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Abstract—We propose a method for calculating the electronic band structure of disordered systems with
strong electron correlations. Various approaches to the description of electrical conductivity of disordered
systems are considered. Calculations are based on determining the one-particle Green function of the system,
which is averaged over different configurations of a cluster, on the Boltzmann formalism, and the Kubo linear
response theory. As the basic model, we use the Hubbard model for an A1 – xBx binary alloy.

DOI: 10.1134/S1063776120100131

1. INTRODUCTION
Advances in the study of various properties of dis-

ordered systems (alloys, solid solutions, amorphous
metals, semiconductors, and so on) are due to the
development of their electronic theory. A large num-
ber of publications are devoted to analysis of spectral
characteristics of disordered systems [1–3]. Various
methods have been worked out for calculating the
configuration-averaged Green function of the system.
Considerable efforts have been made to generalize the
coherent potential approximation, which is the best
single-site approximation for describing the properties
of various alloys. However, in this method, statistical
interatomic correlations cannot be taken into account.
To account for correlations determined by multiple
scattering of electrons from different lattice sites or the
existence of a short-range order in the arrangement of
atoms, it is necessary to exceed the limits of the single-
site approximation. A large number of publications are
devoted to this problem (for example, cluster general-
izations of the coherent potential approximation,
which are based on analysis of a single cluster in an
effective medium [1] and “traveling-cluster” approxi-
mation [4]). In [5–7], a method was developed for
accounting for statistical correlations based on the
cluster expansion for one- and two-particle Green’s
functions that determine the electron energy spectrum
and electrical conductivity of alloys. The topicality of
such a problem is dictated, for example, by the need in
study of the rearrangement of the electron spectrum
during ordering of alloy, which has been predicted ear-
lier [8, 9], when a gap in the electron spectrum appears

at energies corresponding to the Brillouin zone
boundary of an ordered alloy. In this case, the behav-
ior of the alloy conductivity for long-range ordering
substantially depends on the position of the Fermi
level relative to the gap being formed. It was proposed
in [8, 9] that a metal–insulator transition can occur in
the case when the Fermi level gets into the region of
such a gap.

Kinetic characteristics of disordered systems have
been studied intensely in recent years (among other
things, in connection with analysis of the Anderson
transition [10]). The most consistent theory used in
these studies is the “weak localization” theory [11, 12],
which makes it possible to consider small effects pre-
ceding localization and emerging in the conducting
state with the help of perturbation theory. We are
speaking of the Kubo theory of linear reaction for elec-
trons interacting with impurities, which is constructed
in terms of one-particle Green’s functions calculated
in the self-consistent Born approximation. In the case
of a degenerate electron gas (which is mainly consid-
ered in the literature), the small parameter of the the-
ory is quantity λ = /EFτ (EF is the Fermi energy and
τ is the electron relaxation time associated with elastic
scattering by impurities). Therefore, for λ ≪ 1, scatter-
ing is weak and does not lead to strong changes in one-
particle properties (electron density of states),
although the inclusion of quantum corrections in λ to
the conductivity is sufficient for the emergence of
weak localization effects [13]. It is necessary to
develop a consistent theory, which would be valid for
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Fig. 1. Fragment of a crystal lattice with fully disordered
(random) distribution of ions A and B. Dashed rectangle
marks the cluster boundaries.
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strong scattering also, when one-particle properties of
the system may change significantly.

The theory of electrical conduction of disordered
system with strong electron correlations is at the stage
of development. New approaches to the description of
the conductivity of systems with strong electron cor-
relations have become especially topical after the dis-
covery of spin-dependent transport, which has wide
prospect of application in microelectronics [14–16].

In this study, we propose a method for calculating
the electronic band structure of disordered systems
with strong electron correlations using the cluster
approach that has become very popular in recent years
[17, 18]. The advantage of this approach is direct
accounting for electron correlations as well as short-
range magnetic and structural orderings that play a
significant role in the description of low-dimensional
magnetic systems and various alloys. The structure of
the cluster theory has two main stages of constructing
the solution: (i) the choice of the cluster and the deter-
mination of its multielectron eigenstates by the exact
diagonalization method and (ii) the calculation of
thermodynamics quantities and their averaging over
disorder, viz., cluster configurations with different
arrangements of ions. As the basic model, we use the
Hubbard model for a binary A1 – xBx alloy. We consider
various approaches to the description of the electrical
conductivity of disordered systems, which are based
on the calculation of the one-particle Green function
of the system, averaged over various configurations,
the Boltzmann formalism, and the Kubo theory of lin-
ear response.

2. MINIMAL MODEL AND METHOD

In this study, we confine our analysis to a simple
2D square lattice of binary alloy A1 – xBx. The results of
calculation of the electronic structure will be given for
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x = 0.5; however, the approach considered here can be
used for any concentration x (0 ≤ x ≤ 1). Let us first
consider the completely disordered case when A and B
ions are distributed at random among crystal lattice
sites and then consider the possibility of accounting
for the short-range order and the arrangement of A
and B species of ions. The model Hamiltonian in the
general form can be written as

(1)

where  and ai, σ are the creation and annihilation
operators for the electron with spin projection σ = ↑,
↓ at the ith crystal lattice site and ni, σ = ai, σ is the
operator of the number of electrons with spin projec-
tion σ (  = –σ). In accordance with the Pauli princi-
ple, one site can accommodate not more than two
electrons with opposite projection of spin σ. In Ham-
iltonian (1), εi is the energy of the electron at the ith
site. Energy εi assumes the value of εA with a probabil-
ity of 1 – x and εi = εA + Δ with probability x. In other
words, εi = εA if site i is occupied by an ion of species A
and εi = εA + Δ if site i belongs to a type-B ion. For
convenience, we will henceforth assume that energy εA
equals zero. Quantity tij is the integral of hopping from
site j to site i (tij = tA if i, j ∈ A; tij = tB if i, j ∈ B, and
tij = tAB is i ∈ A, j ∈ B, and vice versa). Quantity Ui is
the Coulomb interaction parameter at site i (Ui = UA if
i ∈ A and Ui = UB if i ∈ B). Hamiltonian (1) does not
possess translation invariance; therefore, correlation
functions K(ω, r1, r2) depend on the arrangement of
atoms and, hence, on both coordinates r1 and r2 and not
only on their difference. However, the system is transla-
tion-invariant overall; therefore, the correlator averaged
over disorder must depend on difference r1 – r2:

Figure 1 shows a fragment of the crystal lattice with
fully disordered (random) distribution of atoms. In the
lattice, we choose a cluster of size Nc × Nc (dashed
rectangle in Fig. 1) so that approximate ratio NA/NB ≈
(1 – x)/x holds, where NA and NB is the numbers of A
and B ions in the cluster. Forming a superlattice from
such clusters, one can simulate disorder in the system;
in this case, averaging over disorder corresponds to
averaging over an ensemble of such superlattices with
different configurations of ions in a cluster. However,
mean value of ions NA = 1 – x and NB = x remains
unchanged.

Let us consider a disordered binary alloy in the
absence of the electron–electron interaction (Ui = 0).
The calculation procedure includes the calculation of
the complete set of eigenvalues and eigenstates of
Hamiltonian  of the cluster in the grand canonical
ensemble by the exact diagonalization method (  →
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Fig. 2. Fragments of a crystal lattice with a random distribution of (a) electrons with spin projection σ = ↑, ↓, “zeros” and “twos”
for the single-band Hubbard model and (b) magnetic impurities in Kondo alloys. Dashed rectangles mark the cluster boundaries.
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 =  – μ ) with average number of electrons
  = Ne, where  is the number-of-particle opera-
tor, and the evaluation of quantum-statistical mean
values averaged over disorder corresponds to different
configurations of the cluster. It is convenient to per-
form calculations using the approach described by
Dagotto [19, 20]. Here, we only briefly describe the
main ideas as applied to our problem, referring the
reader to original publications [19, 20] for additional
explanation and details. The main idea is that for the
matrix representation of operator , the following
basis of one-electron states is used:

where L = Nc × Nc. In this case, various random con-
figurations of the cluster with mean number of elec-
trons   = Ne satisfying condition NA/NB ≈ (1 – x)/x
are generated (see above).

We can generalize the proposed method to the gen-
eral case of systems with strong electron correlations
and take into account, instead of the random distribu-
tion of A and B ions, the random distribution of elec-
trons with spin projection σ = ↑, ↓, “zeros,” and
“twos” (so-called states with zero and two electrons
per crystal lattice sites). By way of example, Fig. 2a
shows one of possible configurations of distribution of
electrons with spin projection σ = ↑, ↓ in the cluster
for the single-band Hubbard model in the absence of
ionic disorder. The approach considered here can also
be generalized and used for describing the Kondo lat-
tices (Fig. 2b) with magnetic impurities (or in the
Shubin–Vonsovsky s–d exchange model in which
perturbation theory is known to be inapplicable to
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analysis of a weak interaction of conduction electrons
with the localized moment of the impurity) as well as
system with the strong electron–phonon interaction.

Using unitary transformation U, we can reduce the
matrix of operator  to diagonal form:

where E1, E2, …, E2L are the eigenvalues of operator .
The proper basis of operator  can be written as

Here,

jσ = (j, σ), and m runs through values from 1 to 2L. The
quantum-statistical mean of operator  for the given
electron and ion configurations of a cluster can be
written in form

where

is the partition function for the given cluster and β =
1/kBT. For  = ai, σ , static Green function Gi, j, σ, σ' =

ai, σ  has form
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Since

we obtain

Using the Wick theorem, more complex two-parti-
cle correlators can be expressed in terms of one-parti-
cle Green’s functions:

Time-dependent observable quantities can be cal-
culated using two-time Green’s functions

where

It should be noted that operator  has a diagonal
form in the same basis {  |0} as operator ; there-
fore, we can show that

where aν = aν, ↑ if ν ≤ L and aν = aν – L, ↓ if ν > L; ρλ are
the eigenvalues of operator , and Eλ = ρλ – μ. Sub-
stituting this expression into the definition of time-
dependent Green’s functions, we obtain

The retarded Green function can be defined as

where

Using the expressions for (t) and (t), we
can finally obtain the cluster retarded Green function
in terms of the eigenvalues and eigenvectors of opera-
tor :
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(2)

Here, letter P in front of the first sum indicates cal-
culation in the sense of the principal value.

The electronic structure is calculated using the
cluster perturbation theory [17, 18]. There exist many
modifications of this theory (for example, the cluster
perturbation theory in the representation of the Hub-
bard operators [21, 22]), but the main idea of this clus-
ter approach is the same. It involves the division of the
lattice into clusters of a certain size, exact diagonaliza-
tion in an individual cluster, and inclusion of the inter-
action between clusters using perturbation theory.

The hopping matrix can be written in form

where  is the hopping matrix within a cluster and Tfi, gj
is the residue responsible for intercluster hopping.
Here, i and j are the intracluster indices of sites and f
and g are cluster indices. In this cluster approximation,
the full Green function is evaluated using the follow-
ing matrix equation:

where Green function  describes the motion of elec-
trons in an individual cluster. This equation can also
be written in a different equivalent form

where  = ω –  – . Here,  is the Green func-
tion of the system without the interaction and  is the
cluster self-energy part.

If we now consider a superlattice (i.e., a lattice
composed of individual clusters), we can perform the
Fourier transformation and pass from cluster indices
to the corresponding wavevector in the reciprocal
space. The Brillouin zone determined in this way is
reduced as compared to the initial Brillouin zone cor-
responding to the initial lattice. Then we can write

(3)

where rf is the radius vector of cluster f ≠ 0 relative to
the main cluster with index “0” and  is the wavevec-
tor in the reduced first Brillouin zone. We can now
write the equation for the full Green function as
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The artificial division of the lattice into clusters and
the account for intracluster hopping separately from
intercluster hopping breaks translation invariance.
For its restoration within the cluster perturbation the-
ory, the following procedure is used:

(5)

where ri is the radius vector of sites in a cluster and k is
the wavevector in the initial first Brillouin zone. In this
relation, we assume that Tij( ) = Tij(k).

Full Green function  can be calculated directly
from Eq. (4); however, we must first determine cluster
Green’s function , which is usually done using the
Lanczos algorithm, and perform the procedure for
finding the inverse matrix. The entire procedure take
considerable computer time. However, this calcula-
tion can be accelerated on account of the fact that
cluster Green’s function  is independent of the
wavevector. Let us write Eq. (4) as

It can clearly be seen that the poles of the full Green
function at each point of the reduced first Brillouin
zone are determined by the Hamiltonian of an indi-
vidual cluster, but with additional terms depending on
the wavevector. If we recollect the structure of these
terms (3), we can note that periodic boundary condi-
tions with a certain phase determined by the wavevec-
tor and the lattice period are imposed on an isolated
cluster. With account of this analysis, we can write the
Hamiltonian of an individual cluster in form

(6)
If we now use expression (2), we obtain full Green’s

function  by solving the eigenvalue problem for
Hamiltonian (6) at each point of the reduced first
Brillouin zone. We obtain the one-particle Green
function from Eq. (5). This procedure is equivalent to
the algorithm of expansion of the reduced zone, which
is based on the Bloch theorem [23].

To consider a disordered binary alloy, we must
determine the procedure of Green’s function averag-
ing over disorder (over configurations of the cluster
with different distributions of ions). The calculation
procedure includes the specification of a certain con-
figuration of the cluster with random distributions of
ions of different species. In the numerical algorithm,
all sites of the cluster are sampled at random and
assume state A with probability 1 – x or state B with
probability x. Therefore, the average number of ions of
species A and of species B remains constant:

In the case of a disordered system, Hamiltonian (1)
contains terms that are inhomogeneous in space;

=
ω = ω − −
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therefore, the Fourier transform of these terms con-
tains two wavevectors k and k'. For large clusters, the
nondiagonal component for k ≠ k' are proportional to

 because of the random distribution of the poten-
tial, where L is the number of sites in the cluster. An
analogous decrease in the contribution from nondiag-
onal components is observed when averaging is per-
formed over a large number of cluster configurations
with a random distribution of ions. Therefore, Green’s
function for a heterogeneous system also depends on
two wavevectors Gkk'(ω); for large clusters or after
averaging over random cluster configurations, the
nondiagonal elements of Green’s function for k ≠ k'
are proportional to . Thus, in the limit of a large
cluster or after averaging over a large number of ran-
dom configurations of the cluster, Green’s function
becomes diagonal in the wavevector, (ω) =
Gkk'(ω)conf [23].

For each cluster configuration, Green’s function
(5) is calculated based on the cluster perturbation the-
ory. Having performed an analogous calculation for
Nconf different configurations of clusters, we carry out
the averaging procedure:

(7)
The Green function obtained in this way is used for

calculating the spectral density of one-particle exci-
tations,

and the density of one-particle states for the given spin
projection,

where Nk is the number of points in the first Brillouin
zone. As a consequence of the anticommutation rela-
tion [ai, σ, ]+ = 1 for fermions, the total spectral
weight is conserved for any wavevector k:

We will now consider the results of calculations of
the electronic band structure and the electrical con-
ductivity for a binary alloy with Hamiltonian (1) in the
absence of the electron—electron interaction (Ui = 0)
for the following values of model parameters:

In the absence of the electron–electron interac-
tion, the band structure is independent of temperature
and the number of electrons in the system; i.e., the
“rigid band” approximation holds. Figure 3 shows the
results of calculation of the electronic band structure
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Fig. 3. Electronic band structure of a binary alloy in the absence of the electron–electron interaction in the cluster approximation.
Upper panels show the dispersion of Fermi quasiparticle excitations along the symmetric directions of the Brillouin zone, which
was obtained for a 8 × 8 cluster using different numbers of random configurations Nconf = 1–250 for averaging over disorder. The
lower panels show the corresponding Fermi surfaces in the first quarter of the first Brillouin zone in the case of half-filling.

4
ω

2

0

−2

21 3

3
ky

kx

2

1

0 21 3

3
ky

kx

2

1

0 21 3

3
ky

kx

2

1

0 21 3

3
ky

kx

2

1

0

Γ ΓX M Γ ΓX M Γ ΓX M

Nconf = 250Nconf = 100Nconf = 10Nconf = 1

Γ ΓX M
for a 8 × 8 cluster using various numbers of random
configurations Nconf = 10–250 for averaging over dis-
order. Here and below, color shows the distribution of
the total spectral weight

and the initial spectral line broadening is δ = 0.01 eV.
Figure 4 shows the results of calculation for clusters

of different sizes from 8 × 8 to 32 × 32 with Nconf = 10.
It can be seen that with increasing cluster size and the
number of configurations Nconf, over which the averag-
ing is performed, the fictitious discontinuities in the
electron dispersion, which appear due to artificial
increase in the period of translation of the crystal lat-
tice during the formation of a cluster superlattice, are
blurred.

Hamiltonian (1) can be written in the k representa-
tion in the form of the sum of two contributions:

If 1 – x > x, i.e., more than half of the lattice is
filled with ions of species A, it is convenient to choose
for  the Hamiltonian of the lattice with only A ions
at its sites and with a hopping tA between them, while

 will describe perturbation (scattering) due to the
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addition of ions of species B, and vice versa. Full
Green’s function

can be represented with the help of the Dyson equa-
tion in form

where (k, ω) is the initial Green function corre-
sponding to . Or

where Gσ(k, ω) = Gσ(k, k', ω)disord is the Green func-
tion averaged over disorder, and

is the mass operator containing the imaginary and real
parts. If the short-range structural order exists in the
distribution of atoms, it is convenient to choose for

(k, ω) the Green function corresponding to the
fully ordered lattice, and  will then describe the
perturbation caused by disorder in the distribution of
atoms. The imaginary part of mass operator (k, ω)
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determines lifetime τσ(k) ~ 1/ (ω(k)) or the decay of
quasiparticle excitations with spin projection σ and
dispersion broadening (see Figs. 3 and 4). In Figs. 3
and 4, we can observe nonuniform broadening of dis-
persion; i.e., lifetime τ(k) determined by scattering
processes is not the same for different k in the first
Brillouin zone. It should be noted that this broadening
is much larger than the initial broadening δ used in the
numerical algorithm. Therefore, the method used
here makes it possible to find lifetime τ(k) required for
calculating the conductivity.

To account for the existence of a short-range order
in the distribution of atoms, we can specify various
ordered regions of smaller size in averaging the Green
function over disorder within the cluster. The middle
panels in Fig. 5 show the results of calculations of the
electronic band structure and density of states, which
were obtained by averaging the Green function over
different configurations of a 16 × 16 cluster containing
ordered regions with a size from 2 × 2 to 12 × 12; we
used the configurations in which ordered regions were
distributed at random within the cluster. The upper
and lower panels in Fig. 5 show for comparison the
results of calculation for the same parameters in the
cases of fully disordered and ordered alloys, respec-
tively. For convenience of comparison, the band
structure of the fully ordered alloy (lower panels in
Fig. 5) is given for the unreduced Brillouin zone. It can
be seen from Fig. 5 (middle panels) that in the pres-
ence of such ordered regions, a gap (pseudogap)
appears in the spectrum for energies corresponding to
the Brillouin zone boundary for a fully ordered alloy.
An analogous situation associated with the emergence
of a pseudogap in strongly correlated systems with a
short-range antiferromagnetic order was considered,
for example, in [24]. If the chemical potential lies in
the true dielectric gap (Fig. 5, lower panels), an insu-
lator–poor metal–metal transition is observed upon
enhancement of disorder (see Fig. 5).

3. ELECTRICAL CONDUCTIVITY

Let us consider the Hamiltonian of the 2D Hub-
bard model in an external ac electromagnetic field
described by vector potential A(r, t):

where r is the radius vector of a crystal lattice site, l is
the unit vector along the coordinate (crystallographic)
axes, Al(r, t) is the component of vector A(r, t) along
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direction l, and  = c = a = 1. Operator  can be
expanded into a power series in electric charge e:

where

is the kinetic energy operator in zero electromagnetic
field,

is the operator of the “paramagnetic” current density
in direction l, and

is the operator of the “diamagnetic” current density in
direction l. Therefore, the Hamiltonian can be written
as  =  + . Here, the first term  defines the
Hamiltonian of the Hubbard model with account for
the Coulomb interaction of electrons in the absence of
the vector potential, while second term  describes the
interaction with the field and vanishes for A(r, t) = 0.

In the linear response theory, the expression for the
total current has form

where the first and second terms correspond to the
paramagnetic and diamagnetic contributions, respec-
tively. Using the nonstationary perturbation theory,
we can show that for Al(r, t) = δl, xAx(r, t), we obtain

where angle brackets indicate quantum-mechanical
averaging over the ground state |φ0 of the system with
energy E0. Here, we consider the situation at zero tem-
perature. Then the expression for the frequency
dependence of the real part of conductivity σ1(ω) for
q = 0 has form

(8)
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Fig. 5. Electronic band structure of a binary alloy in the absence of the electron–electron interaction in the cluster approximation.
Left middle panel shows the dispersion of Fermi quasiparticle excitations along the symmetric directions of the Brillouin zone and
the density of states, which were obtained for a 16 × 16 cluster containing ordered regions of different sizes. The upper and lower
panels show the results of calculations for the same parameters in the cases of fully disordered and ordered alloys, respectively.
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|φn = En|φn. A more detailed derivation of Eq. (8)
can be found in [25]. It is known that σ1(ω) and  

are connected by the sum rule:
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The Drude weight D can be used as the order
parameter for a metal–insulator transition [25]. Van-
ishing of D indicates the dielectric ground state of the
system. For noninteracting fermions, we can obtain
from Eq. (8) the well-known expression for the Drude
conductivity:

where ne = Ne/N is the concentration of carriers (free
electrons) and me is the electron mass.

At finite temperatures, the second term in Eq. (8)
for the grand canonical ensemble has form

where Ω is the thermodynamic potential and –∂Ω/∂μ =
Ne, e–βΩ = Tr( ) [26]. Since the eigenvalue
problem

cannot be solved exactly, we have to use various
approximations.

Let us apply the cluster approach for analyzing the
conductivity of a disordered binary alloy with the help
of the Kubo formalism. We choose a large enough
cluster and calculate exactly the dynamic conductivity
at a finite temperature. We consider the case of nonin-
teracting fermions (Ui = 0), but with account for disor-
dered distribution of ions (energy of electrons at a site)
and the corresponding integrals of hopping (1)
between the nearest sites. To account for the random
nature of the ion distribution in the lattice, we must
perform the procedure of averaging over different clus-
ter configurations.

In the framework of the Kubo formalism, the
dynamic conductivity in the long-wave limit (q = 0)
has form [27]
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Here, … is the quantum-statistical average, jx(l, t)
is the operator of the paramagnetic part of the x com-
ponent of the current density at point l in the Heisen-
berg representation,

and Kx(l) is the operator of the kinetic energy density
for motion along the x axis. In the case of a disordered
system, these operators can be written as

Considering that Λxx(q, ω) is a complex-valued
function, we obtain from Eq. (9)

where

is the Drude weight.

In the calculation of conductivity, the main prob-
lem is the determination of the quantum-statistical
mean of the commutator in expression (10). We can
show that for determining Λxx(q, ω), it is sufficient to
calculate only the following mean value:

Here, al, σ(t) and (t) are the operators in the
Heisenberg representation. After removing the paren-
theses, we obtain four terms with an analogous struc-
ture, which contain mean values of the four Fermi
operators. In the cluster approach, these terms can be
expressed in terms of the eigenvalues and eigenvectors
of Hamiltonian  of an individual cluster (see Sec-
tion 2). In particular, we write the general structure of
the mean values considered here, omitting spin index
σ for convenience:
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Using the Wick theorem, we can write

where

Here, ρλ are the eigenvalues of cluster Hamiltonian
, U is the matrix of the unitary transformation of 

to the diagonal form, μ is the chemical potential, and
β = 1/kBT is the reciprocal temperature.

After calculating all mean values, we obtain the fol-
lowing expression for the Fourier transform in the
long-wave limit (q = 0):

Using this expression, we find

where

Therefore, the real part of the conductivity has
form
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where

(12)

This expression is in full agreement with the defini-
tion of the real part of conductivity (8) at zero tem-
perature. We can note that to within the temperature
factors, the role of matrix element φ0|jx|φn in expres-
sions (11) and (12) is played by the sum

(13)

Using the cluster approach, we can also calculate
the mean kinetic energy

(14)

In the case of a finite temperature, we can formu-
late the following sum rule:

We can easily verify that conductivity σ1(ω)
obtained above satisfies this rule by integrating expres-
sion (11) with respect to frequency.

For calculating the conductivity of a disordered
alloy, we must also perform averaging over different
random cluster configurations. A certain cluster con-
figuration can be obtained analogously to the proce-
dure described in Section 2. Further, we evaluate sum
(13) for each cluster configuration and perform aver-
aging over all such configurations:

An analogous averaging must also be carried out for
mean kinetic energy Kx. In this case, the sum appear-
ing in expression (14) is averaged over random config-
urations of the cluster; namely,
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In this case, we form the full spectrum of all ran-
dom cluster configurations { }. The procedure of
averaging over disorder proposed here can be treated
as averaging of a certain supercluster consisting of
noninteracting smaller clusters with a random distri-
bution of ions of different species. This effectively
increases the size of the region over which the averag-
ing is performed and provides a better approximation
in the case of a disordered alloy.

Thus, we obtain the mean values of the matrix ele-
ment of current and of the kinetic energy of motion in
direction x, which are substituted in expressions (11)
and (12). Finally, for a disordered alloy, we get

(15)

where

(16)

(17)

In the cluster approach, we calculate the conduc-
tivity of a disordered binary alloy in the Kubo formal-
ism using expressions (15)–(17). The results of such a
calculation of conductivity for a 50 × 50 cluster as a
function of the number of particles in the system or the
position of the chemical potential are shown in Fig. 6
in the limit ω → 0 at T = 50 K for Δ = –0.5, 0, 0.5 eV.
Figure 6l shows for comparison the results of the same
calculation for a system with one species of ions
(x = 0). These curves were obtained after approxima-
tion of data according to Gauss, which had to be done
for eliminating the effects associated with the finite-
ness of the cluster. In all figures, the conductivity is
given in the units of σ0 = e2/ .

In the Boltzmann formalism (τ approximation),
the dynamic conductivity has form
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where (k) = ∂ελ(k)/∂ki is the group velocity of
electrons (quasiparticles), τλ(k) ~ 1/Σ''(ελ(k)) is the
mean free time, λ is the band index, and nF is the
Fermi–Dirac distribution function. Expression (18) is
the corollary of the more general quantum-kinetic
Boltzmann equation for electrical conductivity [26]:

(19)

where Tkp is the matrix of charge carriers scattering
from impurities,

ni is the impurity concentration, and A(p, ω) is the
spectral weight of quasiparticles. The scattering matrix
is connected with the self-energy part by relation
Σ(p, ωp) = niTpp. These expressions show that the eval-
uation of mass operator Σ in the cluster approximation
(see Section 2) makes it possible to use expression (18)
and more general expression (19) for determining con-
ductivity.

Figure 6 shows the results of calculation of the dis-
persion (Figs. 6a–6c), density of states (Figs. 6e–6g)
and conductivity (Figs. 6i–6k) of a disordered binary
alloy using the cluster approach for Δ = –0.5, 0, 0.5 eV.
Figs. 6d, 6h, and 6l show for comparison the results of
calculation for a system with a single species of ions
(x = 0). In this case, mean free time τ is independent
of wavevector k since there is no disorder in the sys-
tem. The conductivity as a function of the position of
chemical potential μ (number of particles in the sys-
tem) was calculated in the limit ω → 0 at T = 50 K.
Blue circles in Figs. 6i–6l are the results of calculation
of conductivity in the cluster perturbation theory for a
16 × 16 cluster in Boltzmann formalism (18), while red
triangles are the results of calculation in the Kubo for-
malism (15)–(17) for a 50× 50 cluster. All curves in
Figs. 6 are the result of averaging over 20 random clus-
ter configurations.

It can clearly be seen from Figs. 6a–6d that the
existence of disorder in the system leads to dispersion
broadening, which is nonuniform in wavevector k and
depends on parameter Δ. For Δ = –0.5 eV, the stron-
gest broadening occurs near point (0, 0) and gradually
decreases towards point (π, π). For Δ = 0.5 eV, an anal-
ogous behavior is observed in the opposite direction
(from point (π, π) to point (0, 0)). At Δ = 0, slight dis-
persion broadening is also observed, but now it is sym-
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Fig. 6. Dispersion, density of states, and conductivity of a disordered binary alloy in the cluster approach for Δ = –0.5, 0, 0.5 eV.
Lower panels show for comparison the results of calculation for a system with one species of ions (x = 0). The conductivity
depending on the position of chemical potential μ (number of particles in the system) was obtained in the limit ω → 0 at T = 50 K
in the Boltzmann formalism for a 16 × 16 cluster (blue circles) and in the Kubo formalism for a 50 × 50 cluster (red triangles).
Averaging was performed over 20 random cluster configurations.
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metric relative to ω = 0 (the broadening near points
(0, 0) and (π, π) is the same). Our calculations show
that asymmetry in dispersion broadening (and, hence,
in the mean free time) is determined by parameter Δ,
and the value of broadening depends not only on the
value of random potential, but also on the nonunifor-
mity of the hopping parameter. In this case, a logarith-
mic singularity is observed in the density of states for
any value of Δ (see Figs. 6e–6g).

Comparison of the curves in Figs. 6i—6k shows
that the calculations based on the cluster approach in
the two different formalisms lead to the qualitatively
the same behavior of conductivity. Quantitative differ-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
ences are due to a small size of the cluster (50 × 50)
used in calculations in the Kubo formalism as com-
pared to the number of points in the first Brillouin
zone (600 × 600) used in the calculations based on the
Boltzmann formalism. In the case of a homogeneous
system without disorder, the results coincide quantita-
tively (Fig. 6l). The effect of parameter Δ on the dis-
persion broadening is clearly manifested in the σ(μ)
dependences of the conductivity. For Δ = 0, the curve
is symmetric about the middle of the zone, while for
Δ ≠ 0, there appears asymmetry.

The important result of our calculations is that in
the presence of disorder (impurities) in the system, the
YSICS  Vol. 131  No. 5  2020
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logarithmic singularity in the density of states is pre-
served (see Fig. 6), but conductivity σ(μ) has a dip
(even for Δ = 0) associated with scattering of carriers.

4. DISCUSSION AND CONCLUSIONS

Generalizing our results, we can indicate the main
advantages and disadvantages of the proposed
method. The disadvantages obviously include (i) com-
putational limitations determining the maximal possi-
ble size of the cluster and (ii) limitations associated
with the use of the tight binding method. The advan-
tages include the possibility of implementation of the
main idea of the proposed method in the algorithm of
the DFT calculations for actual compounds. In addi-
tion, this method makes it possible to analyze diversi-
fied systems such as disordered and ordering alloys,
systems with strong electron correlations and the elec-
tron–phonon interaction, magnetic alloys, and vari-
ous systems with a short-range order, which experi-
ence phase separation (spatially inhomogeneous sys-
tems). For the latter systems, the limitations
associated with the cluster size are most important.

In this study, we have reported on the results of cal-
culations of the electronic band structure and conduc-
tivity of a binary alloy in the absence of the electron–
electron interaction, when the band structure is inde-
pendent of temperature and the number of electrons in
the system (i.e., the “rigid band” approximation
holds). The cluster approach used in this study has
made it possible to perform calculations for quite large
clusters, which is essential in analysis of disordered
systems. In particular, the simulation of the ordered
phase in a disordered surrounding has revealed the
emergence of a pseudogap in the spectrum for energies
corresponding to the boundary of the Brillouin zone
for a fully ordered alloy. Therefore, in the case of half-
filling, an insulator–poor metal–metal transition will
be observed upon an increase of disorder.

Comparison of the results of calculation of con-
ductivity using the cluster perturbation theory in the
Boltzmann formalism and in the Kubo formalism for
quite large clusters shows good agreement. Since the
calculations based on the Kubo formalism were exact
(but for a finite cluster), we can state that the applica-
tion of the mean-free-time approximation in the
Boltzmann formalism (i.e., representation of relax-
ation time τ(k) in terms of the reciprocal imaginary
part of the mass operator obtained using the cluster
approach) is a quite good approximation for analyzing
disordered systems. It should be noted that such an
approximation is not obvious because the relaxation
time in the Boltzmann equation is a more complex
quantity [26].

It is found that in the presence of disorder (impuri-
ties) in the system, the σ(μ) dependence of the static
conductivity has a dip in the low-temperature limit,
which is associated with charge carrier scattering;
JOURNAL OF EXPERIMENTAL AN
however, the logarithmic singularity in the density of
states is preserved in this case. In our opinion, such a
behavior of the conductivity can be treated as a mani-
festation of localization appearing in the system.
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