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Abstract—The ground state of a Heisenberg ferromagnet with the noncollinear single-ion anisotropy axes of
two magnetic sublattices has been investigated in an external magnetic field applied in the anisotropy axes
plane. Noncollinearity of the sublattice local anisotropy axes leads to a new effect called the orientational
first-order spin-flop phase transition. The transition field depends on the single-ion anisotropy value and
sublattice local axes orientation. An analysis of the stability of magnetic states shows that the transition is
accompanied by the hysteretic field dependence of the magnetization. The dependences of the spin-flop
transition field, magnetization jump, and susceptibility on the single-ion anisotropy value and axes orienta-
tion have been determined. The results obtained are used to explain the field dependence of the magnetiza-
tion in the PbMnBO4 ferromagnetic crystal.
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1. INTRODUCTION
The term “weak antiferromagnetism” was intro-

duced by Vonsovsky and Turov [1–3] by analogy with
the weak ferromagnetism to define the magnetic
ordering in a magnet with the basic ferromagnetic
exchange and sublattice noncollinearity caused by the
Dzyaloshinskii–Moriya (DM) relativistic exchange
[4, 5]

where M1 and M2 are the magnetic moments of sublat-
tices. At the ordering of this type, the absolute value of
the antiferromagnetism vector l is small as compared
with the total magnetic moment m

The weak antiferromagnetism caused by the DM
interaction was observed, for example, in the com-
mensurate magnetic phase of the MnSi crystal [6] and
one of the antiferromagnetic sublattices of copper ions
in the Ba3Cu2O4Cl2 compound [7].

Another cause for canting of the sublattice mag-
netic moments is noncollinearity of the single-ion
anisotropy (SIA) local axes in magnets with several
magnetic ions in the crystal unit cell. The single-ion
noncollinearity in an antiferromagnet was first exam-
ined by Moriya in describing the weak ferromagnetism
in a NiF2 antiferromagnetic crystal with a rutile struc-
ture [8] (see also a brief summary of this analysis in

book [9]). In this magnet, the easy SIA axes lying in
the crystal ab planes are mutually orthogonal. The
conditions for the occurrence of the SIA-induced
noncollinearity were investigated in a symmetric anal-
ysis of orthorhombic perovskites [10]. Noncollinearity
of the local SIA axes determines, to a great extent, the
magnetic properties of ferrites [11]. When the easy axes
of sublattices are rotated relative to the common easy
axis of a crystal, the collinear ordering becomes unsta-
ble against the deviations of moments from the general
easy direction due to the occurrence of the linear-in-
angle term in the anisotropy energy expansion

Here, n is the anisotropy order, θi is the angle of orien-
tation of the moment i, and θKi is the direction of the
anisotropy axis of this moment. Under the condition
of noncollinearity of the SIA axes of the moments
(θKi ≠ θKj), this instability, as in the case of the DM
interaction, is absolute; i.e., the noncollinearity
occurs at any Ki value. A fundamental difference of the
single-ion noncollinearity from the DM interaction is
its anisotropic character. The SIA energy depends on
the moment orientation relative to the crystal axes,
while the DM interaction energy is isotropic with the
simultaneous rotation of the moments in the plane
orthogonal to the vector D. In the low-symmetry envi-
ronment of magnetic ions with the spin S > 1/2, a
weak ferromagnetic moment is formed by both the
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Fig. 1. Orientation of moments m1 and m2 of the ferromag-
netic sublattices in two different states. At an angle of θK >
π/4 between the easy axes of the sublattices, the ground
state is state A at h < hsf and state B at h > hsf.
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single-ion and two-ion (in particular, DM) anisotropy
mechanisms. This manifests itself, first of all, in dif-
ferent dependences of the magnetization curves along
different crystal axes. In this case, the competing SIA,
depending on the orientation of the magnetic field,
can either increase the weak moment or decrease it
[12–15]. The orientational spin-flop transition
between the states with different orientations of
moments in an antiferromagnet can become a first-
order phase transition [16]. The conclusion about the
dominant effect of the SIA on the formation of a weak
ferromagnetic moment was made also for the K2NiF4,
La2NiO4, La2CoO4 [13], and LaMnO3 compounds
[17, 18].

At present, there is a lack of information on non-
collinearity of the magnetic moments caused by the
competition of the SIA of crystallographically equiva-
lent sublattices in nonmetal ferromagnets. In magnetic
measurements, a weak antiferromagnetic moment is
difficult to detect against the background of a strong
general magnetization. Such a moment should mani-
fest itself upon reorientation in a magnetic field
applied along the weak antiferromagnetism vector (the
spin-flop transition). In this case, the longitudinal
magnetization abruptly changes. The highly anisotro-
pic character of the magnetization curves of the
PbMnBO4 ferromagnetic crystal [19] with a jump of
the magnetic moment in the field applied along the
orthorhombic b axis suggests that the single-ion non-
collinearity dominates in this magnet.

The aim of this study is to theoretically describe the
orientational phase transition in the framework of a
simple model of a ferromagnet with the noncollinear
anisotropy axes of two sublattices and determine the
dependence of the observed magnetic parameters on
the parameters of the local anisotropy of the sublat-
tices.

2. MODEL AND SOLUTIONS
We consider the ground state of a single-position

magnet with crystal symmetry plane m (or twofold
rotation axis C2) between the translationally non-
equivalent positions of magnetic ions. These condi-
tions are typical of magnetic crystals of some groups of
the majority class of rhombic crystals, e.g., PbMnBO4
[19–21]. The Hamiltonian of a system of spins with
biaxial SIA local axes z1, x1 and z2, x2 of two magnetic
sublattices can be written in the form

(1)
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We choose the z1 and z2 axes to be easy magnetization
axes in each sublattice (K1 < 0). The second local
anisotropy constant K2 (the x1 and x2) can have any
sign. It can be easily shown that, at the isotropic ferro-
magnetic exchange (J < 0), the moments always lie in
the plane formed by the easy axis and external mag-
netic field directions. For an external magnetic field
applied in the plane orthogonal to the symmetry plane
m and containing the local anisotropy axes K1 and K2
of the sublattice moments i and j, we have a coplanar
problem (Fig. 1). This essentially simplifies its solu-
tion, which is reduced to finding two sublattice
moment orientation angles θ1 and θ2 to the external
magnetic field direction.

The orthogonality of the local anisotropy axes in
each sublattice and the symmetry constraints

allow us to express the anisotropy energy through one
effective anisotropy parameter K = K1 – K2 and the
easy axis angle θK = θz1. In the introduced variables

θ = θ + π θ = π − θ θ = π − θ1 1 2 1 2 1/2, ,x z z z x x
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SINGLE-ION WEAK ANTIFERROMAGNETISM AND SPIN-FLOP TRANSITION 1167
and designations (Fig. 1), the energy of the ground
state of the classical moments m1, 2 =  has the
form

where z is the number of magnetic neighbors,

are the normalized energy, the local anisotropy value,
and the external magnetic field, respectively. Minimi-
zation of the normalized energy (θ1, θ2) yields the
system of two equations

(2)

which can be transformed to the system of equation for
the sum and difference of the moment orientation
angles

(3)

The solutions of Eq. (3) determine two possible states:
magnetic phases A and B (Fig. 1)

(4)

The first solution describes the nonsymmetric orien-
tation of the moments of sublattices relative to the
magnetic field (the b axis) and the second solution, the
symmetric orientation. In zero external magnetic
field, the variables and energy states are determined by
the equalities
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Hence, under the conditions

(5)

 < , the lowest-energy state is phase A with the
average magnetization oriented along the a axis
(Fig. 1). At θK < π/4, the b axis turns to the general
easy direction and, starting with zero field, phase B is
implemented.

Let us consider the change in the orientation of
magnetic moments when condition (5) is satisfied in a
magnetic field applied along the hard b axis. With an
increase in the magnetic field, the angle θ2 changes
faster than the angle θ1 and, in the field h =

, the moments arrange collinearly (θ1 =
θ2 = π/4). With a further increase in the field, the sign
of δ = θ2 – θ1 can change. However, even earlier, the
phase energies can become equal. At this field value
hsf = h(  – ), the ground state will change: a phase
transition will occur in the magnetic field. Depending
on the local anisotropy value a and the easy axes ori-
entation angle θK, the transition between phases A and
B can be both first- and second-order. The ground
state evolution in an external field at a = –0.1 and
θK = 0.9 is illustrated in Fig. 2. The investigated orien-
tational phase transition is obviously analogous to the
spin-flop transition in a conventional antiferromag-
net. At h → 0, the field is directed along the weak anti-
ferromagnetism vector l = m1 – m2. After the transi-
tion, the vector l is oriented orthogonally to the exter-
nal field (Fig. 1).

Since the discussed model can have different solu-
tions, it is important to determine a stability region for
each state. In the case of the first-order phase transi-
tion, this provides information on the possible magne-
tization hysteresis value. The stability regions for solu-
tions (4) are determined by the positive determinacy of
the main minors of the determinant [22]

At |a|, h  1, we have ∂2 /  > 0 and the equation

together with energy minimization equations (2) for
each phase (4) determines the phase stability boundar-
ies has and hbs. The overlap of the stability regions
determines the field range of the possible magnetiza-
tion hysteresis. This range depends, to a great extent,
on the anisotropy axis orientation angle θK and, at
a = –0.1, turns to zero at θK ≈ 1.01 (Fig. 3). The
boundaries coincide with the transition field hsf, which
corresponds to a second-order phase transition. A
change in the phase transition type is discussed in Sec-
tion 4. When the angle of rotation of the anisotropy
axes is close to π/4 (θK < θK0 = 0.5arccosa), phase B is
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Fig. 2. Field dependences of (a) the angles θ1 and θ2 of ori-
entation of the sublattice magnetic moments, (b) the ener-
gies of phases A and B, and (c) the magnetization projec-
tion onto the external field direction at a relative local
anisotropy of a = –0.1 and an easy anisotropy axis orien-
tation angle of θK = 0.9. Inset in (b): enlarged region of

intersection of the phase energies  and . Vertical
arrows show the direction of the change in the angles θ1, 2,
energy, and longitudinal magnetization at the boundaries
has and hbs of stability of phases A and B, respectively. hsf
is the field at which the phase energies coincide.
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A (has) and B (hbs) (dashed lines) on the anisotropy axis
orientation angle θK at an anisotropy parameter of
a = ‒0.1.
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stable in any magnetic field (the stability boundary is
hbs < 0).

3. SUSCEPTIBILITY
Each type of magnetic ordering is characterized by

the dependence of the magnetic moment on the
applied field value and direction. As a rule, the mag-
netization projection onto the applied field direction,
i.e., the longitudinal magnetization, is measured.
Although in the case of a complex, e.g., noncollinear
magnetic structure, this information is insufficient, it
reflects the integral anisotropic properties of a mag-
net. The initial portion in the field dependence of the
longitudinal magnetization in the field applied along
the hard direction of a magnetic crystal brings infor-
mation about the magnetic anisotropy value, which,
in the case of a collinear ferromagnet, makes it possi-
ble to determine this value even in relatively weak
fields. However, if the local axes of sublattices are non-
collinear, we deal with some effective anisotropy aver-
aged over its local values. This yields the general
anisotropy of the entire magnet, which is lower than
the local values [11]. Consequently, the slope of the
magnetization curves (the initial susceptibility) can
significantly increase at the large noncollinearity
θK → π/4 as compared with the case of a collinear fer-
romagnet with θK = π/2 (χ(θK = π/2)) (Fig. 4).

4. PHASE DIAGRAM
The dependence of the spin-flop transition field on

the angle of rotation of the anisotropy axes determines
the boundary between low-field phase A and high-
field phase B, i.e., the angle–field phase diagram
(Fig. 5). The asymptotic values of the field hc of com-
SICS OF THE SOLID STATE  Vol. 62  No. 7  2020
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Fig. 4. Dependence of the initial susceptibility normalized
to the susceptibility of a collinear ferromagnet (χ(θK =
π/2)) on the anisotropy axis orientation angle θK at differ-
ent anisotropy parameters a.
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pletion of the reorientation by the second-order phase
transition at θK → π/2 correspond to the case of a col-
linear ferromagnet:

At θK → π/4, the general anisotropy disappears and
the noncollinear moments rotate toward the magneti-
zation direction in an arbitrarily weak field. The same
happens in the other limiting case of the uniaxial easy-
plane anisotropy a = 0 (K1 = K2 (1)).

The same diagram shows the dependence of the
jump in the relative magnetization during the spin-
flop transition on the anisotropy axis orientation
angle. With an increase in the angle (upon approach-
ing the collinear case), this jump rapidly decreases
and, at points 1, 2, and 3 in the transition field curves
at a = –0.1, –0.2, and –0.3, respectively, turns to zero.
Above these values, the orientational transition is
completed with a second-order phase transition with
the critical field hc.

The type of the phase transition between states (4)
is determined by the anisotropy parameters. The lon-
gitudinal magnetization jump occurring upon com-
pletion of the orientational transition from phase A to
phase B is threshold in the anisotropy parameters a
and θK. The relation between these parameters at
which the jump occurs (i.e., the transition becomes
first-order) can be obtained from the limiting condi-
tion for the existence of phase A

at the point of crossing of the phase energies  and 
(Fig. 2b). In this case, the θc value coincides with the

( )πθ = = −2 .
2c Kh a

θ = −θ = θ1 2 c

eA eB
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angle θ of phase B. The curves in Fig. 2b at the limit
applied field hc touch one another

Above this value, system (2) has no solution for phase
A. At the small noncollinearity of the sublattices θ2 –
θ1  1 (weak antiferromagnetism), the imposed con-
ditions lead to the values

(6)

The general numerical solution of the conditions dis-
tinguishes the regions with different phase transition
types on the plane of the anisotropy parameters
(Fig. 6).

A necessary condition for the completion of the
sublattice reorientation in a magnetic field with the
first-order transition is the SIA-induced noncol-
linearity of the magnetic moments. It leads to the
occurrence of two minima in the angular dependence
of the total anisotropy energy and, as a result, to two
minima in the field dependence of the energy of the
ground state (phases A and B). A more rapid change in
the minimum of phase A leads to the coincidence of
the minima of the phases until their merging. In this
case, the intersection of the phase energies occurs
before the reorientation of the moments of phase A
(Fig. 2b); i.e., the orientational transition ends with a
first-order phase transition.

=e eA B .d d
dh dh
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Fig. 6. Two regions on the plane of the anisotropy param-
eters with the different types of the orientational phase
transition. In region 1 (the first-order phase transition
(PT)), the reorientation ends with a first-order phase tran-
sition and, in region 2 (the second-order order PT), with a
second-order transition.
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5. DISCUSSION

In the investigated model, two SIA parameters, a
and θK, determine four values that can be found from
the experimental magnetization curve, specifically,
the curve slope (the initial susceptibility) (Fig. 4), the
transition field, the magnetization jump value (Fig. 5),
and the magnetic field hysteresis width (Fig. 3). The
last two quantities are most difficult to determine.
Taking into account the increasing steepness of the
curve upon approaching the field hsf, the need for the
accurate crystal orientation relative to the external
field, and the strong temperature dependence of the
magnetization curve [19], it is difficult to accurately
determine the magnetization jump value. The hyster-
esis width can significantly depend on the speed of
passing the transition point. The simplest seems to be
the determination of the SIA parameters from the first
two experimental values, i.e., the initial susceptibility
and the transition field.

The magnetic anisotropy of PbMnBO4 is deter-
mined by the strong Jahn–Teller distortion of the oxy-
gen octahedra surrounding Mn3+ copper ions [19]. In
this case, the long axis is considered to be a local easy
SIA axis. Distorted octahedra form chains along the
b axis with the strongest ferromagnetic exchange
between manganese ions. The planes containing the
long and short axes of the octahedra are rotated rela-
tive to the common easy orthorhombic crystal a axis
by an angle of φ ≈ 30° (the projection of the orthor-
hombic axis a is shown in Fig. 1). Thus, the energy of
the resulting SIA depends on the orientation of the
moments of four exchange-coupled translationally
nonequivalent sublattices and, therefore, is deter-
PHY
mined by both the local anisotropy and the values of
exchange interactions within and between the chains.
The effective constant is not a simple sum of the local
ones multiplied by the function of the angles θKi nor is
the effective SIA a simple sum of any local projections.
The comparison of the calculated magnetization
curves with the experimental dependence observed for
PbMnBO4 in a field applied along the orthorhombic
b axis [19] yields the anisotropy parameters a ≈ –0.1
and θK ≈ 0.9. The obtained angle of orientation of the
local easy axis is similar to the angle of orientation of
the long diagonal of the distorted oxygen octahedron
surrounding Mn3+ ions relative to the b axis (θ = 0.84).
To make a comparison with the SIA value along the
orthorhombic a axis (the effective macroscopic
anisotropy) determined within the single-sublattice
model [23], we use the exchange interaction value J
obtained in this study. The value a ≈ –0.1 obtained
here using two-sublattice model (1) exceeds the effec-
tive anisotropy by a factor of almost 3 [23]. Noncol-
linearity of the local anisotropy axes in a multi-sublat-
tice ferromagnet (or an antiferromagnet [16]) yields
not only the characteristic nonlinear magnetization
curve with a magnetic moment jump, but also always
a smaller value of the observed macroscopic anisot-
ropy as compared with the local value by effective
averaging of the anisotropy of noncollinear sublattices
[11]. A detailed analysis of the anisotropic properties
of PbMnBO4, including the magnetization along the
hardest c axis, using the four-sublattice model with
regard to the orientation of the axes of octahedra and
the effect of the DM interaction requires special inves-
tigations and will be presented elsewhere. We only
note that the combined influence of the SIA and the
DM interaction in this magnet preserves the general
form of the magnetization curve and the spin-flop
transition in a field applied along the orthorhombic
b axis.

At present, the increasing interest in noncollinear
magnets is mainly due to the magnetoelectric proper-
ties that accompany magnetic noncollinearity [24,
25]. This interest is dictated, first of all, by the possi-
bility of controlling the magnetic parameters of a crys-
tal by changing the electric polarization and vice versa,
which has a great potential for technology. An ideal
magnetoelectric multiferroic should be a crystal in
which a high spontaneous polarization would be
related to a strong magnetization [15]. Then, the most
striking manifestation of the magnetoelectric proper-
ties should be expected at an abrupt change in the ori-
entation of such magnetization in the vicinity of a
first-order phase transition. At such a transition, the
magnetization jump in a weak antiferromagnet can be
much greater than the analogous jump in a weak ferro-
magnet. In addition, an important advantage is a
much weaker field of the spin-flop transition in a weak
antiferromagnet, which is only determined by the SIA.
Note that, in the isostructural PbFeBO4 crystal,
SICS OF THE SOLID STATE  Vol. 62  No. 7  2020
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anomalies of the dielectric properties were detected at
the temperature of establishing of the short- and long-
range magnetic order, which points out the correlation
between the magnetic and electric subsystems in this
crystal [26].

6. CONCLUSIONS

In a ferromagnet with the noncollinear single-ion
anisotropy axes of the magnetic sublattices, the orien-
tational phase transition in a field applied in the plane
containing the local anisotropy axes can occur either
in the form of two second-order phase transitions with
a continuous rotation of the sublattice moments or in
the form of one second-order transition and one first-
order transition. In the latter case, the first-order
(spin-flop) transition is accompanied by a jump in the
magnetization projection onto the applied field direc-
tion and by the hysteresis. The transition is threshold
in the anisotropy parameters, i.e., the value of the
local anisotropy and orientation of its axes, and occurs
in a wide range of these parameters. The dependences
of the spin-flop transition field, magnetization jump,
initial susceptibility, and boundary of the occurrence
of the first-order phase transition on the sublattice
local anisotropy parameters were obtained. The com-
parison with the experimental magnetization curves
for the PbMnBO4 compound made it possible to
numerically estimate the local anisotropy parameters
for the two-sublattice model and conclude that the
anisotropy is effectively averaged upon rotation of the
axes.
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