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Abstract—On the basis of the earlier developed statistical theory of the growth of the effective size of cor-
related clusters (the number of correlated spins), an expression for the shape of the multiple-quantum (MQ)
NMR spectrum is obtained that takes into account the loss of coherence in a spin system due, for example,
to the controlled intervention of the experimenter. It is shown that the scrambling and decoherence processes
in the MQ spectrum of the multiparticle system of a solid are not separated, unlike the corresponding spectra
of some large isolated molecules [27] in a solution. The relations obtained allow one to extract the necessary
information about the above processes (scrambling and decoherence) from the dependence of the MQ spec-
tra on experimental parameters.

DOI: 10.1134/S1063776120060096

1. INTRODUCTION
The dynamic behavior of multispin multiple-quan-

tum (MQ) coherences arising upon exposure of the
nuclear spin subsystem of a substance in the con-
densed phase to a sequence of rf pulses underlies MQ
NMR spectroscopy [1].

On the one hand, MQ NMR is a powerful and
often indispensible tool for studying clusters and local
structures arranged, for example, on surfaces [2], in
liquid crystals [3], nanosized cavities [4], etc. On the
other hand, the improvement of MQ spectroscopy
methods made it possible to study experimentally the
time evolution of multispin correlations through the
observation of emerging coherent states with the use of
MQ NMR methods [5–10]. The development and
propagation of multiparticle correlations is of funda-
mental interest for the statistical mechanics of irre-
versible processes [11]. In addition, multiparticle spin
correlations may serve as a “quantum register” (see,
for example, [5–9]) for quantum computations.

Coherent states prepared in a nuclear spin system
can be controlled by sequences of rf pulses by initiating
various processes, for example, the processing of
quantum information when implementing quantum
algorithms.

In MQ spectroscopy, initially localized quantum
information is redistributed over a multiparticle sys-
tem, involving (generally speaking) all particles, and is
accompanied by the appearance of various, in partic-
ular, nonlocal correlations. Thus, using the above cor-

relations, one can create a register of a quantum com-
puter. The process of reversible redistribution of quan-
tum information (scrambling) over multiparticle
correlations is usually accompanied by irreversible
(although, as a rule, partial) disturbances in the trans-
mission process. These disturbances are called loss of
coherence (decoherence), and they can be caused by
various factors. In particular, decoherence can be
caused by imperfections of the measurement equip-
ment. Thus, actually, two processes compete in the
dynamics of MQ coherences: the development of
complex time correlation functions (TCFs) that
reflect the development of the above coherences, and
their damage (or total decay) due to decoherence pro-
cesses.

To study scrambling and to determine its rate, etc.,
four-particle out-of-time-ordered correlation (OTOC)
TCFs are used [12–15]. These TCFs, associated with
information entropy, contain specific information
about the most intimate processes in a multiparticle
system, for example, about multiparticle entangle-
ment, localization in a many-body system, develop-
ment of chaos, and so on, up to some aspects of black
hole physics (see, for example, [14]).

Since both of these processes are very important for
modern condensed matter physics and quantum
informatics, it is not at all surprising that the most seri-
ous efforts have been made to study them both theo-
retically and experimentally in various multiparticle
systems. The possibilities of separating the effects of
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these processes on a system have also been investi-
gated.

It should be noted that the experimental study of
MQ NMR in multispin systems has a number of nota-
ble advantages over other multiparticle systems, such
as, for example, ultracold neutral atoms [16] or
trapped ions [17]. The point is that the (naturally aris-
ing) TCFs used in MQ spectroscopy belong to the
class of OTOCs. These are four-particle TCFs that
contain (by definition) a time-reversed stage of evolu-
tion. It is worth noting that, among the set of different
four-particle TCFs, the second moment of the MQ
NMR spectrum plays a very significant role [10, 18],
which is due to two circumstances. The value of this
moment determines the lower bound [19, 20] of the
Fisher criterion for quantum information, which rep-
resents a measure of entanglement. In addition, the
second moment of the MQ spectrum is a quantity that
is directly measured in the experiment and therefore
allows one to experimentally determine the corre-
sponding OTOC TCF [15]. These properties of the
second moment hold only when recording an undis-
torted MQ spectrum. Processes causing loss of coher-
ence distort the shape of the MQ spectrum; therefore,
the study of these processes is very important for a cor-
responding method for measuring the propagation of
quantum information.

To study the processes of decoherence, in [8], the
authors significantly modified for the first time the
standard MQ NMR technique [21]. The declared pur-
pose of the modification was to investigate the ques-
tion, “How far can quantum information be transmit-
ted in the presence of gates of finite (and controlled by
the experimenter) precision?” In other words, the
authors investigated the question of how large can a
cluster of correlated spins grow under such conditions.
In this regard, the authors of [8, 22] observed the
growth of clusters of correlated spins by introducing a
controlled perturbation into the Hamiltonian creating
these clusters. As suggested in [8, 22], the maximum
cluster size in such a situation is limited, and the max-
imum-size clusters are in dynamic equilibrium with
the environment. If the initial cluster size is larger than
its equilibrium value, it decreases under the action of
the perturbing Hamiltonian, while the unperturbed
Hamiltonian only leads to unbounded growth of the
cluster size. The equilibrium cluster size, according to
the authors, decreases with increasing perturbation
intensity. According to the conception of the articles
[8, 22], all the above means the process of Anderson
localization [23].

However, in [24, 25], based on the previously
developed theory of the growth of correlated clusters
under ideal conditions [10] and the theory of relax-
ation of MQ coherences [26], we explained the change
in the intensity profile of MQ coherences observed in
[8] and showed that the stabilization of the latter with
increasing time is not related to the stabilization of the
JOURNAL OF EXPERIMENTAL AN
cluster size. On the contrary, a cluster of correlated
spins grows monotonically, while the observed
changes in the intensity profile (of the MQ spectrum)
and its stabilization are due to the dependence of the
decay rate of MQ coherence on its order (its position
in the MQ spectrum).

Recently, in [27], the authors proposed a scheme of
experiment that would allow, according to them, sep-
aration of the decoherence and scrambling processes.
The operation of the scheme was demonstrated in an
NMR experiment on specific star-shaped molecules
of P(OCH2CF3)3 (complete ester of phosphorous acid
and 2,2,2-trif luoroethanol). The system contains one
spin of phosphorus 31P, six protons 1H, and nine 19F
spins. The phosphorus nucleus is the central spin
(qubit), and the nuclei of hydrogen and fluorine form,
respectively, the second and the third layers, due to
which (when they are coupled to phosphorus by pulse
sequences) scrambling and decoherence processes
occur. Each of the three branches of the system con-
tains two protons and three f luorine nuclei. This
“structure” was placed in a deuterated solution. The
role of the dipole–dipole interaction was played by the
scalar exchange (through electron shells) interaction.

The presence of three types of nuclei necessitates
the exposure of the sample to a rather specific
sequence of rf pulses at different frequencies (see
Fig. 4 in [27]). Nonetheless, actually the experiment
can be described as follows. While the loss of coher-
ence occurs during the entire fixed mixing time T, the
scrambling interval t was regulated in the preparatory
period by setting the duration of the intervals of for-
ward and backward evolution (by the direct evolution
of the system and its reconstruction during time rever-
sal): (T + t)/2 and (T – t)/2, respectively.

The loss of coherence in the new experimental
scheme proposed in [27] has not been previously con-
sidered in solid state NMR. The analysis of this pro-
cess, which is important for studying the dynamics of
quantum information by the MQ NMR method, is the
goal of the present work.

2. DYNAMICS OF MQ COHERENCES
IN SOLIDS

As is known [28], the main factor responsible for
the broadening of NMR lines in nonmetallic diamag-
netic solids is the secular part of the internuclear
dipole–dipole interactions, which completely deter-
mines the dynamics of the nuclear spin system:
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REVERSIBLE AND IRREVERSIBLE PROPAGATION 275
where

rij is the vector connecting the spins i and j, θij is the
angle formed by the vector rij with the external static
magnetic field, γ is the gyromagnetic ratio, and Sαi is
the α-component (α = z, +, –) of the vector spin
operator at site i. Henceforth, energy is expressed in
frequency units.

Usually, when using pulsed NMR methods in a
solid, the basic Hamiltonian (1) is transformed by spin
alchemy (various sequences of rf pulses) into other
Hamiltonians that are of interest to the researcher [29].
For example, in traditional MQ NMR spectroscopy,
the original Hamiltonian is transformed into a two-
spin/two-quantum effective Hamiltonian [21, 30]:

(2)

which is nonsecular with respect to a strong external
magnetic field. Under this Hamiltonian, during the so-
called preparatory period of length t, the original mag-
netization is transformed into various TCFs of a rather
complex structure that depend on the product of differ-
ent numbers of spin operators Q, called clusters. In
other words, the equilibrium high-temperature density
matrix in a strong static magnetic field of the form [28]

(here k is the Boltzmann constant, T temperature, and
N is the total number of spins in the sample) turns into
a nonequilibrium density matrix, which can be conve-
niently represented as the sum of off-diagonal ele-
ments ρM with a certain difference M of magnetic
quantum numbers, called multiple-quantum coher-
ences (M being the coherence order):

(3)

where |QMp{i} is the basis operator in which Q single-
spin operators form a product that couples Zeeman
states differing by M units and {i} are the numbers of
crystal lattice sites occupied by this cluster. Thus, {i} is
actually a multi-index. Summation over {i} implies
summation both over a set of clusters and over a set of
spins within each cluster. The expression under sum-
mation depends only on the differences of the coordi-
nates specified by it. Thus, the dependence on one of
the coordinates is missing. Setting this coordinate to
be arbitrary, we find that the summed expression
decays fast enough with respect to other coordinates.
Here a cluster is given by a group of spins for which the
summed expression is not negligible. The index p
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numbers different basis states with the same values of
Q and M, and N is the total number of spins in the sys-
tem. The coherences arising during the preparation
time t are labeled by the phase shift ϕ [21, 30]. The
resulting phase shift is proportional to Mϕ, where M is
an integer. Thus, Q-spin correlations are also distin-
guished by the number of quanta (M ≤ Q) [1, 21, 30].
Further, in many experiments of interest, these coher-
ences relax over a time period td under the secular
dipole–dipole Hamiltonian (1). The free evolution
period is followed by a mixing period, during which a
new pulse sequence is applied to the system, which
reverses the sign of the effective Hamiltonian (2);
thus, a time reversal is performed [21, 30], owing to
which the order is again returned to the observable—
the single-quantum longitudinal magnetization. This
magnetization can be measured with the use of a π/2
pulse, which turns the magnetization into a plane per-
pendicular to the external magnetic field. The ampli-
tude of the partial (for a given value of M) magnetiza-
tion is extracted using the Fourier transformation with
respect to the variable ϕ. To determine the relaxation
rate, one should repeat the experiment many times for
different values of td [5–7].

It should be specially noted that the observation of
MQ coherence signals is possible only under certain
conditions, due to which all contributions to the
coherence of a given order appear (after a recovery
(mixing) period) with the same phase [21]. In view of
the fundamental importance of this circumstance, we
discuss this aspect of MQ spectroscopy in detail.

The amplitude and phase of partial magnetization
is completely determined by the history of the devel-
opment of the spin system. Thus, if, during the prepa-
ratory period, the development of the system occurs
under the Hamiltonian (2) (the corresponding propa-
gator is U(t) = exp(–iHefft)), while, during the mixing
period, the development occurs under a certain, gen-
erally speaking, different Hamiltonian  (the corre-
sponding propagator is V(τ) = exp(–i τ)), then the
total magnetization amplitude is described by the
expression [21]

Here Sz is the z component the vector operator of
the total spin of the system.

Let us calculate the trace of this expression in the
basis of eigenfunctions of the secular dipole–dipole
Hamiltonian (1), denoting them by |i and |j. Writing
the complex matrix elements in the form
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we obtain

Here ωi and ωj are the eigenvalues (in frequency
units) of the Hamiltonian (1). It follows from the
above that if the Hamiltonians controlling the evolu-
tion of the spin system during the preparatory period
and the mixing period are different, then the MQ
coherences created in the preparatory period will
undergo only an additional transformation during the
mixing period. If the operator controlling the evolu-
tion of the system during the mixing period is con-
structed so that V+(τ) = U(t), or it differs from U(t)
only by a phase factor ϕ, i.e.,

(it is this situation that is realized by time reversal), the
observed signal takes the form of a Fourier series with
respect to coherences of different orders [21]:

Thus, in the above-described evolution of events,
each partial coherence includes contributions from all
coherences of a given order, differing in phase by ±ϕ
from the neighboring ones.

Following the simplest statistical model [21, 30], in
the experiment one usually uses a Gaussian form for
the distribution of coherences of various (small) orders
in the MQ spectrum:

(4)

Notice that, as shown in [31], for large values of the
order M, the distribution in formula (4) becomes
exponential. The variance of the distribution in the
statistical model (K(t)/2) is determined by the average
number of spins K(t) between which a dynamic cor-
relation was established due to the interaction (2)
during the preparation time t. This number, called the
number of correlated spins, or the effective cluster
size, increases with increasing preparation time t.

In the traditional scheme of MQ NMR, one
observes the TCF

(5)
where U(t) is the evolution operator with the Hamilto-
nian Heff = HDQ from (2) and Uϕ = exp(iϕSz) is the
operator of rotation through angle ϕ about the z axis.
We introduced a notation τ for the evolution with
“reversed time” (with the Hamiltonian HDQ). Under
experimental conditions, τ = t. Rotation about the
corresponding axis through angle ϕ marks and distin-
guishes TCFs corresponding to coherences of different
orders M, which are determined by the difference of
magnetic quantum numbers. The full spectrum of MQ
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NMR can be obtained by the Fourier transformation
of TCF (5) with respect to the variable ϕ.

In the new scheme of experiment proposed in [27],
the evolution operator in the preparatory period is
realized by replacing the unitary operator U(t) by a
composite operator, which corresponds in the experi-
ment to the reversal of evolution in the time interval
[(T + t)/2, T]:

(6)

Note that such a scheme was used in the funda-
mental work on MQ NMR [21] to experimentally
illustrate the changes in MQ coherences and the
decrease in the number of correlated spins during time
reversal. Without decoherence, UT(t) = U(t), and one
observes the same MQ spectrum.

To correlate the methods of [8] and [27], we rewrite
the evolution operator with controlled loss of coher-
ence from [8], taking into account formula (6). To
control the loss of coherence in [8] in the preparatory
period [0, t], the authors created the effective Hamil-
tonian

(7)

where p is a small parameter, which controls decoher-
ence. To explicitly take into account the loss of coher-
ence, we set

(8)

with p ≠ 0 and UT(t) ≠ U(t). Thus, we transform the
experimental scheme of [27] so that it can be applied
to simpler and traditional spin systems, such as, for
example, adamantane, which was used in [8, 22].

3. LOSS OF COHERENCE IN THE SYSTEM 
AND ITS EFFECT ON THE MQ SPECTRUM

To assess the effect of decoherence, we consider
the dynamics of the system when it is acted upon by
the unitary operator from formula (8). Due to the
interaction HDQ, the cluster size K of the correlated
spins (the number of spins in the cluster) first
increases in the interval [0, (T + t)/2] and then, in the
interval [(T + t)/2, T], decreases, as shown schemati-
cally in the Fig. 1.

Before analyzing the general case corresponding to
the figure, we consider a simpler situation, which was
investigated earlier, and briefly outline the main fea-
tures. Suppose that a cluster of K spin operators with
coherence order M is formed, and let K and M remain
unchanged in what follows, while the dynamics of the
system is determined by the Hamiltonian pHd. This
case was investigated experimentally (for p = 1) in [5–
7] and theoretically in [26]. In [26], the authors
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Fig. 1. Schematic dependence of the average size K(t′) of a
cluster of correlated spins on current time t′ in the prepara-
tory period with composite evolution operator (6). The
dashed line marks the evolution interval [0, t] correspond-
ing to the standard operator U(t).

0 t (T + t)/2 T

K

obtained the following expression for the decay of this
coherent state:

(9)

where A2 = p2 , B2 = p2 , and  and  are some
constants determined by the field arising due to the
dipole–dipole interaction of the spins surrounding the
cluster in the lattice with the spins of the cluster. These
constants are directly related to the lattice sums of the
coefficients bij of Hamiltonian (1). In this case, the
parameter B2 characterizes the uncorrelated contribu-
tion to the local field on each of the spins, independent
of the contributions on other spins. The parameter A2

characterizes the average field that acts in a correlated
manner on all spins of the cluster [24, 26]. Note that
the formula can be generalized to the case when the
spins of the cluster are acted upon by an additional
inhomogeneous (for example, external, created by the
apparatus) magnetic field having two different, local
and nonlocal, components. If the contributions to this
field are described by Gaussian distributions with vari-
ances Wloc and Wav, then the corresponding contribu-

tions can be added to the constants: A2 = p2  + ,
B2 = p2  + .

Let us return to the general case shown in Fig. 1. As
the current time t′ increases, the number K(t′) of spin
operators in the cluster changes. The operators associ-
ated with the cluster on each interval [t′ – Δt, t' + Δt/2]
will relax with their own time td in formula (9), which
depends on t′. The number of such operators is
ΔtdK/dt'. Summing up the contributions from differ-
ent intervals and letting Δt go to zero, we obtain the
following expression for the first factor in formula (9):

(10)

The spins that appear in the cluster in the interval
[0, t] (they correspond to certain operators in TCFs)
will relax until time T. Therefore, td(t') = (T – t') in this
interval. The spins that appear in the interval [t, (T +
t)/2] will relax only until they disappear. For these
spins, td(t′) = 2[(T + t)/2 – t']. Separating these two
intervals in formula (10), we obtain

(11)

To complete the calculations, we should specify the
dependence of the average size of the cluster of cor-
related spins on the preparation time in formula (11).
This dependence is determined by the properties of
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the spin system and, in particular, depends on the
dimension of the space. In accordance with the earlier
developed theory [10], in three-dimensional lattices,
one should expect an exponential time dependence,
while, in one-dimensional lattices, a linear depen-
dence. Indeed, a linear dependence was observed in
the quasi-one-dimensional system of f luorapatite
[32], while, in three-dimensional adamantane, a sig-
nificantly faster growth was observed [5, 8, 22], which
is well described by an exponential function [10, 24,
25, 33].

For the exponential growth of the average number
of correlated spins, K(t′) = exp(at'), the integration in
(11) yields

(12)

In the two limiting cases, we obtain

(13)

for aT ≪ 1 and

(14)

for aT ≫ 1.
The second factor in (9) determines the depen-

dence of the relaxation time on the coherence order
M. It is the clusters with order M at the end of the pre-
paratory period (at time T), marked by the phase fac-
tor exp(iMϕ), that contribute to the corresponding
component of the MQ spectrum. The change of the
cluster size in the preparatory period is accompanied
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by a change in the order of coherence with time, M(t′).
In the ideal case of p = 0, this change does not affect
the final result. In the general case shown in Fig. 1, we
write the second factor in the form that follows from
the theory of [26]:

(15)

This expression should be averaged over all possible
trajectories of change in M(t′) with a given value of M
at time T. It is clear that M(t′) will grow in the interval
[0, (T + t)/2], while, in the interval [(T + t)/2, T], it

will decrease or keep the value of M. In [24], we pro-
posed a simple technique for an adequate estimate.
Assuming that a coherence of given order M in a grow-
ing cluster appears at a random time t′ and does not
change further, we obtain

(16)

where (T – t')2 is the average over the occurrence
time t' of coherence in the interval [0, (T + t)/2],
which is characterized by the probability density R(t′):

(17)

After averaging, we find

(18)

In particular, if aT ≫ 1, then

(19)

After substituting (18) into (16), we obtain the
sought expression for FM(T, t).

For the linear growth of the average cluster size,
K(t') = mt', in the same way we find

(20)

(21)

Finally, taking into account decoherence, for the
MQ NMR spectrum we find

(22)

Here, FK(T, t) defines a decrease in the total inten-
sity of the MQ spectrum, and FM(T, t) defines a
change in the shape of the MQ spectrum due to the
loss of coherence. Both FK(T, t) and FM(T, t) depend on
the available time parameters T and t in a rather compli-
cated way; hence, the two processes, scrambling and
decoherence, are not separated, as observed for a large
isolated molecule under the conditions of [27].

The final formula (22) is obtained for the condi-
tions of the MQ experiments of [8], when the interval
of free evolution between the preparatory period and
the mixing period is minimal. If this interval td
increases [5–7], an additional loss of coherence
occurs under the secular dipole–dipole interaction.
To take this loss into account, according to the results
of [26], we should additionally multiply the right-hand
side of formula (22) by two factors given in formula
(9), which, however, should be taken with coefficients
A1 and B1 (that is, for p = 1).

Since decoherence has changed the shape of the
MQ spectrum, the value of its second moment is also
changed. From formula (22) we obtain the following
expression for the effective average cluster size associ-
ated with this moment:

These changes should be taken into account in the
method, proposed in [15], for measuring OTOC func-
tions through the second moment of the MQ spec-
trum.

Finally, note that, in a number of works, the
authors present arguments in favor of the exponential
(rather than Gaussian) profile of MQ coherences (see,
for example, [4, 31]). For this shape of the spectrum,
the exponent in (22) is described by the expression
|M|/K(t); however, the description of the effect of
decoherence is not qualitatively changed in this case.
A quantitative result for the effective average cluster
size can be obtained numerically, by the e-fold relax-
ation of the MQ spectrum [24, 25]. Our calculations of
the change in the spectrum, performed in [25], when
the Gaussian profile was changed to the exponential
under the conditions of the MQ experiments of [8],
demonstrated that the effect of this modification is
negligible.

4. CONCLUSIONS
As a rule, in the literature devoted to the theoretical

studies of four-particle OTOC TCFs, the authors use
numerical calculations for some sufficiently simple
model Hamiltonians, which, of course, is caused by
the complexity of the general problem of calculating
the corresponding TCF:

(23)

Here V(0) and W(0) are two commuting operators,
and the time dependence is determined by a unitary
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operator with the system Hamiltonian in the expo-
nent. The angle brackets …β denote the statistical
mean (see, for example, [19]).

In [10], we analytically demonstrated that, for
three-dimensional nuclear spin systems with secular
dipole-dipole interaction (1) (or with effective two-
quantum interaction (2)) at high temperatures, the
OTOC TCF, which in this case represents the second
moment of MQ NMR and determines the number of
correlated spins, grows exponentially with time. The
latter means that all nuclear spins of the sample would
be instantly correlated if there were no destructive
decoherence processes. In the present work, on the
basis of the previously developed statistical theory of
MQ NMR spectra [24–26], we have obtained expres-
sions for the MQ NMR spectrum of a multispin sys-
tem with regard to decoherence processes. We have
shown that the scrambling and decoherence processes
are not separated, at least in a multispin system, due to
their entangled time dependence (see formula (22)).
Nevertheless, the relations obtained allow the
extraction of the necessary information about these
processes from the experimental dependence on the
corresponding time parameters T and t.
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