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Abstract—In the second order of the operator form of the perturbation theory, the effective interactions in a
superconducting nanowire have been obtained at the strong electron correlations, when the spin–orbit cou-
pling parameter is comparable with the hopping integral. Using the exact diagonalization technique, in short
nanowires with the open boundary conditions at the strong Coulomb repulsion, the excitations correspond-
ing to the Majorana edge states with the energy below the value of a bulk superconducting gap have been
demonstrated.

Keywords: superconducting nanowire, spin–orbit coupling, Majorana modes, strong electron correlations
DOI: 10.1134/S1063783420090371

1. INTRODUCTION

Recently, there has been a great interest in the InAs
and InSb semiconductor nanowires brought into con-
tact with a superconductor, in which a quantized dif-
ferential conductivity peak is experimentally observed
at zero bias voltage in an applied magnetic field [1].
This feature of the conductance is often explained by
the transition of a system to the topological supercon-
ductivity phase upon continuous variation in one of
the parameters, e.g., a magnetic field. When this sce-
nario is implemented, then, at the transition point, in
a critical field, the gap in the bulk spectrum vanishes
and, with a further increase in the control parameter
and moving away from the transition point, the spec-
trum becomes gapped again. In the topologically non-
trivial phase, the edge state arises that has zero energy
and includes a pair of Majorana modes localized at the
opposite ends of a wire [2–4]. It is this spatial nonlo-
cality that determines, to a great extent, the practical
interest in the Majorana states, since it makes them
resistant against local perturbations, which tend to
disrupt the phase of the wave function of a quasiparti-
cle, which is fundamentally important for quantum
calculations [5]. It should be noted that the appear-
ance of a quantized conductance peak can also be
caused by the trivial Andreev states or a general
increase in the density of states at zero energy due to
antilocalization [6–8]. As a result, this ambiguity in
the interpretation of tunnel spectroscopy experiments
with hybrid nanowires leads to the necessity of taking
into account the impact of various practical factors [9,
10] and considering more complex systems in which

the difference in transport through the Majorana and
Andreev states becomes noticeable [11].

It is important that, in most cases, when studying
the Majorana modes in 1D and quasi-1D wires, the
effect of electron–electron interactions is ignored.
However, recently, it has been shown by the analysis of
the I–V characteristics of a structure consisting of par-
allel InAs nanowires that, in such a structure, strong
correlations and the Luttinger liquid mode with the
spin–orbit coupling are implemented [12]. Therefore,
it is relevant to study the effect of the strong Coulomb
repulsion between electrons on the formation of
Majorana modes in the systems under study.

To take into account the electron–electron inter-
action in these systems, the generalized 1D Hubbard
model in the presence of the Rashba spin–orbit cou-
pling and the external field is often used. The mean-
field approaches [13] and numerical methods, includ-
ing the density matrix renormalization group
(DMRG), are used [14]. It was shown that, the allow-
ance for the weak interaction leads to the fact that the
topologically nontrivial phase and Majorana modes
form in weaker magnetic fields than in the non-inter-
acting case. These results are confirmed also in the
description based on boson fields and renormalization
group equations. The investigations of the opposite
strong interaction regime leads to the destruction of
the superconducting state and the occurrence of a free
fermion gas with a gapless spectrum and the absence
of edge states [13–15].

It is worth noting that, despite the presence of a
magnetic field, the proposed 1D model of a supercon-
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ducting nanowire belongs to the BDI, rather than D,
symmetry class [16]. However, the differences
between the two classes manifest themselves only
when the superconducting spin–singlet pairings
between electrons located on neighboring and more
distant chain sites are taken into account. Such pair-
ings related to the extended s-wave symmetry can be
formed by considering the proximity effect with a bulk
superconductor characterized by the existence of the
nonlocal pairing interaction or by taking into account
the inhomogeneity of the interface in a hybrid struc-
ture [17]. In view of this, it is interesting to study the
effect of strong electron correlations, when the Cou-
lomb repulsion parameter is much larger than the rest
model parameters, on the superconducting state and
edge modes in a nanowire, if superconductivity is
induced not only by on-site pairings, but also by pair-
ings between the nearest neighbors. Previously, we
studied this structure using the DMRG approach. In
particular, the possibility of inducing the double
Majorana modes due to the Coulomb interaction was
demonstrated [18].

In the framework of the operator form of the per-
turbation theory for superconducting nanowires in the
strong correlation regime, we construct the t–J*–
model operating in the truncated Hilbert space, which
does not contain the states with two electrons on a site
and takes into account the transitions between the
Hubbard subbands by inducing the effective interac-
tions, including three-center ones. In the model, the
effective interactions are caused not only by electron
hoppings, but also by the spin–orbit coupling, since
the corresponding parameters in the investigated sys-
tems are comparable. In addition, corrections from
the induced superconducting pairings were obtained.
A series of transitions with a change in the parity of the
ground state upon variation in the chemical potential
were demonstrated by the exact diagonalization
method. At the transition points, the zero-energy
excitations were implemented. The results obtained
show the possibility of the formation of Majorana edge
states in the strong electron correlation regime for
short (10–14 sites) nanowires. Such states are caused
by the induced superconducting pairings between
electrons on the nearest sites, since the on-site pair-
ings are suppressed by the Coulomb interaction.

2. DERIVATION OF THE EFFECTIVE 
HAMILTONIAN OF THE t–J*–  MODEL

We write the Hamiltonian of the 1D Hubbard
model in the atomic representation, taking into
account the Zeeman splitting, the Rashba spin–orbit
coupling, and the superconducting potential induced
by the proximity effect, which is a minimum model for
describing the investigated systems

(1)

α*J

α*J

= + + +0 1 2 ' .H H H H H
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The single-site Hamiltonian is expressed as

(2)

where ξσ = ξ – ησh; ξ = ε0 – μ; ε0 is the bare energy of
electrons, μ is the chemical potential; h is the Zeeman
splitting parameter; ησ = ±1 at σ = ↑, ↓, respectively;
and U is the on-site Hubbard repulsion parameter. The
Hubbard operators are defined in the standard form

 = , where  are the basis electronic
states on site f: n = 0 is the state without electrons,
n = σ is the state with one electron with the spin
moment projection σ, and n = 2 is the two-electron
state. The action of the Hubbard operators on the basis
of states is determined in the form  =

, where δij are the Kronecker symbols.
The relation between the Hubbard operators and the
Fermi electron operators afσ and  has the form

=  – ,  = ,  =  – ,

and  = , where  = . The expres-
sions for the rest Hubbard operators can be easily
determined from the presented expressions.

As is known, with an increase in the on-site Cou-
lomb repulsion, at a certain critical value, the initial
electron band is divided into two subbands with a gap
between them [19]. With a further increase in the
interaction parameter, the gap increases a Mott–Hub-
bard dielectric state is formed at half-filling. The aris-
ing subbands are called Hubbard. In the atomic repre-
sentation, the Hubbard subbands can be explicitly dis-
tinguished for any parameters, even in the absence of
a gap between them. This is due to the fact that the
lower subband is defined for the states related to the
homeopolar sector of the Hilbert space, which does
not contain the states  with two electrons on a
site. For the upper subband, such states are taken into
account, but the states  without electrons are
excluded. The terms H1 and H2 introduced in Eq. (1)
describe the processes in the lower and upper Hubbard
subbands, respectively:
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(4)

The terms with the parameters t and α (t, α > 0) deter-
mine hoppings and the Rashba spin–orbit coupling,
respectively, which involve electrons on neighboring
sites and the terms with the parameter Δ1 describe the
induced superconducting pairings of electrons on the
nearest sites in the singlet state.

The transition between the Hubbard subbands is
determined by H'

(5)

where h.c. denotes the Hermitian conjugation of the
previous expression. Here, the terms with the param-
eter Δ characterize the superconducting potential
induced on a site, which is usually taken into account
in the description of superconducting nanowires [13,
14]. It can be seen from formula (5) that, with an
increase in the Coulomb repulsion parameter U, such
pairings should rapidly collapse upon broadening of
the gap between the Hubbard subbands. The interac-
tion will also suppress the pairings between electrons
on the neighboring sites with the parameter Δ1
included in the term H' and described the transitions
between the Hubbard subbands. However, since some
nonlocal pairings involve the states only in the lower
Hubbard subband (see Eq. (3)), the superconductivity
induced by such processes will be retained at arbi-
trarily large values of the Hubbard repulsion if the
inter-site Coulomb interaction is small as compared
with Δ1.

We use the operator form of the perturbation the-
ory [20] for the regime U  t, α, Δ, Δ1. In this regime,
the desired effective Hamiltonian is determined on the
Hilbert subspace that does not contain the states with
two electrons on a site. Then, the projection operator
has the form

(6)
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The contributions of the transitions between the Hub-
bard subbands are taken into account due to the
occurrence of additional interactions with the small-
ness parameters t/U, α/U, Δ/U, and Δ1/U in different
degrees. Using these parameters, the effective Hamil-
tonian is determined with the quadratic accuracy as

(7)

where K is the Hermitian conjugation operator.
After the standard calculations, the effective Ham-

iltonian is

(8)

Here, the second term describes the renormalizations
to the bare energy of the system due to the supercon-
ducting pairings. Note that the term H1 (Eq. (3))
enters the effective Hamiltonian in the unchanged
form. The term Hint resulting from the calculations
describes two-center interactions in the lower Hub-
bard subband and has the form

(9)
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eter ~tα/U, the spin moment projection changes only
for one electron from the pair on neighboring sites. In
terms of the magnetic characteristics, the interaction
induced by the spin–orbit coupling can compete with
the antiferromagnetic exchange interaction and facili-
tate the formation of a noncollinear short-range mag-
netic order in 1D systems. The term with the parame-
ter ~tΔ/U describes spin-singlet superconducting pair-
ings between the nearest sites, which corresponds to
the symmetry of the superconducting order parameter
in initial Hamiltonian (1). The existence of effective
spin-triplet pairings with allowance for the spin–orbit
coupling in an external magnetic field is an important
factor in the implementation of the Majorana bound
states in 1D systems [2]. In the strongly correlated
regime, the triplet pairings with an amplitude of
~αΔ/U explicitly arise due to the spin–orbit coupling.
This determines the important role played by the
spin–orbit coupling in the implementation of the
Majorana states in superconducting nanowires. How-
ever, since the amplitude of such pairings at the strong
correlations is small, the existence of edge modes is
caused mainly by the spin-singlet superconducting
pairings inside the lower subband with the parameter
Δ1 (see Eq. (3)), which induce the effective triplet
superconductivity in the presence of the spin–orbit
coupling and Zeeman splitting.

The three-center terms are determined as

(10)

The important role of the three-center interactions
~t2/U in the description of the superconducting phase
in the 2D t–J* model was demonstrated in [22]. In
contrast to such terms, the terms ~tα/U describe elec-
tron hoppings to the next-to-nearest site with the con-
servation (change) of the spin moment projection,
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when the electron spin moment projection at the near-
est site becomes opposite (does not change). The
terms ~α2/U are similar to the three-center interac-
tions induced only by hopping, except for the fact that
they make the contribution when electrons on two
neighboring sites have the same spin projection onto
the quantization axis.

The terms proportional to Δ enter the effective
Hamiltonian only with the factor ~Δ/U and their val-
ues are small. Thus, it has been clearly demonstrated
that the on-site pairings are suppressed by the Cou-
lomb repulsion. The superconductivity is determined,
in fact, by the spin-singlet pairings between the near-
est sites belonging to the extended s-wave symmetry
with the parameter Δ1. The corresponding terms are
included in H1.

The effective Hamiltonian is applicable in the mag-
netic fields leading to the Zeeman splitting with h > 0
at which U – 2h  t, α, Δ, Δ1. It can be seen that the
smallness parameter 1/(2ξ + U) increases with the
electron density. However, the effective Hamiltonian
is only applicable to the lower Hubbard subband, the
top of which is usually reached in the μ range from
approximately 0.5t to t; therefore, the smallness of the
parameter is valid at 2ξ + U  1.

3. EXACT DIAGONALIZATION OF SHORT 
CHAINS AT THE STRONG CORRELATIONS

The transition to effective model (8) significantly
simplifies the numerical calculations at the strong cor-
relations due to the reduction of the Hilbert space size
from 4N to 3N (N is the number of sites in a chain).
However, the exact diagonalization method for the
obtained Hamiltonian is still resource-consuming;
therefore, here we consider the case of short chains.
The exact diagonalization allows one to determine the
particle eigenfunctions of the Hamiltonian, character-
izing them by the fermionic parity, and the corre-
sponding energies of the even ( ) and odd ( ) sec-
tors of the Hilbert space. For the further consider-
ation, let us determine that the many-body state has
positive or negative fermionic parity if its partial con-
tributions contain only the states with an even or odd
number of fermions, respectively.

For comparison, Figs. 1 and 2 show the energies
2N of the smallest excitations for initial (1) (asterisks)
and effective (8) (circles) models in a chain with ten
sites for the Coulomb repulsion parameter U equal to
10t and 100t, respectively. The remaining parameters
do not change: α = 0.8t, h = 0.8t, μ = –t, Δ = 0.5t, and
Δ1 = 0.25t. It can be seen that the first three excitations
for the two models are in good agreement even at U =
10t. At U = 100t, the agreement becomes better for the
next three excitations. It should be noted that the
numerically exact agreement is obtained at U → ∞.
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Fig. 1. Energies 2N (N is the number of sites) of the least
excitations describing the transitions between the ground
many-body state of the system and corresponding induced
states in a chain with N = 10 sites for initial Hubbard model
(1) (asterisks) and effective t–J*–  model (8) (circles).
The parameters are U = 10t, α = 0.8t, h = 0.8t, Δ = 0.5t,
and Δ1 = 0.25t in units of the hopping integral.
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Fig. 2. Energies of the least excitations in a chain with N =
10 sites for the initial Hubbard model (asterisk) and the
effective t–J*–  model (circles) at U = 100t. The rest
parameters are as in Fig. 1.
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Below, the first two excitation energies are ana-
lyzed.

The conditions for the implementation of the
Majorana edge states in short chains in the regime of
strong correlations are sought for by comparing the
single-particle excitation spectrum for chains with the
open and periodic boundary conditions (PBC). It is
well-known that a gap in the single-particle excitation
spectrum is implemented for a chain with the PBC in
both topologically trivial and nontrivial phases and the
spectrum becomes gapless at the boundaries between
phases. In the topologically nontrivial phase, the
ground state of a chain with the PBC with an even
number of sites without interaction has the negative
fermionic parity [23], in contrast to the positive parity
of the ground state in the trivial phase. The latter
turned out to be true also in the investigations of the
system in the regime of strong electron correlations.
When passing to the chains with the open boundary
conditions, the single-particle excitations can be
implemented, the energy of which lies in the gap in the
bulk spectrum of the system. According to a classifica-
tion of the edge states, this condition is a criterion for
the fact that the excitation under study is an edge one
[24]. The energy oscillation of such excitations is
related to the interference of wave functions of the
Majorana modes, which tend to localization at the
opposite ends of the chain.

Thus, the presence of the Majorana edge states in
short chains can be judged by the following criteria:
(i) at least one energy of the single-particle excitations
in an open chain lies inside the spectrum gap with the
PBC; (ii) the minimum excitation energy oscillates
PHY
around zero in a certain region of parameters, which is
indicative of the change in the parity of the ground
state when the energy exactly vanishes; and (iii) in this
range of parameters, the ground state of the chain with
the PBC has the negative fermionic parity. It should be
noted that the edge states determined in this way for a
short chain are not true Majorana states, since their
excitation energy can be significantly different from
zero and the wave functions of different modes are not
explicitly localized at one of the chain edges. However,
it is assumed that, with an increase in the number of
sites in a chain, these states become Majorana due to
the size effects. The introduced criteria allowed us to
study the conditions for the implementation of the
edge states in superconducting nanowires with the
interaction by examining only very short (10–20 sites)
chains using the exact diagonalization method.

Figure 3 presents the evidences of meeting the
above criteria in the discussed model for short chains.
The dark solid line corresponds to the difference
between the lowest energies of many-body states with
the negative and positive fermionic parity ΔE1 =  –

 for a chain of twelve sites. The bright solid curve
corresponds to the energy of the second single-particle
excitation relative to the ground state. Solid (dashed)
lines correspond to a system with the open (periodic)
boundary conditions. It can be seen that the ground
state of the system with the PBC has the positive fer-
mion parity at small and large μ values. Between these
μ ranges, there is a region of implementation of a
topologically nontrivial phase with ΔE1 < 0 in the sys-
tem. For an open chain, the ΔE1 value oscillates and
the zero-energy excitations are implemented. The
number of points with the change in the fermionic
parity depends on the number of sites in the chain. In
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Fig. 3. Energy difference ΔE1 =  –  (dark lines)
showing the change in the parity of the ground state and

ΔE2 (light lines) determined as  –  at ΔE1 > 0 or

 –  at ΔE1 < 0 as a function of the chemical poten-
tial for an open chain with 12 sites (solid lines) and a chain
folded into a ring (dashed lines). The parameters are as in
Fig. 1.

�0.3
�1.5 �1.0

�/t

0.2

�0.1

0

0.1

�0.2

�0.5 0.50

0.3
�E

j/t

od
1E ev

1E

od
2E ev

1E
ev
2E od

1E

Fig. 4. Spatial dependence of the coefficients ωfσ and zfσ
characterizing the matrix elements of Majorana operators
at the transition from the ground to first excited state at μ =
–1.256t (see Fig. 3) in an open nanowire with 12 sites.
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particular, when we consider six sites, the fermionic
parity for an open chain changes only twice in the
region corresponding to the nontrivial phase of the
PBC system.

The spatial structure of single-electron excitations
can be analyzed using the coefficients

(11)
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where  is the eigenvector of the ground state of
a wire in the even (odd) Hilbert space sector. Their
dependence on the coordinate for the zero-energy
excitation at μ = –1.256t is presented in Fig. 4. One
can see a trend to the implementation of the Majorana
edge states, which will become more pronounced with
increasing chain length. The latter result demonstrates
the stability of such modes with respect to the strong
electron correlations.

4. CONCLUSIONS

In this study, we investigated the stability of the sin-
gle-particle Majorana excitations against the strong
electron correlations for a short nanowire placed in an
external magnetic field with the strong Rashba spin–
orbit coupling and induced singlet superconductivity
of the extended s-wave symmetry. The system was
described using the one-dimensional Hubbard model,
which takes into account the terms corresponding to
the spin–orbit coupling and singlet superconducting
pairings induced by the proximity effect. Using this
model, we obtained the effective interactions in the
second order of the perturbation theory for which the
operator structure is defined on the homeopolar sec-
tor of the Hilbert space. In addition to the well-known
terms describing the kinetic exchange interaction of
electrons, the contribution to the effective interactions
in the investigated system are made by the terms
describing the trend to the noncollinear magnetic
ordering, singlet and triplet superconducting pairings,
and three-center interactions. In the derived model,
the elementary excitation spectrum was examined by
the exact diagonalization method and the possibility
of implementation of a topologically nontrivial phase
was analyzed. It is important that the exact numerical
results were obtained at the strong Coulomb repulsion.
It was shown that even in the regime of strong elec-
tronic correlations, the single-particle Majorana exci-
tations can occur in the system; the energy of such
excitations is below the spectrum gap under the peri-
odic boundary conditions and its dependences on the
chemical potential and magnetic field oscillate around
zero. Such a behavior is observed exactly for the region
in which the many-body ground state of the system
with the periodic boundary conditions has the nega-
tive fermion parity.

FUNDING

This study was supported by the Russian Foundation for
Basic Research, projects nos. 19-02-00348 and 20-3270059,
the Government of the Krasnoyarsk Territory and the Kras-
noyarsk Territorial Foundation for Support of Scientific
and R&D Activity, projects nos. 19-42-240011 and 18-42-
240014 “Single-Orbit Effective Model of an Ensemble of
Spin-Polaron Quasiparticles in the Problem of Describing
the Intermediate State and Pseudogap Behavior of Cuprate

Ψev(od)
1



1618 ZLOTNIKOV et al.
Superconductors,” and the Presidium of the Russian Acad-
emy of Sciences, program I.12 “Fundamental Problems of
High-Temperature Superconductivity.” S.V.A. thanks the
Council for Grants of the President of the Russian Federa-
tion for Governmental Support of Young Russian Scien-
tists, project no. MK-1641.2020.2.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. H. Zhang, C.-X. Liu, S. Gazibegovic, D. Xu, J. A. Lo-

gan, G. Wang, N. van Loo, J. D. Bommer, M. W. de
Moor, D. Car, R. L. M. O. het Veld, P. J. van Veld-
hoven, S. Koelling, M. A. Verheijen, M. Pendharkar,
et al., Nature (London, U.K.) 556, 74 (2018).

2. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys.
Rev. Lett. 105, 077001 (2010).

3. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.
105, 177002 (2010).

4. V. V. Val’kov, V. A. Mitskan, and M. S. Shustin, J. Exp.
Theor. Phys. 129, 426 (2019).

5. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
6. D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Scho-

merus, and C. W. J. Beenakker, New J. Phys. 14, 125011
(2012).

7. J. Chen, B. D. Woods, P. Yu, M. Hocevar, D. Car,
S. R. Plissard, E. P. A. M. Bakkers, T. D. Stanescu, and
S. M. Frolov, Phys. Rev. Lett. 123, 107703 (2019).

8. H. Pan, W. S. Cole, J. D. Sau, and S. Das Sarma, Phys.
Rev. B 101, 024506 (2020).

9. C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. D. Sarma,
Phys. Rev. B 96, 075161 (2017).

10. C. Moore, T. Stanescu, and S. Tewari, Phys. Rev. B 97,
165302 (2018).

11. V. V. Val’kov, M. Y. Kagan, and S. V. Aksenov, J. Phys.:
Condens. Matter 31, 225301 (2019).

12. Y. Sato, S. Matsuo, C.-H. Hsu, P. Stano, K. Ueda,
Y. Takeshige, H. Kamata, J. S. Lee, B. Shojaei,
K. Wickramasinghe, J. Shabani, Ch. Palmstrom, Y. To-
kura, D. Loss, and S. Tarucha, Phys. Rev. B 99, 155304
(2019).

13. R. M. Lutchyn and M. P. A. Fisher, Phys. Rev. B 84,
214528 (2011).

14. E. Stoudenmire, J. Alicea, O. Starykh, and M. Fisher,
Phys. Rev. B 84, 014503 (2011).

15. S. Gangadharaiah, B. Braunecker, P. Simon, and
D. Loss, Phys. Rev. Lett. 107, 036801 (2011).

16. C. Wong and K. Law, Phys. Rev. B 86, 184516 (2012).
17. A. M. Martin and J. F. Annett, Phys. Rev. B 57, 8709

(1998).
18. S. V. Aksenov, A. O. Zlotnikov, and M. S. Shustin,

Phys. Rev. B 101, 125431 (2020).
19. Yu. A. Izyumov, Phys. Usp. 40, 445 (1997).
20. N. N. Bogolyubov, Collection of Scientific Works (Nau-

ka, Moscow, 2006), Vol. 6 [in Russian].
21. K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10,

L271 (1977).
22. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and

S. G. Ovchinnikov, JETP Lett. 75, 378 (2002).
23. A. Yu. Kitaev, Phys. Usp. Suppl. 44, 131 (2001).
24. A. D. Fedoseev, J. Exp. Theor. Phys. 128, 125 (2019).

Translated by E. Bondareva
PHYSICS OF THE SOLID STATE  Vol. 62  No. 9  2020


	1. INTRODUCTION
	2. DERIVATION OF THE EFFECTIVE HAMILTONIAN OF THE t–J*– MODEL
	3. EXACT DIAGONALIZATION OF SHORT CHAINS AT THE STRONG CORRELATIONS
	4. CONCLUSIONS
	REFERENCES

		2020-09-03T18:30:07+0300
	Preflight Ticket Signature




