21]. It has become clear later that there is
no need to synthesize an inverse contact to observe the
Weyl states. The contact with vacuum, i.e., the exis-
tence of a surface, is sufficient. Since the SnTe
“inverted” semiconductor is itself a topological insu-
JOURNAL OF EXPERIMENTAL AN
lator, the Weyl states always exist on its surface. Their
topological stability is guaranteed by the crystal sym-
metry [22]. The model considered in [20] turned out
to be the first example of a topological insulator,
while the inverse contact served as an example of a
topologically nontrivial interface [23]. Following
[20], we propose the possibility of existence of a
D THEORETICAL PHYSICS  Vol. 130  No. 5  2020
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Fig. 10. (Color online) Fermi surface and the surface of Green function zeros for quasiparticles. Upper panel corresponds to the
HS phase for Δ = ΔC – δ, δ = 5 × 10–6 eV. Lower panel shows the phase of the LS state for Δ = ΔC +δ. Middle panel corresponds
to Δ = ΔC. Colored curves are the distributions of the total spectral weight of quasiparticle excitations in the absence of the spin–
orbit interaction (ξ = 0) and in the presence of the spin–orbit interaction (ξ = 0.05). The corresponding surface of zeros of Green
function Gσ(k, ω) of quasiparticles, which coincide for σ = ±1/2, are shown by black curves.
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dielectric surface state in heterostructures based on
semimetals with an inversion of the electronic band
structure similar to that described in this article in
contrast to the existence of a metal state at the inter-
face between two dielectrics with a topologically
nontrivial band structure.
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